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Orbitally selective breakdown of the Fermi liquid and simultaneous enhancement of metallic
and insulating states in correlated multiband systems with spin-orbit coupling
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We show that spin-orbit coupling (SOC) plays Janus-faced roles on the orbitally selective Mott transitions
in a three-orbital Hubbard model with crystal field splitting at a specific filling of 2/3, which is a minimal
Hamiltonian for ruthenates. While the SOC favors the metallic state due to enhancement of orbital hybridization
at smaller on-site Coulomb repulsions, it stabilizes the Mott-insulating state ascribed to the lifting of orbital
degeneracies and enhancement of band polarizations at larger electronic interaction. Moreover, an orbitally
selective non-Fermi liquid (OSNFL), where breakdown and retention of the Fermi liquid coexist in different
orbitals, emerges between the orbitally selective Mott phase and the Fermi-liquid state. This novel state can be
used to account for the exotic metallic behavior observed in 4d materials, such as Ca1.8Sr0.2RuO4, Ba2RuO4

under strain, and Sr2RuO4 under uniaxial pressure. We propose that orbitally selective Kondo breakdown may
account for the OSNFL.
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I. INTRODUCTION

Multiorbital correlated electronic systems have been ex-
tensively investigated for decades since the discoveries of
iron-based superconductors [1,2] and 4d , 5d materials like
ruthenates and iridates [3–5], etc. The interplay of factors like
the kinetic energy, crystal field splitting, spin-orbit coupling
(SOC), Hund’s rule coupling, and the Hubbard interaction
dominates various exotic properties of these systems. For
example, sizable SOC and Coulomb repulsion in 4d and
5d materials [5] leads to unconventional superconductiv-
ity [6,7], SOC-assisted Mott transition [8–13], quantum spin
liquids [14], spin-orbit exciton condensation [15,16], and ex-
otic magnetic order [15,17–19]. Among all the phenomena
mentioned above, SOC-assisted Mott transition is of partic-
ular interest, where the SOC lifts orbital degeneracy, resulting
in an effective half-filled system. Then, the Mott transition
occurs at intermediate Coulomb interaction, as observed in
Sr2IrO4 [8].

Meanwhile, the Hund’s rule coupling served as a band
decoupler [20], together with the crystal field splitting, which
lowers the orbital degeneracy, opening a promising way to
generate orbital selectivity which is believed to widely ex-
ist in ruthenates [21–28] and iron-based superconductors
[21,29–33]. The corresponding metallic state, the so-called
Hund’s metal, with electronic correlations dominated by
Hund’s coupling, rather than the Hubbard interaction, is of
current intense interest since it may be responsible for exotic
metallic behavior [21] and unconventional superconductiv-
ity [29]. Under certain circumstances [34–38], the orbitally
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selective Mott (OSM) transition [39] takes place, where par-
tial bands become Mott insulating and the others remain
metallic.

However, comprehensive understanding of quantum phase
transitions in real materials with multiple active orbitals is still
missing [22,27,39–41] since the SOC and the crystal field
splitting are always separately taken into account [42–46]
when the electronic correlations are theoretically treated
within some reliable approximations like the dynamical mean-
field theory (DMFT) [47]. Such unrealistic modeling may
result in misleading of the effect of SOC on Hund’s metals,
the orbital selectivity, and Mott insulators.

In this paper, we study a three-orbital Hubbard model to
investigate the influence of SOC on the orbital-differentiated
correlations induced by both the lifted degeneracies due to
the crystal field splitting and the orbital decoupling ascribed
to Hund’s coupling at zero temperature. The main results are
schematically summarized in Fig. 1. In the absence of SOC,
two phases are identified within the interacting range we stud-
ied, including the Fermi-liquid state and the OSM state. The
SOC is found to effectively suppress the electronic correla-
tions at small Coulomb interaction and favor the Fermi-liquid
state. The competition between SOC and electronic correla-
tions leads to the emergence of an exotic metallic state [48],
characterized by the coexistence of the Fermi-liquid state and
non-Fermi-liquid state in different orbitals, which can account
for orbitally selective breakdown of the Fermi liquid observed
in Ca1.8Sr0.2RuO4 by recent angle-resolved photoemission
spectroscopy experiments [27] and early transport measure-
ments [49]. In contrast, the SOC enhances electronic correla-
tions at large Coulomb repulsion and results in reduced critical
values of phase transitions from the OSM state to the Mott
insulator.
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FIG. 1. The schematic phase diagram for the three-orbital Hub-
bard model in the plane of λ and U . FL, OSM, OSNFL, and Mott
denote the Fermi liquid, orbitally selective Mott phase, orbitally
selective non-Fermi liquid, and Mott insulator, respectively.

II. MODEL AND METHOD

To obtain the above phase diagram, the three-orbital Hub-
bard model on the Bethe lattice is considered, which is
defined as

H = t
∑

〈i j〉ασ

C†
iασCjασ +

∑
iασ

(�α − μ)niασ

+ U
∑

iα

niα↑niα↓ + (U ′ − Jz )
∑

iα>βσ

niασ niβσ

+ U ′ ∑
iα>βσ

niασ niβσ̄ − Jf

∑
iα>β

[S+
iαS−

iβ + S−
iαS+

iβ ]

+ Jp

∑
iα �=β

C†
iα↑C†

iα↓Ciβ↓Ciβ↑ + HSOC, (1)

where t denotes the nearest-neighbor hopping, �α represents
crystal field splitting for the t2g basis with orbital indices
α = {yz, xz, xy}, and μ is the chemical potential. U and U ′ are
the on-site intraorbital and interorbital Coulomb repulsions,
respectively. Hund’s rule couplings consist of the Ising-type
coupling Jz, the spin-flip term Jf , and the pair-hopping term
Jp. The relationship U = U ′ + 2Jz is employed to ensure the
electronic interaction is rotationally invariant. C†

iασ (Ciασ ) cre-
ates (annihilates) an electron with spin σ in orbital α of lattice
site i. S and n represent the spin and particle number operators,
respectively. The relativistic SOC reads

HSOC = λ
∑
iαβ

∑
σ1σ2

〈α|Li|β〉〈σ1|Si|σ2〉C†
iασ1

Ciβσ2 , (2)

where λ is the strength of the SOC and L is the local orbital
angular momentum operator. The matrix representations of
L = 2 in the t2g basis are the same as the ones for L = 1 in
the cubic basis except for a sign in accordance with the T -P
correspondence [5,50].

We employed the DMFT in combination with exact di-
agonalization (ED) [47] as an impurity solver to solve the
model (1) on the Bethe lattice with infinite coordinates at a
filling of n = 2/3, namely, four electrons in three orbitals,
and at zero temperature. The noninteracting density of states
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FIG. 2. (a) The quasiparticle residue Z of t2g orbitals as a function
of U at λ = 0.0 and λ = 0.14. (b) Blowup for Z of the dxy orbital near
the critical point U c

xy(λ = 0.0) of about 2.3; those for dyz/xz orbitals
are shown in the inset.

is ρα (ω) = 2
πD2

√
D2 − ω2, and the half bandwidth D is used

as the energy unit. The effective inverse temperature was set
to βD = 200, which serves as a low-frequency cutoff. On
the Bethe lattice, the DMFT self-consistent conditions simply
read �̂(ω) = D2

4 Ĝ(ω), where �̂(ω) is a matrix for hybrid
functions and Ĝ(ω) is a matrix for local lattice Green’s func-
tions. In total six baths were used to fit the hybrid function
�̂(ω). In our calculations, the orbital degeneracy is lifted
by crystal field splitting (i.e., �yz = �xz �= �xy), leading to
a nondegenerate dxy orbital and doubly degenerate dyz/xz or-
bitals. We fix electronic populations to be (1.5,1.5,1.0) in
accordance with that of Ca1.8Sr0.2RuO4 [27] in the absence
of SOC, which can be realized by tuning the orbitally depen-
dent potential �α [36]. The calculations were performed in
the paramagnetic state with isotropic Hund’s coupling where
Jz = Jf = Jp. The broadening factor η = 0.02D is used to
calculate real-frequency dynamical quantities, including the
Green’s functions, self-energies, and dynamical susceptibili-
ties for spin, orbital, and total angular momenta.

III. RESULTS

In order to explore the influence of SOC on the electronic
correlations in multiband systems, we have calculated the
quasiparticle residue Zα = (1 − ∂Re�α (ω)

∂ω
|ω→0)−1, as shown in

Fig. 2(a), where Re�α (ω) is the real part of the self-energies
of t2g orbitals. In the absence of SOC, Zxy is rapidly sup-
pressed as U increases and vanishes at a critical value of
U c

xy(λ = 0.0) ≈ 2.3, indicating a Mott-Hubbard gap opens in
the dxy band. In contrast, although Zyz/xz is drastically reduced
at the beginning, it remains finite in a wide region of U with
U c

yz/xz(λ = 0.0) being much larger than U c
xy(λ = 0.0), which

suggests an occurrence of the OSM phase where electrons in
the dxy band become Mott localized and those in dyz/xz bands
remain itinerant. This is in excellent agreement with previous
results [36].

When the SOC is taken into account, e.g., λ = 0.14, the
quasiparticle residues behave distinctly at small and large
Coulomb repulsions in comparison to those at λ = 0.0. At
large U , the SOC enhances the electronic correlations in dyz/xz

bands, as indicated by suppression of Zyz/xz, leading to a
smaller critical value of Mott transition U c

yz/xz(λ = 0.14) than
that of the λ = 0.0 case. Since the Mott-insulating state with a
vanishing Zxy remains in the dxy band, it suggests that the SOC
cooperates with the Coulomb interaction and stabilizes the
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FIG. 3. (a) and (b) Density of states projected onto the t2g orbitals
and (c) and (d) the imaginary part of the self-energy on the Matsubara
axis at U = 2.58 and U = 8.78 for λ = 0.0 and λ = 0.14.

Mott-insulating ground state. Conversely, at small U , the SOC
suppresses the electronic correlations in all bands, as inferred
by larger values of Z in comparison to those for the λ = 0
case, as shown in Fig. 2(b), which is a blowup of Fig. 2(a) in
the small-U region. This gives rise to an intersection of Zyz/xz

between the λ = 0.14 and λ = 0.0 cases at U ≈ 2.5, as seen
in the inset of Fig. 2(b). Furthermore, the quasiparticle residue
Zxy of the λ = 0.14 case remains nonzero for a wide range of
U > U c

xy(λ = 0.0), suggesting that a transition from a Mott
insulator to a metal may take place in the dxy band when SOC
is turned on. This indicates that the SOC competes with the
on-site Coulomb repulsion and favors a metallic ground state
at small U . Obviously, the SOC shows opposite effects on the
Mott transitions in multiband systems.

We further demonstrate the pronounced effects of the SOC
in the vicinity of phase transitions in Fig. 3, where the cal-
culated density of states projected onto the t2g basis and
corresponding imaginary part of the Matsubara self-energy
Im�α (iωn) are exhibited. In the absence of the SOC, at both
U = 2.58 and U = 8.78, the density of states at the Fermi
level vanishes in the dxy orbital, and Im�xy(iωn) diverges
in proximity to zero frequency, which is a typical character
of a Mott insulator. Meanwhile, the dyz/xz orbitals behave as
Fermi liquids since the density of states is finite at ω = 0
and Im�yz/xz(iωn) approaches zero at low frequency. These
results suggest that the system is in the OSM phase. When
λ increases to 0.14, the SOC exhibits distinct effects at small
and large U . At U = 8.78, while the SOC barely influences
the nature of the dxy orbital, the complete suppression of the
density of states of dyz/xz orbitals at the Fermi level and the
divergence of Im�yz/xz(iωn) as ωn goes to zero suggest the
appearance of the SOC-assisted Mott phase. On the other
hand, at U = 2.58, the SOC drastically affects the properties
of the dxy orbital but hardly influences those of dyz/xz orbitals.
The appearance of the central peak of the density of states for
the dxy orbital at the Fermi level and Im�xy(iωn) extrapolat-
ing to zero as ωn → 0 suggests a SOC-induced Fermi-liquid
behavior.

FIG. 4. (a) The influence of spin-orbit coupling on the imaginary
part of Matsubara self-energy for the dxy band; those for dyz/xz bands
are shown in the inset. (b) Density of states for the dxy band in the
Mott (λ = 0.0), non-Fermi-liquid (λ = 0.12), and Fermi-liquid (λ =
0.14) states. (c) Real and (d) imaginary parts of self-energy of the dxy

band on the real-frequency axis. Here, the electron repulsion is fixed
at U = 2.58.

The occurrence of the SOC-assisted Mott phase at large
U can be easily understood within the |J,±m〉 basis, where
the local Hamiltonian (2) can be diagonalized. Here, J de-
notes the total angular momentum, and ±m represents its
projection in the z direction. It is found that the SOC en-
hances band polarizations and leads to a full occupation of
the | 3

2 ,± 3
2 〉 bands at λc of about 0.1. Then, the other two

electrons reside in the | 3
2 ,± 1

2 〉 and | 1
2 ,± 1

2 〉 bands, resulting
in an effective half-filled system, rather than the original
four electrons per three orbitals. Therefore, the SOC fa-
vors Mott transition at large U since the effective filling is
changed.

On the contrary, in the small-U region, an OSM phase
requires decoupling between the Mott-insulating dxy orbital
and metallic dyz/xz orbitals, which is originally fulfilled by
Hund’s rule interaction in the absence of SOC. However, the
SOC introduces coupling between the dxy and dyz/xz orbitals,
leading to enhancements of both orbital fluctuations and the
kinetic energies of all orbitals. Therefore, the SOC tends to
destroy the Mott phase of the dxy orbital and favors the metal-
lic state due to the increase of the bandwidth and decrease of
band decoupling at small U .

Besides the opposite effect of SOC on electronic corre-
lations, it is also interesting to find an intermediate phase,
called the orbitally selective non-Fermi liquid (OSNFL),
where breakdown of the Fermi liquid happens only in dxy

orbitals, emerging between the Fermi-liquid state and the
OSM phase in the small-U and intermediate-λ region, as
presented in Fig. 1. This exotic metallic state can be clearly
identified by the imaginary part of the Matsubara self-energy
Im�α (iωn), as shown in Fig. 4(a). For example, at U = 2.58,
while Im�yz/xz(iωn) always goes to zero as ωn → 0, indicat-
ing Fermi liquids in dyz/xz bands [see the inset of Fig. 4(a)],
Im�xy(iωn) extrapolates to a finite value as ωn → 0 around
λ ≈ 0.12, which is in sharp contrast to the divergent be-
havior for λ � 0.08 and the tendency to approach zero for
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FIG. 5. (a) Dynamical susceptibilities for spin (S), orbital (L),
and total (J) angular momenta at U = 2.58 and λ = 0.12. (b) Dy-
namical spin susceptibilities at U = 2.58 for the λ = 0.0, λ = 0.12,
and λ = 0.14 cases; the inset shows corresponding orbitally resolved
dynamical spin susceptibilities, where solid lines denote dyz/xz or-
bitals and dashed lines denote the dxy orbital.

λ � 0.14. The finite scattering rate suggests a finite lifetime
of quasiparticles and a breakdown of the Fermi liquid at zero
temperature.

The self-energy �xy(ω) on the real-frequency axis again re-
veals the SOC-induced non-Fermi-liquid behavior in dxy band.
Figures 4(c) and 4(d) show the real part of the self-energy
Re�xy(ω) and imaginary part of the self-energy Im�xy(ω) at
U = 2.58 for λ = 0.0, λ = 0.12, and λ = 0.14. When λ =
0.12, the positive slop of Re�xy(ω) at the Fermi level and the
finite Im�xy(ω) suggest the breakdown of the quasiparticle
picture. The development of additional low-energy poles of
ω + μ − ε − Re�xy(ω) = 0 close to the Fermi level and the
finite scattering rate at ω = 0 lead to the appearance of a
pseudogap in the dxy band, as depicted in Fig. 4(b), remi-
niscent of that observed in the Hubbard model within cluster
DMFT [51]. This is strikingly different from those for λ = 0.0
and 0.14. For the former, the divergent Im�xy(ω) at ω = 0 and
the steep positive slop of Re�xy(ω) suggest a Mott-insulating
state. In contrast, for the latter, Im�xy(ω) can be fitted by
ω2, and Re�xy(ω) is linearly ω dependent, indicating a typ-
ical Fermi-liquid behavior at zero temperature. Figure 4(b)
shows the density of states for the dxy band in the Mott, pseu-
dogap, and Fermi-liquid states at λ = 0.00, 0.12, and 0.14,
respectively.

Now we discuss the underlying physics for the OSNFL
state. Since the nature of correlated metals is controlled by the
low-energy excitations in the absence of SOC for multiband
systems [52,53], we performed similar calculations for the
dynamical susceptibilities χ ii(ω) of total, orbital, and spin
angular momenta, with i = J , L, and S, respectively, at U =
2.58 and λ = 0.12, as shown in Fig. 5(a). The dynamical spin
susceptibilities are defined as

χSS (t ) = −iθ (t )〈|[S(t ), S]−|〉, (3)

where θ (t ) is a step function, |·〉 is the ground state, [·]−
denotes the commutator of two operators, and S is the operator
of total spin angular momenta. After performing a Fourier
transformation, we obtain

χSS (z = ω + iη) = −Im
∫ ∞

−∞
dteiztχSS (t ). (4)

We display only the imaginary parts since the real parts can be
reproduced by the Kramers-Kronig relations. The dynamical

susceptibilities χLL(ω) and χ JJ (ω) for the corresponding or-
bital and total angular momenta can be obtained similarly.
The calculation details regarding dynamical correlations are
given in Appendix B. From Fig. 5(a), it is found that the
low-energy excitations mainly come from spin fluctuations,
while the high-energy parts are ascribed to the excitations
of orbital momentum L. Thus, we focus on analyses of dy-
namical spin susceptibilities χSS (ω) at U = 2.58 for λ = 0.0,
0.12, and 0.14. At λ = 0.0, the system is in the OSM phase.
The low-energy spin fluctuations consist of two parts; one
is attributed to the Kondo screening of spins in dyz/xz bands
by itinerant electrons, and the other is ascribed to the exis-
tence of spin triplets formed by four electrons in three t2g

orbitals [52,53]. At λ = 0.14, the system becomes a Fermi
liquid. The intensity of low-energy spin excitations is drasti-
cally enhanced. Since the low-energy spin excitations of dyz/xz

bands remain almost unchanged for different λ, as seen in the
inset of Fig. 5(b), the abrupt increase should be ascribed to
additional Kondo resonances between spins in the dxy band
and itinerant electrons. At λ = 0.12, while electrons in the
dxy band become itinerant, the corresponding low-energy spin
excitations are similar to those for λ = 0.0, indicating that the
spins in the dxy band do not take part in the Kondo screen-
ing. The lack of Kondo screening in the dxy band leads to
the emergence of the non-Fermi liquid. Hence, we conclude
that the OSNFL state is a result of orbitally selective Kondo
breakdown.

IV. DISCUSSION

The calculated results show the Janus-faced influence of
SOC on the Mott transitions in the presence of crystal field
splitting at a filling of n = 2/3. Owing to the orbital degen-
eracy lifted by crystal field splitting, the Mott transitions in
different orbitals take place separately as U increases. The
opposite effect of SOC on the electronic correlations leads to
the increase of U c

xy and decrease of U c
yz/xz, which is in sharp

contrast to previous theoretical results in the absence of crystal
field splitting, where a common Mott transition occurs and
the critical value of Uc can be increased or decreased only
by the SOC for given integer fillings [44–46]. Furthermore,
the competition between SOC and Coulomb repulsion results
in the OSNFL state, characterized by the coexistence of the
Fermi liquid and non-Fermi liquid in different orbitals, which
is fundamentally distinct from the case of λ = 0.0, where the
metallic ground state is always a Fermi liquid, as displayed
in Fig. 1. The coexisting region is of particular importance as
it provides a unique platform to study the breakdown of the
Fermi-liquid picture and the nature of the non-Fermi-liquid
state. The appearance of the OSNFL state requires remark-
able orbital-differentiated correlations and sizable orbital
hybridizations, reminiscent of the non-Fermi liquid obtained
within cluster DMFT [51,54] where multiple sites correspond
to multiple orbitals. In addition, we suppose that the non-
Fermi liquid might be the collective excitations of spin-charge
separation.

Next, we discuss the relevance of our results to real mate-
rials. Ca1.8Sr0.2RuO4 satisfies the conditions for the OSNFL
state. On the one hand, the intermediate SOC has been ob-
served in Sr2RuO4 [55] and Ca2RuO4 [56,57]. On the other
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hand, Ca1.8Sr0.2RuO4 shows significant orbital-differentiated
correlations with effective mass for a dxy band much larger
than that for dyz/xz bands [27,40]. Furthermore, enhanced crys-
tal field splitting induced by lattice distortion is detected in
Ca1.8Sr0.2RuO4 [58]. Although the material-realistic DMFT
calculations claimed that SOC hardly affects the correlations
in Sr2RuO4 [59] and Ca2RuO4 [60], we still suppose that
Ca1.8Sr0.2RuO4 should be susceptible to the SOC due to its
proximity to the Mott transition. Hence, orbitally selective
breakdown of the Fermi liquid observed experimentally in
Ca1.8Sr0.2RuO4 [27] may be a result of competition between
SOC and orbital-differentiated correlations. Moreover, the
non-Fermi liquid caused by strain in Ba2RuO4 [61] and uni-
axial pressure in Sr2RuO4 [62] may also be attributed to the
competition since both strain and uniaxial pressure slightly
affect dyz/xz bands but significantly increase the renormaliza-
tion mass of the dxy band due to the band flattening, resulting
in enhanced orbital differentiation. In addition, the OSNFL
picture may have important implication for understanding the
low-temperature non-Fermi liquid in CaRuO3 [63–67].

V. CONCLUSION

In conclusion, we have investigated the three-orbital Hub-
bard model with both SOC and crystal field splitting using the
DMFT combined with ED at 2/3 filling. The OSM transitions
take place as the orbital degeneracy is lifted by crystal field
splitting in the absence of SOC. It was found that the SOC
plays Janus-faced roles in the OSM transitions. While it sup-
presses the OSM transition at smaller U , it favors the OSM
transition at larger U . The competition between the SOC and
electronic correlations leads to the emergence of an OSNFL
state, where the Fermi liquid coexists with the non-Fermi liq-
uid. The OSNFL state originates from the orbitally selective
Kondo breakdown and can be applied to understand the exotic
metals in 4d materials.
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APPENDIX A: DYNAMICAL MEAN-FIELD THEORY
FOR MULTIORBITAL HUBBARD MODELS

The DMFT [47] was employed to investigate the multior-
bital Hubbard model (1) on the Bethe lattice with an infinite
coordination number, for which the DMFT has already been
proved to be exact and the model (1) can be exactly mapped
onto an Anderson impurity model with self-consistent con-
ditions �̂(ω) = D2

4 Ĝ(ω), where Ĝ(ω) is the matrix of local
lattice Green’s functions, �̂(ω) denotes the matrix of hy-
bridization functions for the Anderson impurity model, and D
represents the half bandwidth. Note that the hat symbol is used
to denote a matrix. When the spin-orbit coupling is consid-
ered, it is convenient to do the calculations in the |J, τm〉 basis,

where J = { 1
2 , 3

2 }, m = { 1
2 , 3

2 }, m � J , and τ = ±, specifying
a pair of Kramers doublets m, which are the eigenvectors
of the Hamiltonian (2). In this representation, the Anderson
impurity model reads

Himp =
∑
kτm

εkmC†
kτmCkτm +

∑
p

Êpd†
pdp +

∑
pq

M̂pqd†
pdq

+
∑
kJτm

VkJτm(C†
kτmdJτm + d†

JτmCkτm)

+ 1

4

∑
pqst

Ũ pq
st d†

pd†
q dsdt , (A1)

where εkm denotes the dispersion relationship of bath elec-
trons, p, q, s, t are the orbital indices of (J, τm), Êp is the
eigenvalue of Hamiltonian (2), M̂pq is the matrix element
of crystal field splitting in the |J, τm〉 basis, VkJτm denotes
the hybridization between local orbitals on the impurity and
bath, and Ũ pq

st = ∑
αβγ δ Uαβγ δÂ∗

pαÂ∗
qβ Âsγ Âtδ is the Coulomb

interaction tensor element in the |J, τm〉 representation, where
Uαβγ δ is the Coulomb interaction tensor element in the t2g

basis and Â is the unitary transformation [43] between the t2g

and |J, τm〉 bases.
The main tasks of the present DMFT calculations are

to solve the Anderson impurity model (A1). We took ED
as the impurity solver [47]. In order to solve model (A1)
with ED, we have to use a finite number of bath sites
to optimally fit the continuous bath. In this paper, in to-
tal, six discrete bath sites were adopted to couple to three
Kramers doublets, i.e., two bath sites per Kramers dou-
blet. Owing to the presence of orbital mixing between
| 1

2 , 1
2 〉 (| 1

2 ,− 1
2 〉) and | 3

2 , 1
2 〉 (| 3

2 ,− 1
2 〉) orbitals, correspond-

ing cross-orbital hybridization functions, like �̂ 1
2 , 1

2 ; 3
2 , 1

2
and

�̂ 1
2 ,− 1

2 ; 3
2 ,− 1

2
, are considered. From Fig. 6, it is found that

the Weiss field ĝ(iωn) = [�̂(iωn) + Ĝ−1(iωn)]−1, with �̂(iω)
being the matrix of the self-energy, can be well reproduced
by the noninteracting impurity Green’s function ĝimp(iωn)
defined by (A3) in the OSM [Figs. 6(a)–6(c)], the OSNFL
[Figs. 6(d)–6(f)], and the Fermi-liquid [Figs. 6(g)–6(i)]
phases, suggesting that the finite-size effects are negligible
and the results presented in the paper are convincing. The
procedures of the DMFT calculations in combination with ED
as the impurity solver are described below.

Starting from an initial set of bath parameters {εkm,VkJτm},
we construct the Anderson model (A1). The hybridiza-
tion function of the corresponding impurity model (A1) is
written as

�̂J,τm;J ′,τm(iωn) =
∑

k

VkJτmVkJ ′τm

iωn − εkm
, (A2)

where ωn = (2n−1)π
β

is the Matsubara frequency with a ficti-
tious temperature βD = 200, which serves as a low-frequency
cutoff. The noninteracting impurity Green’s function of the
Anderson model (A1) is

ĝimp(iωn) = iωn + μ − Ê − M̂ − �̂−1(iωn). (A3)
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FIG. 6. Comparison between the Weiss fields ĝ(iωn) and the noninteracting impurity Green’s functions ĝimp(iωn) obtained from a
discretized Anderson impurity model with six optimal bath sites. ĝ(iωn) can be well reproduced by ĝimp(iωn) in (a)–(c) the OSM, (d)–(f)
the OSNFL, and (h)–(i) the Fermi-liquid (FL) phases for all (J, m) orbitals, including p = ( 1

2 , 1
2 ), p = ( 3

2 , 1
2 ), and p = ( 3

2 , 3
2 ) orbitals.

After the impurity Green’s function Ĝimp(iωn) is obtained by
solving model (A1) with ED, the self-energy �̂(iωn) can be
calculated based on Dyson’s equation,

�̂(iωn) = ĝ−1
imp(iωn) − Ĝ−1

imp(iωn). (A4)

Finally, the local Green’s function of the three-orbital Hub-
bard model (1) in the |J, τm〉 basis is calculated as

Ĝ(iωn) =
∫ +∞

−∞

ρ(ε)dε

iωn + μ − Ê − M̂ − �̂(iωn) − ε
, (A5)

where ρ(ω) = 2
πD2

√
D2 − ω2 is the density of states for three

Kramers doublets, which is the same as the counterpart for
the t2g orbitals. Considering the self-consistent conditions
�̂(iωn) = D2

4 Ĝ(iωn), we can iteratively calculate the local
Green’s function Ĝ(iωn) through Eqs. (A1)–(A5).

In our calculations, the parameters {εkm,VkJτm} to build
the model (A1) are obtained by using the conjugate gradient
method to minimize the cost function

χ = 1

Nmax

Nmax∑
n=1

1

ω2
n

∑
pq

|[ĝ(iωn) − ĝimp(iωn)]pq|, (A6)

where Nmax = 256 is the upper limit of the summation. Start-
ing from a guessed Weiss field ĝ(iωn), we can self-consistently
obtain the convergent results when the difference �g between
the new Weiss field ĝnew(iωn) and the old Weiss field ĝold(iωn)

is less than 10−6. The difference �g is defined as

�g = max
{∣∣ĝnew

pq (iωn) − ĝold
pq (iωn)

∣∣}. (A7)

Although the present DMFT calculations were performed
in the |J, τm〉 basis, the dynamical quantities, like the local
lattice Green’s function Ĝt2g (iωn) and self-energy �̂t2g (ωn),
in the t2g basis can be readily obtained via a unitary
transformation

Ĝt2g (iωn) = ÂĜ(iωn)Â† (A8)

and

�̂t2g (iωn) = Â�̂(iωn)Â†. (A9)

Since ED has direct access to the real-frequency dynamical
correlations as described in Appendix B, we can calculate the
local lattice Green’s function Ĝ(iω + iη) after the self-energy
is obtained via the Dyson equation �̂(ω + iη) = ĝ−1

imp(ω +
iη) − Ĝ−1

imp(ω + iη), where the impurity Green’s function

Ĝimp(ω + iη) is directly produced by ED. Similar to the Mat-
subara Green’s function Ĝt2g (iωn), the local Green’s function
Ĝt2g (ω + iη) and self-energy �̂t2g (ω + iη) in the t2g basis are
calculated as

Ĝt2g (ω + iη) = AĜ(ω + iη)A† (A10)

and

�̂t2g (ω + iη) = A�̂(ω + iη)A†. (A11)
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On the basis of Ĝt2g (ω + iη), the projected density of states,
as shown in the main text, is defined as

ρασ (ω) = − 1

π
Im[Ĝt2g (ω + iη)]ασ,ασ , (A12)

where α is the orbital index for t2g orbitals and σ denotes
electron spin.

APPENDIX B: EXACT DIAGONALIZATION

When ED is employed as an impurity solver of the DMFT,
it needs two steps to obtain the dynamical correlation func-
tions. The first step is to calculate the ground-state energy Eg

and corresponding eigenvector |·〉 of the Anderson impurity
model (A1) by the Lanczos method. On the basis of the
Lanczos method, Eg and |·〉 can be obtained by iteratively
constructing a Krylov space {|φn〉} from an arbitrary initial
configuration |φ1〉 via

|φ̃n+1〉 = Himp|φn〉 − an|φn〉 − b2
n|φn−1〉, (B1)

where n = 2, 3, 4, . . . , an = 〈φn|Himp|φn〉, b2
n = 〈φ̃n+1|φ̃n+1〉.

Note |φn〉 denotes a normalized vector, b1 = 0, |φ0〉 = 0,
|φ̃2〉 = Himp|φ1〉 − a1|φ1〉, and a1 = 〈φ1|Himp|φ1〉. The itera-
tion (B1) continues until bn is less than a threshold. In this
basis, the Hamiltonian for the Anderson impurity model (A1)
is a tridiagonal matrix and simply reads

⎡
⎢⎢⎢⎢⎣

a1 b2 0 0 · · ·
b2 a2 b3 0 · · ·
0 b3 a3 b4 · · ·
0 0 b4 a4 · · ·
...

...
...

...

⎤
⎥⎥⎥⎥⎦, (B2)

which can be diagonalized by the modern standard library
subroutines.

The second step is to calculate the dynamical correlation
function based on the ground-state energy Eg and ground-state
eigenvector |·〉 obtained in the first step. For the given operator
O, the real-time dynamical correlation function is defined as

Cαβ (t ) = −iθ (t )〈|[Oα (t ), Oβ ]ξ |〉, (B3)

where θ (t ) is a step function of time t , Oα (t ) =
eiHimpt Oαe−iHimpt , [·]ξ denotes the commutator of two opera-
tors, ξ = 1 if O is a Fermi operator, and ξ = −1 otherwise.
After performing a Fourier transformation, the dynamical cor-
relation function on the real-frequency axis can be written as

Cαβ (ω + iη) = C>
αβ (ω + iη) + ξC<

αβ (ω + iη), (B4)

where η is a broadening factor and

C>
αβ (ω + iη) = 〈|Oα

1

ω − Himp + Eg + iη
Oβ |〉, (B5)

C<
αβ (ω + iη) = 〈|Oβ

1

ω + Himp − Eg + iη
Oα|〉. (B6)

Similar to calculating the ground-state energy Eg and eigen-
vector |·〉, the method of the Krylov space can be applied to
calculate both dynamical correlation functions above.

In order to calculate C>
αβ (ω + iη), we start the Lanczos

iterations with the initial vector |φβ

1 〉 = Oβ |〉/〈|O†
βOβ |〉 to

construct the new basis {|φβ
n 〉}. Inserting the completeness∑

n |φβ
n 〉〈φβ

n | = 1 into Eq. (B5) yields

C>
αβ (ω + iη) =

√
〈|OαO†

α|〉
√

〈|O†
βOβ |〉

×
∑

n

U αβ
n V β

n (ω + iη), (B7)

where

V β
n (ω + iη) = 〈

φβ
n

∣∣ 1

ω − Himp + Eg + iη

∣∣φβ

1

〉
(B8)

and U αβ
n = 〈φα

1 |φβ
n 〉, with 〈φα

1 | = 〈|Oα/

√
〈|OαO†

α|〉. It is ob-

vious that the main difficulties are to calculate V β
n (ω + iη) in

the new basis. By taking advantage of the completeness of∑
n |φβ

n 〉〈φβ
n | = 1 and the identity

〈
φβ

m

∣∣(ω − Himp + Eg)
1

ω − Himp + Eg

∣∣φβ

1

〉 = δm,1, (B9)

V β
n (ω + iη) can be obtained through

Sβ
mn(ω + iη)V β

n (ω + iη) = Em, (B10)

where Em = δm,1 and Sβ
mn(ω + iη) is a tridiagonal matrix,

Sβ
mn(ω + iη) =

⎡
⎢⎢⎢⎢⎣

ω − a1 + Eg + iη −b2 0 0 · · ·
−b2 ω − a2 + Eg + iη −b3 0 · · ·

0 −b3 ω − a3 + Eg + iη −b4 · · ·
0 0 −b4 ω − a4 + Eg + iη · · ·
...

...
...

...

⎤
⎥⎥⎥⎥⎦, (B11)

where an and bn are the coefficients generated by the Lanc-
zos iterations with the initial configuration |φβ

1 〉. The linear
equations (B10) can be easily solved by the standard library
subroutines. Finally, we can obtain the dynamical correlation
function C>

αβ (ω + iη) by solving Eqs. (B7) and (B10). As for
C<

αβ (ω + iη), it can be obtained similarly.

When substituting the Matsubara frequency iωn for the
real frequency ω + iη in Eq. (B4), the dynamical correlation
functions Cαβ (iωn) on the Matsubara frequency axis can be
obtained by following the above two-step procedures, which
suggests that ED has direct access to the dynamical quantities
on both real- and Matsubara frequency axes. This is in sharp
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FIG. 7. (a) The influence of spin-orbit coupling on the imaginary
part of Matsubara self-energy for the dxy band; that for dyz/xz bands is
shown in the inset. (b) Density of states for the dxy band in the Mott
(λ = 0.0), non-Fermi-liquid (λ = 0.12), and the Fermi-liquid (λ =
0.16) states. (c) Real and (d) imaginary parts of the self-energy of
the dxy band on the real-frequency axis. Here, the electron repulsion
is fixed at U = 2.51.

contrast to the quantum Monte Carlo, which cannot directly
sample the real-frequency dynamical correlations.

APPENDIX C: RESULTS WITH EIGHT BATH SITES
COUPLED TO THREE KRAMERS DOUBLETS

In order to further investigate the effect of bath dis-
cretization on the OSNFL phase, we have done the DMFT
calculations with eight bath sites at zero temperature by using
ED as the impurity solver, where four bath sites couple to
| 1

2 ,± 1
2 〉 and | 3

2 ,± 1
2 〉 Kramers doublets and the remaining four

bath sites couple to the | 3
2 ,± 3

2 〉 doublet. The calculated results
at U = 2.51 are displayed in Fig. 7, which exhibits distinct
characteristics of OSM, OSNFL, and FL phases, similar to
those obtained with six bath sites. The OSNFL state can be
clearly identified by the imaginary part of the self-energy
Im�(iωn) on the Matsubara frequency axis. As shown in the
inset of Fig. 7(a), Im�yz/xz(iωn) for dyz/xz orbitals always
extrapolates to zero when ωn goes to zero, suggesting the
typical Fermi-liquid behavior in dyz/xz orbitals. In contrast,
at around λ ≈ 0.12, Im�xy(iωn) for dxy orbital approaches a
finite value at low frequencies, which is different from the
divergent behavior for λ < 0.8 and the tendency towards zero
for λ > 0.14, indicating the occurrence of a breakdown of the
Fermi liquid in the dxy orbital due to the finite scattering rate
at the Fermi level at zero temperature.

The self-energy �xy(ω) on the real-frequency axis fur-
ther manifests the SOC-induced non-Fermi-liquid nature of
the dxy orbital. Figures 7(c) and 7(d) show the real part
of the self-energy Re�xy(ω) and the imaginary part of
the self-energy Im�xy(ω) at U = 2.51 for λ = 0.0, λ =
0.12, and λ = 0.16. For the case of λ = 0.12, the posi-
tive slope of Re�xy(ω) and finite value of Im�xy(ω) at the
Fermi level indicate the breakdown of the Fermi liquid at
zero temperature. In contrast, the sharp slope of Re�xy(ω)
and divergent Im�xy(ω) at ω = 0 suggest a Mott-insulating

FIG. 8. (a) Dynamical susceptibilities for spin (S), orbital (L),
and total (J) angular momenta at U = 2.51 and λ = 0.12. (b) Dy-
namical spin susceptibilities at U = 2.51 for the λ = 0.0, λ = 0.12,
and λ = 0.16 cases; the inset shows corresponding orbitally resolved
dynamical spin susceptibilities, where solid lines denote dyz/xz or-
bitals and dashed lines denote the dxy orbital.

state for the λ = 0.0 case, and the linearly ω dependent
Re�xy(ω) and quadratically ω2 dependent Im�xy(ω) in the
vicinity of the Fermi level indicate a typical Fermi-liquid
behavior for the λ = 0.16 case. Figure 7(c) displays the
density of states for the dxy orbital in the Mott, non-Fermi-
liquid, and Fermi-liquid states at λ = 0.0, 0.12, and 0.16,
respectively.

In order to reveal the mechanism which is responsible for
the appearance of the OSNFL state, we have calculated the
dynamical susceptibilities χ ii(ω), defined by Eqs. (3) and (4),
for total spin momentum S, total orbital angular momentum L,
and total angular momentum J at U = 2.51 and λ = 0.12, as
displayed in Fig. 8(a). The results are similar to that obtained
with six bath sites. It is obvious that the low-energy excitations
of the total angular momentum J are mainly contributed by
the spin fluctuations, and the high-energy ones are ascribed
to the excitations of the total orbital angular momentum L.
Since the low-energy excitations were found to dominate
the physical properties of the correlated multiorbital sys-
tems [52,53], we now pay attention to the low-energy spin
fluctuations. Figure 8(b) depicts the spin susceptibilities at
U = 2.51 for the λ = 0.0, 0.12, and 0.16 cases. As explained
in the main text, at λ = 0.0, the system is in the OSM state.
The appearance of low-energy spin excitations is due to the
spins in dyz/xz orbitals screened by their itinerant electrons
and the formation of the local triplets with three t2g orbitals
filled by four electrons. At λ = 0.16, the abrupt enhancement
in low-energy spin excitations is attributed to the presence of
the additional Kondo resonances in the dxy orbital because
the spin susceptibilities for dyz/xz orbitals remain almost un-
changed, as displayed in the inset of Fig. 8(b). In contrast,
at λ = 0.12, the spin susceptibilities are almost the same as
those at λ = 0.0, indicating the spins in the dxy band do not
participate in the Kondo screening. Obviously, the lack of
Kondo resonances in the dxy orbital leads to the non-Fermi-
liquid behavior.

In addition, we also performed calculations at U = 3.01
(not shown) with eight bath sites. The phase transitions from
OSM to FL states intermediated by the OSNFL state are
detected as a function of SOC, and the distinct characteristics
of different phases reflected in the physics quantities like
the self-energies, the densities of states, and the dynamical
susceptibilities are quite similar to those of the U = 2.51 case.
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In summary, calculations with eight optimized bath sites
indicate that the novel OSNFL state and the phase transitions

we obtained with six optimized bath sites are robust and the
finite-size effect is negligible.

[1] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H.
Yanagi, T. Kamiya, and H. Hosono, Iron-based layered super-
conductor: LaOFeP, J. Am. Chem. Soc. 128, 10012 (2006).

[2] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-
based layered superconductor La[O1−xFx]FeAs (x = 0.05–
0.12) with Tc = 26 K, J. Am. Chem. Soc. 130, 3296 (2008).

[3] W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents,
Correlated quantum phenomena in the strong spin-orbit regime,
Annu. Rev. Condens. Matter Phys. 5, 57 (2014).

[4] J. G. Rau, E. Kin-Ho Lee, and H.-Y. Kee, Spin-orbit physics
giving rise to novel phases in correlated systems: Iridates and
related materials, Annu. Rev. Condens. Matter Phys. 7, 195
(2016).

[5] C. Martins, M. Aichhorn, and S. Biermann, Coulomb corre-
lations in 4d and 5d oxides from first principles—Or how
spin–orbit materials choose their effective orbital degeneracies,
J. Phys.: Condens. Matter 29, 263001 (2017).

[6] Z. Y. Meng, Y. B. Kim, and H.-Y. Kee, Odd-Parity Triplet
Superconducting Phase in Multiorbital Materials with a Strong
Spin-Orbit Coupling: Application to Doped Sr2IrO4, Phys. Rev.
Lett. 113, 177003 (2014).

[7] J. Chaloupka and G. Khaliullin, Doping-Induced Ferromag-
netism and Possible Triplet Pairing in d4 Mott Insulators, Phys.
Rev. Lett. 116, 017203 (2016).

[8] B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H.
Takagi, and T. Arima, Phase-Sensitive Observation of a Spin-
Orbital Mott State in Sr2IrO4, Science 323, 1329 (2009).

[9] J. Chaloupka, G. Jackeli, and G. Khaliullin, Kitaev-Heisenberg
Model on a Honeycomb Lattice: Possible Exotic Phases
in Iridium Oxides A2IrO3, Phys. Rev. Lett. 105, 027204
(2010).

[10] R. Comin, G. Levy, B. Ludbrook, Z.-H. Zhu, C. N. Veenstra,
J. A. Rosen, Y. Singh, P. Gegenwart, D. Stricker, J. N. Hancock,
D. van der Marel, I. S. Elfimov, and A. Damascelli, Na2IrO3 as
a Novel Relativistic Mott Insulator with a 340-meV Gap, Phys.
Rev. Lett. 109, 266406 (2012).

[11] K. W. Plumb, J. P. Clancy, L. J. Sandilands, V. V. Shankar, Y. F.
Hu, K. S. Burch, H.-Y. Kee, and Y.-J. Kim, α-RuCl3: A spin-
orbit assisted Mott insulator on a honeycomb lattice, Phys. Rev.
B 90, 041112(R) (2014).

[12] S. M. Winter, Y. Li, H. O. Jeschke, and R. Valentí, Challenges
in design of Kitaev materials: Magnetic interactions from com-
peting energy scales, Phys. Rev. B 93, 214431 (2016).

[13] F. Lang, P. J. Baker, A. A. Haghighirad, Y. Li, D. Prabhakaran,
R. Valentí, and S. J. Blundell, Unconventional magnetism on a
honeycomb lattice in α-RuCl3 studied by muon spin rotation,
Phys. Rev. B 94, 020407(R) (2016).

[14] Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid states,
Rev. Mod. Phys. 89, 025003 (2017).

[15] G. Khaliullin, Excitonic Magnetism in Van Vleck–type d4 Mott
Insulators, Phys. Rev. Lett. 111, 197201 (2013).

[16] T. Sato, T. Shirakawa, and S. Yunoki, Spin-orbital entangled
excitonic insulator with quadrupole order, Phys. Rev. B 99,
075117 (2019).

[17] G. Chen, R. Pereira, and L. Balents, Exotic phases induced by
strong spin-orbit coupling in ordered double perovskites, Phys.
Rev. B 82, 174440 (2010).

[18] G. Chen and L. Balents, Spin-orbit coupling in d2 ordered
double perovskites, Phys. Rev. B 84, 094420 (2011).

[19] O. N. Meetei, W. S. Cole, M. Randeria, and N. Trivedi, Novel
magnetic state in d4 Mott insulators, Phys. Rev. B 91, 054412
(2015).

[20] L. de’ Medici, Hund’s coupling and its key role in tuning mul-
tiorbital correlations, Phys. Rev. B 83, 205112 (2011).

[21] A. Georges, Luca de’ Medici, and J. Mravlje, Strong correla-
tions from Hund’s coupling, Annu. Rev. Condens. Matter Phys.
4, 137 (2013).

[22] E. Gorelov, M. Karolak, T. O. Wehling, F. Lechermann, A. I.
Lichtenstein, and E. Pavarini, Nature of the Mott Transition in
Ca2RuO4, Phys. Rev. Lett. 104, 226401 (2010).

[23] J. Mravlje, M. Aichhorn, T. Miyake, K. Haule, G. Kotliar, and
A. Georges, Coherence-Incoherence Crossover and the Mass-
Renormalization Puzzles in Sr2RuO4, Phys. Rev. Lett. 106,
096401 (2011).

[24] D. Stricker, J. Mravlje, C. Berthod, R. Fittipaldi, A. Vecchione,
A. Georges, and D. van der Marel, Optical Response of
Sr2RuO4 Reveals Universal Fermi-Liquid Scaling and Quasi-
particles Beyond Landau Theory, Phys. Rev. Lett. 113, 087404
(2014).

[25] H. T. Dang, J. Mravlje, A. Georges, and A. J. Millis, Band Struc-
ture and Terahertz Optical Conductivity of Transition Metal
Oxides: Theory and Application to CaRuO3, Phys. Rev. Lett.
115, 107003 (2015).

[26] H. T. Dang, J. Mravlje, A. Georges, and A. J. Millis, Elec-
tronic correlations, magnetism, and Hund’s rule coupling in the
ruthenium perovskites SrRuO3 and CaRuO3, Phys. Rev. B 91,
195149 (2015).

[27] D. Sutter, M. Kim, C. E. Matt, M. Horio, R. Fittipaldi, A.
Vecchione, V. Granata, K. Hauser, Y. Sassa, G. Gatti, M. Grioni,
M. Hoesch, T. K. Kim, E. Rienks, N. C. Plumb, M. Shi, T.
Neupert, A. Georges, and J. Chang, Orbitally selective break-
down of Fermi liquid quasiparticles in Ca1.8Sr0.2RuO4, Phys.
Rev. B 99, 121115(R) (2019).

[28] F. B. Kugler, M. Zingl, H. U. R. Strand, S.-S. B. Lee, J.
von Delft, and A. Georges, Strongly Correlated Materials from
a Numerical Renormalization Group Perspective: How the
Fermi-Liquid State of Sr2RuO4 Emerges, Phys. Rev. Lett. 124,
016401 (2020).

[29] K. Haule and G. Kotliar, Coherence-incoherence crossover in
the normal state of iron oxypnictides and importance of Hund’s
rule coupling, New J. Phys. 11, 025021 (2009).

[30] Z. P. Yin, K. Haule, and G. Kotliar, Magnetism and charge
dynamics in iron pnictides, Nat. Phys. 7, 294 (2011).

[31] N. Lanatà, H. U. R. Strand, G. Giovannetti, B. Hellsing, L. de’
Medici, and M. Capone, Orbital selectivity in Hund’s metals:
The iron chalcogenides, Phys. Rev. B 87, 045122 (2013).

[32] M. Yi, D. H. Lu, R. Yu, S. C. Riggs, J.-H. Chu, B. Lv, Z. K.
Liu, M. Lu, Y.-T. Cui, M. Hashimoto, S.-K. Mo, Z. Hussain,

245124-9

https://doi.org/10.1021/ja063355c
https://doi.org/10.1021/ja800073m
https://doi.org/10.1146/annurev-conmatphys-020911-125138
https://doi.org/10.1146/annurev-conmatphys-031115-011319
https://doi.org/10.1088/1361-648X/aa648f
https://doi.org/10.1103/PhysRevLett.113.177003
https://doi.org/10.1103/PhysRevLett.116.017203
https://doi.org/10.1126/science.1167106
https://doi.org/10.1103/PhysRevLett.105.027204
https://doi.org/10.1103/PhysRevLett.109.266406
https://doi.org/10.1103/PhysRevB.90.041112
https://doi.org/10.1103/PhysRevB.93.214431
https://doi.org/10.1103/PhysRevB.94.020407
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1103/PhysRevLett.111.197201
https://doi.org/10.1103/PhysRevB.99.075117
https://doi.org/10.1103/PhysRevB.82.174440
https://doi.org/10.1103/PhysRevB.84.094420
https://doi.org/10.1103/PhysRevB.91.054412
https://doi.org/10.1103/PhysRevB.83.205112
https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1103/PhysRevLett.104.226401
https://doi.org/10.1103/PhysRevLett.106.096401
https://doi.org/10.1103/PhysRevLett.113.087404
https://doi.org/10.1103/PhysRevLett.115.107003
https://doi.org/10.1103/PhysRevB.91.195149
https://doi.org/10.1103/PhysRevB.99.121115
https://doi.org/10.1103/PhysRevLett.124.016401
https://doi.org/10.1088/1367-2630/11/2/025021
https://doi.org/10.1038/nphys1923
https://doi.org/10.1103/PhysRevB.87.045122


SONG, JIANG, AND ZHANG PHYSICAL REVIEW B 102, 245124 (2020)

C. W. Chu, I. R. Fisher, Q. Si, and Z.-X. Shen, Observation
of Temperature-Induced Crossover to an Orbital-Selective Mott
Phase in AxFe2−ySe2 (A=K, Rb) Superconductors, Phys. Rev.
Lett. 110, 067003 (2013).

[33] P. O. Sprau, A. Kostin, A. Kreisel, A. E. Böhmer, V. Taufour,
P. C. Canfield, S. Mukherjee, P. J. Hirschfeld, B. M. Andersen,
and J. C. S. Davis, Discovery of orbital-selective Cooper pairing
in FeSe, Science 357, 75 (2017).

[34] A. Koga, N. Kawakami, T. M. Rice, and M. Sigrist, Orbital-
Selective Mott Transitions in the Degenerate Hubbard Model,
Phys. Rev. Lett. 92, 216402 (2004).

[35] P. Werner and A. J. Millis, High-Spin to Low-Spin and Orbital
Polarization Transitions in Multiorbital Mott Systems, Phys.
Rev. Lett. 99, 126405 (2007).

[36] L. de’ Medici, S. R. Hassan, M. Capone, and X. Dai, Orbital-
Selective Mott Transition out of Band Degeneracy Lifting,
Phys. Rev. Lett. 102, 126401 (2009).

[37] H. Lee, Y.-Z. Zhang, H. O. Jeschke, and R. Valentí, Orbital-
selective phase transition induced by different magnetic states:
A dynamical cluster approximation study, Phys. Rev. B 84,
020401(R) (2011).

[38] Z.-Y. Song, H. Lee, and Y.-Z. Zhang, Possible origin of orbital
selective Mott transitions in iron-based superconductors and
Ca2−xSrxRuO4, New J. Phys. 17, 033034 (2015).

[39] V. I. Anisimov, I. A. Nekrasov, D. E. Kondakov, T. M. Rice,
and M. Sigrist, Orbital-selective Mott-insulator transition in
Ca2−xSrxRuO4, Eur. Phys. J. B 25, 191 (2002).

[40] A. Shimoyamada, K. Ishizaka, S. Tsuda, S. Nakatsuji, Y.
Maeno, and S. Shin, Strong Mass Renormalization at a Local
Momentum Space in Multiorbital Ca1.8Sr0.2RuO4, Phys. Rev.
Lett. 102, 086401 (2009).

[41] M. Neupane, P. Richard, Z.-H. Pan, Y.-M. Xu, R. Jin, D.
Mandrus, X. Dai, Z. Fang, Z. Wang, and H. Ding, Observation
of a Novel Orbital Selective Mott Transition in Ca1.8Sr0.2RuO4,
Phys. Rev. Lett. 103, 097001 (2009).

[42] L. Huang, L. Du, and X. Dai, Complete phase diagram for three-
band Hubbard model with orbital degeneracy lifted by crystal
field splitting, Phys. Rev. B 86, 035150 (2012).

[43] L. Du, L. Huang, and X. Dai, Metal-insulator transition in
three-band Hubbard model with strong spin-orbit interaction,
Eur. Phys. J. B 86, 94 (2013).

[44] A. J. Kim, H. O. Jeschke, P. Werner, and R. Valentí, J Freezing
and Hund’s Rules in Spin-Orbit-Coupled Multiorbital Hubbard
Models, Phys. Rev. Lett. 118, 086401 (2017).

[45] R. Triebl, G. J. Kraberger, J. Mravlje, and M. Aichhorn, Spin-
orbit coupling and correlations in three-orbital systems, Phys.
Rev. B 98, 205128 (2018).

[46] C. Piefke and F. Lechermann, Rigorous symmetry adaptation
of multiorbital rotationally invariant slave-boson theory with
application to Hund’s rules physics, Phys. Rev. B 97, 125154
(2018).

[47] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996).

[48] R. A. Cooper, Y. Wang, B. Vignolle, O. J. Lipscombe, S. M.
Hayden, Y. Tanabe, T. Adachi, Y. Koike, M. Nohara, H.
Takagi, C. Proust, and N. E. Hussey, Anomalous criticality in
the electrical resistivity of La2−xSrxCuO4, Science 323, 603
(2009).

[49] S. Nakatsuji, D. Hall, L. Balicas, Z. Fisk, K. Sugahara, M.
Yoshioka, and Y. Maeno, Heavy-Mass Fermi Liquid near a
Ferromagnetic Instability in Layered Ruthenates, Phys. Rev.
Lett. 90, 137202 (2003).

[50] S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of
transition-metal ions in crystals, Pure Appl. Phys. 33, 1 (1970).

[51] Y. Z. Zhang and M. Imada, Pseudogap and Mott transition
studied by cellular dynamical mean-field theory, Phys. Rev. B
76, 045108 (2007).

[52] Z.-Y. Song, X.-C. Jiang, H.-Q. Lin, and Y.-Z. Zhang, Distinct
nature of orbital-selective Mott phases dominated by low-
energy local spin fluctuations, Phys. Rev. B 96, 235119 (2017).

[53] F. B. Kugler, S.-S. B. Lee, A. Weichselbaum, G. Kotliar, and J.
von Delft, Orbital differentiation in Hund metals, Phys. Rev. B
100, 115159 (2019).

[54] H. Park, K. Haule, and G. Kotliar, Cluster Dynamical Mean
Field Theory of the Mott Transition, Phys. Rev. Lett. 101,
186403 (2008).

[55] C. N. Veenstra, Z.-H. Zhu, M. Raichle, B. M. Ludbrook,
A. Nicolaou, B. Slomski, G. Landolt, S. Kittaka, Y. Maeno,
J. H. Dil, I. S. Elfimov, M. W. Haverkort, and A. Damascelli,
Spin-Orbital Entanglement and the Breakdown of Singlets and
Triplets in Sr2RuO4 Revealed by Spin- and Angle-Resolved
Photoemission Spectroscopy, Phys. Rev. Lett. 112, 127002
(2014).

[56] C. G. Fatuzzo, M. Dantz, S. Fatale, P. Olalde-Velasco, N. E.
Shaik, B. Dalla Piazza, S. Toth, J. Pelliciari, R. Fittipaldi,
A. Vecchione, N. Kikugawa, J. S. Brooks, H. M. Rønnow,
M. Grioni, Ch. Rüegg, T. Schmitt, and J. Chang, Spin-
orbit-induced orbital excitations in Sr2RuO4 and Ca2RuO4:
A resonant inelastic x-ray scattering study, Phys. Rev. B 91,
155104 (2015).

[57] H. Gretarsson, H. Suzuki, H. Kim, K. Ueda, M. Krautloher, B. J.
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