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We analyze the weak-coupling instabilities that may arise when multiple high-order Van Hove points are
present inside the Brillouin zone. The model we consider is inspired by twisted bilayer graphene, although
the analysis should be more generally applicable. We employ a parquet renormalization group analysis to
identify the leading weak-coupling instabilities, supplemented with a Ginzburg-Landau treatment to resolve
any degeneracies. Hence we identify the leading instabilities that can occur from weak repulsion with the power-
law divergent density of states. Five correlated phases are uncovered along distinct stable fixed trajectories,
including s-wave ferromagnetism, p-wave chiral/helical superconductivity, d-wave chiral superconductivity,
f -wave valley-polarized order, and p-wave polar valley-polarized order. The phase diagram is stable against
band deformations which preserve the high-order Van Hove singularity.
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I. INTRODUCTION

Two-dimensional (2D) multilayer moiré heterostructures
constitute a major platform of modern condensed matter re-
search. These systems manifest enlarged moiré superlattices
and according nearly flat bands, thereby enjoy remarkably
high experimental tunability with interlayer twist angle, verti-
cal gating electric field, external magnetic field, and pressure.
A main family of research on moiré heterostructures focuses
on the twisted bilayer graphene, where the moiré flat bands
can develop at small twist angles [1–6]. Unconventional su-
perconductivity, insulating states, and other correlated phases
have been observed experimentally, either at a “magic angle”
or under certain setup of the other conditions [7–20]. The
properties of underlying band structures and the origins of
correlated phases have attracted enormous interest.

For the correlated phases in twisted bilayer graphene,
one popular scenario emphasizes the importance of the Van
Hove singularity in the density of states [21–34]. Van Hove
singularity can occur at the saddle points of the dispersion
energy with divergent density of states [35]. These saddle
points are generically present in the dispersive moiré flat
bands of twisted bilayer graphene [7,10,13,14,16]. The model
calculations show that the Van Hove singularity occurs near
the half-fillings in both electron and hole branches [2–6].
Meanwhile, the corrections from Coulomb interaction may
pin the Van Hove singularity to the Fermi surface at a broad
range of doping [36,37]. With the divergent density of states,
the electronic correlations can receive significant amplifica-
tion. Instabilities to the Fermi liquid may occur accordingly,
with the energy scales remarkably enhanced compared to the
conventional exponentially small ones. By introducing the
weakly repulsive interactions at the Van Hove singularity, the
investigations of potential correlated phases in twisted bilayer

graphene have constituted an enormous literature [21–33].
These works address the interacting problems at the conven-
tional Van Hove singularity, where logarithmically divergent
density of states and Fermi surface nesting are relevant at
weak coupling. The development of instabilities can be ob-
served transparently in a renormalization group (RG) analysis
[21–24]. With the Fermi surface nesting, the spin density
waves can develop first at moderate RG scale, thereby trig-
ger the true instabilities as the RG flow goes further [23].
The leading instability usually occurs in the superconducting
channels beyond s-wave. Meanwhile, the antiferromagnetic
orders may become relevant at moderate coupling. However,
recent experiments have uncovered correlated phases where
the orders are more likely polarized [12,15,17] or nematic
[10,16,20]. While the polarized orders may arise at moder-
ate coupling as the conventional Stoner instability [22,24,33]
or through other mechanisms [38–42], a theory where these
zero-momentum density orders can develop as robust weak-
coupling instabilities remains to be uncovered.

A potential answer to such problem is indicated by the
emergence of ‘high-order’ Van Hove singularity under par-
ticular setting, such as the magic angle [34]. In the moiré
flat bands of twisted bilayer graphene, the number of saddle
points can be different at different tunable parameters [2,4].
The variation of saddle point number amounts to the splitting
of each saddle point into a pair. At the critical point of split-
ting, the saddle point becomes high-order, with the density of
states acquiring a much stronger power-law divergence. Such
divergence can lead to significantly different phase diagram
from the one at the conventional Van Hove singularity. The
manifestations of high-order Van Hove singularity has been
investigated in the context of cuprate materials [43,44], doped
intercalated graphene [45–47], strontium materials [48], bi-
layer graphene [49], and twisted bilayer transition metal
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dichalcogenide [50]. General discussions of the eligible band
structures and locations of high-order Van Hove singularity
have been conducted with complete classifications [51,52].
For a single high-order Van Hove point, the renormaliza-
tion group analysis uncovers an interacting fixed point [44].
This fixed point possesses divergent susceptibilities without
developing long-range orders in various channels, thereby
manifesting itself as a supermetal. When the high-order Van
Hove singularity occurs at multiple points, the system may de-
velop ferromagnetism as a leading weak-coupling instability
of our interest [47,49]. Superconductivity may also arise as a
competing order. The indications from these works strongly
suggest an analysis of high-order Van Hove singularity in
twisted bilayer graphene, where polarized correlated phases
may be uncovered.

In this work, we analyze the weakly repulsive electrons
at the high-order Van Hove singularity in twisted bilayer
graphene. Our study adopts the parquet RG analysis, which
has been conducted at the conventional Van Hove singularity
in square lattice [53–55], doped graphene [56], and twisted bi-
layer graphene [21–24], as well as at the high-order Van Hove
singularity in doped intercalated graphene [47] and bilayer
graphene [49]. Unlike Refs. [47,49] we consider a setting
(relevant for twisted bilayer graphene) when the high-order
Van Hove points occur away from the Brillouin zone bound-
ary, which qualitatively alters the analysis. We show that
such a system is primarily dominated by the zero-momentum
particle-hole and particle-particle susceptibilities [47], leading
to the RG flows toward either spin and/or valley-polarized or-
ders or superconductivity. Five stable fixed trajectories under
RG are uncovered, where the leading instabilities are s-wave
ferromagnetism, p- and d-wave superconductivities, as well
as f - and p-wave valley-polarized orders (Fig. 1). We further
examine the degeneracy breakdown in the multi-component
irreducible pairing channels. The analysis shows that the chi-
ral and helical orders are the energetically favored ground
states in the p-wave superconductivity. Similarly, the chiral or-
der is dominant in the d-wave superconductivity. Meanwhile,
the polar order with spontaneous rotation symmetry breaking
is favored in the p-wave valley-polarized order. The irrele-
vance of Fermi surface nesting suggest the stability of our
results against band deformations preserving the high-order
Van Hove singularity. Such feature is significantly different
from the conventional Van Hove singularity, where the results
may be fragile against the reduction of Fermi surface nesting.

II. HIGH-ORDER VAN HOVE SINGULARITY IN TWISTED
BILAYER GRAPHENE

The model we consider is inspired by twisted bilayer
graphene. In the twisted bilayer graphene at small twist angle,
the low-energy regime is dominated by two pairs of con-
duction and valence moiré flat bands [1–6]. These moiré flat
bands are manifest in the small moiré Brillouin zone, which
corresponds to the large moiré superlattice in real space. Each
pair of flat bands originates from the interlayer hybridization
of Dirac cones in one graphene valley. The effective low-
energy theory is described by a two-orbital honeycomb lattice
model at moiré lattice scale [Fig. 2(a)], where the orbitals τ =
± label the moiré flat bands from the two graphene valleys.

FIG. 1. Tentative electronic phase diagram at the high-order Van
Hove singularity in twisted bilayer graphene. The primary interac-
tions are weakly repulsive, with the setup the same as in Fig. 6.
Perturbatively (a) repulsive and (b) attractive intervalley exchange in-
teractions are introduced as in Fig. 7. Five potential correlated phases
are uncovered, including s-wave ferromagnetism (sFM), p-wave
chiral/helical superconductivity (pC/HSC), d-wave chiral supercon-
ductivity (dCSC), f -wave valley-polarized order ( f VP), and p-wave
polar valley-polarized order (pPVP).

The dispersion energies in the two valleys ε±,k [Fig. 2(b)]
are related under time-reversal symmetry ε−,−k = ε+,k, and
an intravalley C3z rotation symmetry is also manifest. The
system obeys a spin SO(4) ∼ SU(2)+ × SU(2)− symmetry
composed of the spin SU(2)± symmetries in the two valleys.

Van Hove singularity is generically present in the moiré flat
bands of twisted bilayer graphene [7,10,13,14,16]. We focus
on the special case of ‘high-order’ Van Hove singularity [34],
where the saddle points are at the critical point of splitting.
Note that the critical point may manifest a subspace in the
phase space of model parameters, where the band deformation
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FIG. 2. High-order Van Hove singularity in twisted bilayer
graphene and patch model. (a) Tight-binding honeycomb superlattice
model for the nearly flat bands in twisted bilayer graphene [3]. The
model contains the nearest- and the fifth-nearest-neighbor hoppings
t1,2

∑
〈i j〉1,5,τ=±(c†

iτ c jτ + H.c.), as well as an imaginary fifth-nearest-

neighbor hopping −it3
∑

〈i j〉5,τ=± τc†
iτ c jτ + H.c. Here ciτ denotes the

fermion operator at the site i in the τ = ± valley. (b) Band structure
with high-order Van Hove singularity at t1 = 1, t2 = 0.15, and t3 =
0.2720717. Each figure illustrates the band structure from a valley.
Note that the high-order Van Hove singularity occurs on a ‘critical
surface’ in the three-dimensional phase spase spanned by t1, t2, and
t3. (c) The band structure (1) in the vicinity of a high-order saddle
point P with κ = 0. (d) The setup of patch model, where the patches
are set at the high-order saddle points.

does not break the high-order Van Hove singularity. Six high-
order saddle points are present in the moiré Brillouin zone
[Fig. 2(b)]. There are three points in each valley, sitting on the
�M lines and exhibiting the dispersion energies [Fig. 2(c)]

εP,k = −αk2
‖ + γ k‖k2

⊥ + κk4
⊥. (1)

Here k‖ and k⊥ denote the momentum deviations from each
high-order saddle point P parallel and perpendicular to the
�M line, respectively. We have set the Van Hove doping at

zero chemical potential μ = 0 for convenience. The points
in the two valleys are related by time-reversal symmetry
ε−P,−k = εP,k. Note that the structure of high-order saddle
point can be more easily seen in the representation k− =
k‖ − (γ /2α)k2

⊥ and k+ = k⊥

εP,k = A+k4
+ − A−k2

−, (2)

where A+ = κ + γ 2/4α and A− = α. The dispersion energy
is quadratic along one direction and quartic along the other
one, with the sign changing for four times around the high-
order saddle point P. The Fermi surface is determined by two
parabolic curves k‖ = [(γ /2α) ± (κ/α + γ 2/4α2)1/2]k2

⊥, one
of which becomes a straight line when κ = 0. These curves
touch with each other tangentially at the high-order saddle
point P.

The high-order saddle points P’s manifest the high-order
Van Hove singularity, where power-law divergence occurs in
the density of states (Appendix A) [34,44]

D(ε) ≈ D0

[
θ (ε) + 1√

2
θ (−ε)

]
|ε|−1/4. (3)

Here the prefactor is D0 = �(1/4)2/(8π5/2A1/2
− A1/4

+ ). The
power-law divergence is stronger than the logarithmic diver-
gence at the conventional Van Hove singularity. Moreover, an
asymmetry between the two sides of Van Hove doping can
be observed, which is absent at the conventional Van Hove
singularity. This feature originates from the different powers
of momentum in the dispersion energies (2) above and below
the Van Hove doping.

Due to the power-law divergence in the density of states,
the high-order saddle points P’s are more dominant than
the other parts of the Fermi surface at low energy. We thus
construct the low-energy theory by approximating the Fermi
surface with six patches in the vicinity of these points. Such a
“patch model” takes the form [21,23]

H =
∑
ατ

(εατ − μ)ψ†
ατψατ (4)

with the patch labels α = 1, 2, 3 [Fig. 2(d)]. The size of each
patch is defined by an ultraviolet (UV) energy cutoff �. In
the patch model, the set of relevant momenta includes those
between various pairs of patches. We define Qo as the momen-
tum transfer between opposite patches, while Qa,e lie between
patches with different patch labels in the same and different
valleys, respectively.

Assume that the interactions in the low-energy theory are
weakly repulsive and spin SU(2) symmetric. It has been pro-
posed that the interactions may be nonlocal on the moiré
superlattice, thereby leading to attractions in some scattering
channels [31,33,38]. Projected on the patch model, the inter-
actions can be classified into sixteen inequivalent types with
different scattering processes among patches. These interac-
tions can be labeled as gi j

Hint = 1

2

4∑
i, j=1

∑
α1i, α2i

a3i, α4i

∑
τ1 j , τ2 j

τ3 j , τ4 j

gi jψ
†
α1iτ1 j

ψ†
α2iτ2 j

ψα3iτ3 j ψα4iτ4 j , (5)
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FIG. 3. Feynman diagrams. (a) Six primary interactions with-
out intervalley exchange. The solid and dashed lines describe the
electrons from patches with different patch labels, while single and
double lines characterize the electrons from different valleys. (b) The
three interactions with intervalley exchange. (c) The test vertices in
the particle-hole (first two) and particle-particle (last two) channels
at momenta 0 (first and third) and Qo (second and last). (d) Suscepti-
bilities captured by the test vertices.

where i and j label the exchange, density-density, pair-
hopping, and forward-scattering processes in the patch and
valley sectors, respectively. The order of spins is σ , σ ′, σ ′,
σ in the interactions. Only nine interactions are eligible under
momentum conservation. The interactions without intervalley
exchange, including g14, g22, g24, g32, g42, and g44, are the
primary ones considered in our analysis [Fig. 3(a)]. These
primary interactions are assumed repulsive at the bare level
[31,33]. Meanwhile, the interactions involving intervalley ex-
change, including g11, g31, and g41, are assumed perturbative
as they exhibit large momentum transfer at atomic scale
[Fig. 3(b)]. With the nonlocality in the interactions, these
perturbative intervalley exchange may be either repulsive or
attractive. We will include these when necessary to lift degen-
eracies, but not otherwise.

The high-order Van Hove singularity can lead to the
breakdown of perturbation theory in Fermi liquid. This is
manifest in the divergence of various static susceptibilities
in the particle-hole (ph) and particle-particle (pp) channels


ph/pp
q = ∓T

∑
n

∫
k Gkωn G(±k+q)(±ωn ). Here Gkωn = [iωn −

(εk − μ)]−1 is the free fermion propagator with fermionic
Matsubara frequency ωn = (2n + 1)πT . The Matsubara fre-

FIG. 4. Particle-hole and particle-particle susceptibilities at the
high-order Van Hove singularity. Here we assume maximal Fermi
surface nesting at q = Qo by setting κ = 0. Each curve indicates a
rescaled static susceptibility ̃

ph/pp
q = 

ph/pp
q /0.

quency summation leads to

ph/pp
q = −

∫
k

nF (ε±k+q − μ) − nF (±[εk − μ])

(ε±k+q − μ) − [±(εk − μ)]
, (6)

where nF (z) = [exp(z/T ) + 1]−1 is the Fermi function. We
calculate the susceptibilities in the patch model and focus on
the asymptotic limit μ, T � �. The singularity in the density
of states dominates in this regime, thereby selects a set of
relevant susceptibilities with leading power-law divergence.

Our analysis focuses on the Van Hove doping μ = 0. At
zero momentum q = 0, the particle-hole and particle-particle
susceptibilities acquire the leading power-law divergences
(Appendix A)


ph
0 = 1

4


pp
0 ≈ 0 = D0

1 + 1/
√

2

2

2.16514

2
T −1/4. (7)

The origins of these divergences are attributed to the sin-
gular density of states and Cooper divergence. We further
compute all of the susceptibilities with decreasing tempera-
ture T → 0 numerically (Fig. 4). The results show that the
leading power-law divergence also arises in both particle-hole
and particle-particle channels at q = Qo. Such divergence is
expected from the observation of Fermi surface nesting, which
becomes maximal when the Fermi surface contains a straight
line at κ = 0


ph
Qo ≈ 1

2
pp
0 , 

pp
Qo ≈ 0.35

pp
0 . (8)

An infrared (IR) cutoff is set by the finite κ away from the
maximal Fermi surface nesting. The rest of the susceptibilities
are subleading and are irrelevant in the asymptotic limit.

We comment in passing on the situations when the doping
is away from the high-order Van Hove singularity μ = 0.
Since the Cooper divergence does not depend on the chemical
potential, the according IR cutoff is always T . However, the
divergences from singular density of states and Fermi surface
nesting generically manifest the cutoff max{μ, T }. We thus
expect 

pp
0 as the most divergent susceptibility away from the

Van Hove doping.
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III. RENORMALIZATION GROUP

With the divergent susceptibilities at the high-order Van
Hove singularity, according divergence can occur in the
interactions at low-energy. Such breakdown of perturbation
theory in Fermi liquid can be captured by a parquet renor-
malization group (RG) analysis [23,53–56]. The parquet RG
analysis aims to identify the low-energy effective theory un-
der renormalization. Starting from the UV cutoff � of the
patch model, the shell of fast electron modes is progressively
integrated out with decreasing temperature T → 0. Such pro-
cedure leads to an evolving renormalized effective theory,
where the interactions receive various one-loop corrections
through the divergent susceptibilities. The evolution of the
interactions form an RG flow toward a fixed point or a fixed
trajectory. Making the standard “fast-parquet” approximation,
we admit only the susceptibilities with the leading power-law
divergence 

ph/pp
0/Qo . This approximation captures the RG flow

in the asymptotic weak-coupling limit g → 0.
The parquet RG procedure we employ is as follows.

We assume the density of states diverges at a power −ε,
which is treated as infinitesimal (but will ultimately be
continued to ε = 1/4). At infinitesimal ε, short-range inter-
action is marginal, and we therefore compute a set of RG
equations to one-loop order. Note that such analysis is ap-
proximate and is an ‘ε-expansion’ in the power of divergence
[47]. Define the dimensionless RG time y = ln(�/T ), in-
teractions λi j = ̇

pp
0 gi j , and relative susceptibilities dph/pp

q =
̇

ph/pp
q /̇

pp
0 . While dph

0 = 0.25 is intrinsic for the high-order
Van Hove singularity herein, we assume κ = 0 so that the
maximal Fermi surface nesting at q = Qo leads to dph

Qo = 0.5
and dpp

Qo = 0.35. Focusing on the primary interactions without
intervalley exchange, we derive the RG equations with the
form λ̇i j = βi j ({λkl}) (Appendix B)

λ̇14 = ελ14 + dph
0 λ14(λ14 + 2λ44),

λ̇22 = ελ22 + dph
0 [2λ22(λ14 − 2λ24 − λ44)

+ 2λ42(λ14 − 2λ24)],

λ̇24 = ελ24 + dph
0 [2λ22(−λ22 − 2λ42)

+ 2λ24(λ14 − λ24 − λ44) + 2λ14λ44],

λ̇32 = ελ32 − λ32(λ32 + 2λ42),

λ̇42 = ελ42 + dph
0 [4λ22(λ14 − 2λ24) − 2λ42λ44]

+ dph
Qoλ

2
42 − (

2λ2
32 + λ2

42

)
,

λ̇44 = ελ44 + dph
0

[
2λ14(λ14 + 2λ24) − 4λ2

22 − 4λ2
24

− 2λ2
42 + λ2

44

] − dpp
−Qoλ

2
44. (9)

The first tree-level terms reflect the scaling dimension of the
interactions, while the rest parts of the beta functions cor-
respond to the one-loop corrections. With the setup of bare
repulsion, the positive semi-definiteness constraint is imposed
on λ14 and λ32 as indicated by their beta functions. The other
interactions may flow in either positive or negative directions
under RG.

We first examine the stability of the finite-coupling
fixed points {λi j} = {λ∗

i j} with (λ̇i j ){λkl }={λ∗
kl } = 0. In the

vicinity of each fixed point, the linearized RG equations
read δλ̇i j = Mλ

i j,klδλkl with δλi j = λi j − λ∗
i j and Mλ

i j,kl =
(∂βi j/∂λkl ){λmn}={λ∗

mn}. The eigenvalues of the matrix Mλ =
(Mλ

i j,kl ) indicate the flow directions along the eigenvectors. A
negative eigenvalue indicates that the interactions flow toward
the fixed point under RG, and vice versa. A stable fixed point
is thus determined by the condition that all of the eigenvalues
are negative. We find that all of the fixed points of the RG
equations (9) are unstable. Our analysis thus focuses on the
strong-coupling fixed trajectories, along which at least one of
the interactions diverges at a finite scale yc.

Along the fixed trajectories, the divergence of the interac-
tions is captured by the critical scaling

λi j = λ̂i j

yc − y
. (10)

Adopting the critical scaling in the RG equations (9) leads
to a set of algebraic equations for the critical interactions
λ̂i j’s. These algebraic equations contain only the one-loop
terms in the beta functions, since the tree-level terms become
irrelevant along the strong-coupling fixed trajectories and van-
ish at y = yc in the algebraic equations. The potential fixed
trajectories under RG can be identified with the solutions to
these algebraic equations. Note that λ̂44 is finite for all of
the nontrivial solutions. To examine the stability of the fixed
trajectories, we analyze the RG flow of the reparametrized
interactions xi j = λi j/λ44 for i j = 44 with an alternative RG
time λ44 [23,56,57]

λ44
dxi j

dλ44
= βx

i j ({xkl}) = −xi j + −εxi j + βi j ({xkl})

−εx44 + β44({xkl})
. (11)

Here the tree-level terms in the orignal RG equations (9) are
eliminated as they become irrelevant at divergent λ44. The
fixed points {xi j} = {x∗

i j} with λ44(dxi j/dλ44){xkl }={x∗
kl } = 0 for

these RG equations correspond to the fixed trajectories of the
original RG equations (9). The stable fixed points are deter-
mined by having all of the eigenvalues of Mx negative, where
Mx

i j,kl = (∂βx
i j/∂xkl ){xmn}={x∗

mn}. We find five different stable
fixed trajectories compatible with bare respulsion. To which
stable fixed trajectory the system flows under RG depends on
the setup of bare interactions.

IV. INSTABILITY ANALYSIS

The breakdown of perturbation theory at low-energy indi-
cates that an instability to the Fermi liquid occurs. To probe
the potential instabilities along the stable fixed trajectories,
we introduce the test vertices in various particle-hole and
particle-particle channels [Fig. 3(c)] [23,58–60]

δH =
∑

[�ψ†ψ (†) + H.c.]. (12)

The test vertices acquire corrections from the divergent sus-
ceptibilities under RG. Solving the flow equations of the test
vertices (Appendix C), the irreducible pairing channels I’s are
identified as the eigenmodes with

�̇I = −dIλI�I . (13)

The interaction λI in each channel is a linear combination
of the interactions λi j’s in the patch model. Meanwhile,
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TABLE I. The irreducible pairing channels receiving leading
power-law divergence and the particle-hole and particle-particle pair-
ings therein. Here, τ ν and σ ν with ν = 0, 1, 2, and 3 are the Pauli
matrices in the valley and spin pairing representations, respectively.
The last column indicates whether the leading instability can develop
in each channel starting from weakly repulsive primary interactions.
Note that the effects of repulsive and attractive intervalley exchange
have been considered.

Channel Pairings Leading

sPOM ψ†( τ0√
2

)( σ 0√
2

)d0ψ

f VP ψ†( τ3√
2

)( σ 0√
2

)d0ψ Yes

dPOM ψ†( τ0√
2

)( σ 0√
2

)d1,2ψ

pVP ψ†( τ3√
2

)( σ 0√
2

)d1,2ψ Yes

sFM ψ†( τ0√
2

)( σ√
2

)d0ψ Yes

f SVP ψ†( τ3√
2

)( σ√
2

)d0ψ

dFM ψ†( τ0√
2

)( σ√
2

)d1,2ψ

pSVP ψ†( τ3√
2

)( σ√
2

)d1,2ψ

CDWo ψ†( τ1,2√
2

)( σ 0√
2

)ψ

SDWo ψ†( τ1,2√
2

)( σ√
2

)ψ

sSC ψ†( τ3√
2

)( σ 0√
2

)d0[i(iτ 2)(iσ 2)(ψ†)T ]

f SC ψ†( τ0√
2

)( σ√
2

)d0[i(iτ 2)(iσ 2)(ψ†)T ]

dSC ψ†( τ3√
2

)( σ 0√
2

)d1,2[i(iτ 2)(iσ 2)(ψ†)T ] Yes

pSC ψ†( τ0√
2

)( σ√
2

)d1,2[i(iτ 2)(iσ 2)(ψ†)T ] Yes

PDWo ψ†( τ1,2√
2

)( σ 0√
2

)[i(iτ 2)(iσ 2)(ψ†)T ]

the susceptibility dI = dph/pp
q is defined by the particle-

hole/particle-particle type and the momentum q of the
channel. Along the stable fixed trajectories, the test vertices
undergo the critical scaling �I ∼ (yc − y)βI as the interactions
(10) do. The exponent in each channel is determined by the
critical interaction and the susceptibility βI = dI λ̂I .

Our analysis focuses on the irreducible pairing channels
which can receive the leading power-law divergence. These
include the particle-hole and particle-particle channels at mo-
menta 0 and Qo (Table I)

λsPOM/ f VP = −2λ14 ± 4λ22 + 4λ24 ± 2λ42 + λ44,

λdPOM/pVP = λ14 ∓ 2λ22 − 2λ24 ± 2λ42 + λ44,

λsFM/ f SVP = −2λ14 − λ44,

λdFM/pSVP = λ14 − λ44,

λC/SDWo = −λ42,

λs/ f SC = 2λ32 + λ42,

λd/pSC = −λ32 + λ42,

λPDWo = λ44. (14)

In the particle-hole branch, we have zero-momentum s-
and d-wave Pomeranchuk orders (s/dPOM), f - and p-wave
valley-polarized orders ( f /pVP), s- and d-wave ferromag-
netisms (s/dFM), and f - and p-wave spin-valley-polarized

orders ( f /pSVP). The even- and odd-parity channels carry
the valley singlet and triplet pairings τ 0,3, respectively.
The momentum-space form factors manifest the three irre-
ducible patch representations under C3z symmetry, including
the nondegenerate d0 = (1/

√
3)(1, 1, 1) and degenerate d1 =

(1/
√

6)(2,−1,−1), d2 = (1/
√

2)(0, 1,−1). There are also
charge and spin density waves at Qo (C/SDWo), where the
valley triplet pairings τ 1,2 are manifest and three degenerate
orders can occur at the three momenta Qo’s. On the other
hand, the particle-particle branch contains s-, f -, d-, and p-
wave superconductivities (s/ f /d/pSC) at zero momentum.
The even- and odd-parity channels now correspond to the
valley triplet and singlet pairings τ 3,0, respectively, and the
irreducible patch representations da’s are again manifest. At
the three Qo’s, there are pair density waves (PDWo) with
valley triplet pairings τ 1,2.

To examine whether the instability occurs in a irreducible
pairing channel, we probe the susceptibility with the test ver-
tex in this channel [Fig. 3(d)]

χI (y) = T
δ2 ln Z (y)

δ�I (0)δ�̄I (0)

∣∣∣∣
�̄I (0),�I (0),ψ†,ψ=0

. (15)

Here Z (y) denotes the partition function at scale y, which
is obtained by integrating out the fast modes of electrons at
y′ < y. The overbar denotes the complex conjugate for the test
vertex. The susceptibility undergoes the flows under RG

χ̇I = dI

∣∣∣∣ �I

�I (0)

∣∣∣∣
2

(16)

and manifests the critical scaling χI ∼ dI (yc − y)αI along
the stable fixed trajectories, as well. Here the exponent is
determined by the test vertex exponent αI = 2βI + 1. The
susceptibility becomes divergent at y = yc as αI < 0, indicat-
ing the development of an instability. The leading instability
occurs in the channel with the most divergent susceptibility,
which manifests the most negative exponent αI among all
channels.

We identify the leading instabilities along the five stable
fixed trajectories in our problem. These include degenerate
s-wave ferromagnetism/ f -wave spin-valley-polarized order,
degenerate d/p-wave superconductivities, f -wave valley-
polarized order, p-wave valley-polarized order, and s-wave
Pomeranchuk order. We confirm that the first four instabilities
are indeed accessible starting from bare repulsion (Fig. 5
and Table II). The phase diagram is further obtained under
various setup of bare interactions (Fig. 6 and Appendix D).
The interactions λ14, λ44 generically stabilize the degenerate
s-wave ferromagnetism/ f -wave spin-valley-polarized order.
Meanwhile, increasing λ22, λ42 triggers the f -wave valley-
polarized order. On the other hand, enlarged λ24, λ32 leads to
the development of degenerate d/p-wave superconductivities.
Finally, the p-wave valley-polarized order can occur in some
regimes of the phase diagram. We do not see the s-wave
Pomeranchuk order starting from bare repulsion, which may
only be accessible when the bare attractions are involved.

It is interesting to discuss how the d/p-wave superconduc-
tivity arises from the bare repulsion. Although it is difficult
to identify the pairing mechanism from the RG equations
directly, we may acquire some intuition from the RG flow.
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FIG. 5. The susceptibilities of potential instabilities flow under RG. The maximal divergence occurs in the leading irreducible pairing
channel at the critical scale y = yc. Each figure illustrates the RG flow toward a stable fixed trajectory starting from weak repulsion, with
(a) degenerate s-wave ferromagnetism/ f -wave spin-valley-polarized order, (b) degenerate d/p-wave superconductivities, (c) f -wave valley-
polarized order, or (d) p-wave valley-polarized order as the leading instability. The bare repulsions are set as λi j = 0.1, except for (b) λ24 = 0.3,
(c) λ42 = 0.3, and (d) λ24 = λ42 = 0.3.

Notably, we observe that the d-wave Pomeranchuk order
also acquires a rapidly growing susceptibility in the d/p-
wave superconducting phase. Near the phase boundary where
the d/p-wave superconductivity just seizes the dominance,
χdPOM even grows faster than χd/pSC before reaching the sta-
ble fixed trajectory under RG. Based on these observations,
we interpret the formation of the d/p-wave superconduc-
tivity as driven by the d-wave Pomeranchuk order. While
d-wave Pomeranchuk order grows first under RG, it shares
the strength to the d/p-wave superconductivity gradually
and turns it into the true instability along the stable fixed
trajectory.

TABLE II. The critical interactions along the four stable fixed
trajectories starting from bare repulsion.

Channel sFM/ f SVP d/pSC f VP pVP

λ̂14 1.39963 0 0 0

λ̂22 0 0 0.41863 −0.60633

λ̂24 0.69982 0 −0.41863 0.60633

λ̂32 0 0.42760 0 0

λ̂42 0 −0.71380 0.36359 0.93083

λ̂44 1.30018 −0.26160 −0.43557 −1.35101

Importantly, the phase diagram is stable against the sup-
pression of Fermi surface nesting by κ = 0 in the dispersion
energy (1). This indicates that the key features are determined
primarily by the zero-momentum particle-hole and particle-
particle susceptibilities. Although the phase diagram may be
altered by the finite-momentum particle-hole and particle-
particle susceptibilities 

ph/pp
Qo at dph

0 = 0.25 or higher Fermi

surface nesting dph
Qo > 0.5 and dpp

Qo > 0.35, these regimes are
beyond the accessible range of physical systems in the asymp-
totic limit and are thus excluded from our analysis. With the
stability against band deformations, our results may be ro-
bustly applicable across the twisted bilayer graphene systems
under various conditions which contain the high-order Van
Hove singularity.

The phase diagram can be contrasted with the one of
an SU(4) symmetric model without valley splitting [47]. In
such model, the high-order saddle points sit at the centers of
Brillouin zone boundaries. The correspondence between the
instabilities in the two models can be identified. The particle-
hole instabilities with spin and/or valley polarized orders all
correspond to the SU(4) flavor ferromagnetism. On the other
hand, the even- and odd-parity pairings of superconductivities
all correspond to the odd-exchange SU(4) flavor pairings. The
zero-momentum irreducible pairing channels in the SU(4)
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FIG. 6. Phase diagram of the potential instabilities. The color
map indicates the critical scale yc = ln(�/Tc ), which is smaller in
the phases and larger along the phase boundaries. In each two-
interaction phase diagram, two of the interactions λ̃i j = λi j/λ0 are
varied, and the rest ones are set at constant repulsion λi j = λ0 = 0.1.
The full set of two-interaction phase diagrams is demonstrated in
Appendix D.

symmetric model are classified primarily by the momentum-
space form factors da’s, which are either s- or d-wave. With
the dominance of zero-momentum particle-hole and particle-
particle susceptibilities in both models, a similarity between
the phase diagrams is expected. However, the valley splitting
generically leads to the distinctions between some correlated
phases in twisted bilayer graphene, which are absent in the
SU(4) symmetric model.

V. WHAT INTERVALLEY EXCHANGE DOES

To address the more realistic situations in the practical
twisted bilayer graphene systems, we now include the inter-
valley exchange perturbatively |gi1| � gi2, gi4 [Fig. 3(b)] and
examine their effects on the correlated phases. This introduces

additional terms to the RG equations (9) as well as to the
interactions in the irreducible pairing channels (14) (Appen-
dices B and C). Since the intervalley exchange breaks the
SU(2)+ × SU(2)− symmetry down to SU(2), it can break the
original degeneracies between some irreducible pairing chan-
nels [21,24]. The competition between different instabilities
may also change qualitatively under such perturbation.

When the intervalley exchange is repulsive λi1 > 0, the
original phase diagram (Fig. 6) does not experience qual-
itative change except for the breakdown of degeneracy.
Along the stable fixed trajectory with degenerate polar-
ized orders, s-wave ferromagnetism wins over the f -wave
spin-valley-polarized order [Fig. 7(a)]. Meanwhile, p-wave
superconductivity beats the d-wave one along another sta-
ble fixed trajectory [Fig. 7(c)]. Note that the valley singlet
pairing is generically favored, as can be expected for the
repulsive intervalley exchange. Things become different when
the intervalley exchange is attractive. Along the stable fixed
trajectory with degenerate superconductivity, the d-wave su-
perconductivity now beats the p-wave one [Fig. 7(d)]. This
result is expected since the attractive intervalley exchange
favors the valley triplet pairing. It is tempting to expect that
the f -wave spin-valley-polarized order wins over the s-wave
ferromagnetism and dominates another stable fixed trajectory.
However, the fixed trajectory analysis (Table III) indicates
that such stable fixed trajectory is absent. What occurs in-
stead is that the d-wave superconductivity defeats the f -wave
spin-valley-polarized order and occupies the according phase
regime [Fig. 7(b)]. We justify the expansion of superconduct-
ing regime by measuring the critical scale yc under RG. With
repulsive intervalley exchange, the s-wave ferromagnetism
is separated from the p-wave superconductivity by a peak
[Fig. 8(a)]. On the other hand, the two phase regimes are
smoothly connected without a peak in-between under attrac-
tive intervalley exchange [Fig. 8(b)]. This indicates that both
phase regimes are occupied by the d-wave superconductivity.

Summarizing these results, we arrive at a tentative
electronic phase diagram (Fig. 1) at the high-order Van
Hove singularity in twisted bilayer graphene. Five corre-
lated phases arise under repulsive primary interactions and
repulsive/attractive intervalley exchange, including s-wave
ferromagnetism, p- and d-wave superconductivities, as well
as f - and p-wave valley-polarized orders.

VI. THE ORDERED STATES

Our RG analysis has uncovered five correlated phases that
can develop at the high-order Van Hove singularity in twisted
bilayer graphene. We now proceed to discuss the various
interesting features that these phases can possess.

A. Nondegenerate polarized orders

For the s-wave ferromagnetism, the irreducible representa-
tion in the patch sector is d0. The order parameter breaks the
spin SU(2) symmetry spontaneously

� =
〈
ψ†

(
τ 0

√
2

)(
σ√
2

)
d0ψ

〉
, (17)
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FIG. 7. The breakdown of degeneracy between different instabilities by intervalley exchange. The bare values of the primary repulsions
in (a) and (b) [(c) and (d)] are set the same as in Fig 5(a) [Fig 5(b)]. Meanwhile, the intervalley exchange is taken as perturbative repulsion
(attraction) λi1 = (−)0.01 in (a) and (c) [(b) and (d)]. With repulsive intervalley exchange, (a) the s-wave ferromagnetism wins over the f -wave
spin-valley-polarized order, while (c) the p-wave superconductivity beats the d-wave one. On the other hand, the d-wave superconductivity
beats (b) the f -wave spin-valley-polarized order and (d) the p-wave superconductivity when the interalley exchange is attractive.

which serves as a spontaneous Zeeman splitting

�k = 1
2� · τ 0σ (18)

and separates the spin-up and down Fermi surfaces. The axial
direction of spin lies along an arbitrary direction. Things are
similar in the f -wave valley-polarized order, where the order

TABLE III. The critical interactions along the five stable fixed
trajectories in the presence of intervalley exchange.

Channel sFM pSC dSC f VP pVP

λ̂14 0.73516 0 0 0 0
λ̂22 0.36758 0 0 0.41863 −0.60633
λ̂24 0.36758 0 0 −0.41863 0.60633
λ̂32 0 0.24073 0.16911 0 0
λ̂42 0.16937 −0.47477 −0.29812 0.36359 0.93083
λ̂44 0.81745 −0.16074 0.04507 −0.43557 −1.35101
λ̂11 0.73516 0 0 0 0
λ̂31 0 −0.24073 0.16911 0 0
λ̂41 0.44739 0.26596 −0.37100 0 0

parameter is

� =
〈
ψ†

(
τ 3

√
2

)(
σ 0

√
2

)
d0ψ

〉
. (19)

The only difference is that the valley polarization is now fixed
instead of being arbitrary, and the gap function is

�k = 1
2�τ 3σ 0. (20)

B. p-wave superconductivity

The p-wave superconductivity manifests two degenerate
complex vector order parameters

�†
a =

〈
ψ

†
+

(
σ√
2

)
da[i(iσ 2)(ψ†

−)T ]

〉
(21)

with a = 1 and 2, which may support more interesting
features then the nondegenerate channels. Note that the irre-
ducible valley pairing representation has been reduced, and
ψ± denote the electrons in the two valleys. The Ginzburg-
Landau free energy is derived in the vicinity of mean-field
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FIG. 8. The phase distinction with (a) repulsive and (b) attrac-
tive intervalley exchange λi1 = ±0.01. Here λ̃24 = λ24/λ0 is varied,
while the other primary interactions are constant λi j =24 = λ0 = 0.1.
(a) With repulsive intervalley exchange, the s-wave ferromagnetism
and the p-wave superconductivity form distinct phases separated by a
peak of yc. The three phases are (left) f -wave valley-polarized order,
(center) s-wave ferromagnetism, and (right) p-wave superconductiv-
ity [Fig. 1(a)]. (b) When the intervalley exchange is attractive, the
right peak vanishes. This indicates that the d-wave superconductivity
beats the f -wave spin-valley-polarized order and occupies the ac-
cording phase regime [Fig. 1(b)].

critical temperature Tc (Appendix E)

f = c(2)(|�1|2 + |�2|2) + c(4)
{
(|�1|2 + |�2|2)2

+ |�̄1 × �1|2 + |�̄2 × �2|2
+ 1

3

[ − 2|�1|2|�2|2 + �2
1�̄

2
2 + �̄2

1�
2
2

− 2(�1 × �̄2)2 − 2(�̄1 × �2)2

+ 4|�̄1 × �2|2 − 4|�1 × �2|2
]}

. (22)

In accordance with the development of superconductivity be-
low Tc, the quadratic prefactor c(2) ∼ T − Tc turns negative
while the quartic prefactor c(4) remains positive. The types
of energetically favored ground states are determined by the
anisotropic terms at quartic order. The second line penalizes
the chiral spin orders, thereby confines the order parameters
in the polar spin forms �a = �an̂a with axial unit vector n̂a.
This further eliminates the last line since both terms exhibit
|�1|2|�2|2|n̂1 × n̂2|2. Define θ = cos−1(n̂1 · n̂2) as the angle
between the order parameters and φ = Arg(�2/�1) as the

phase difference. The free energy reduces to

f = c(2)(|�1|2 + |�2|2) + c(4)
[
(|�1|2 + |�2|2)2

− 4
3 |�1|2|�2|2(cos2 θ sin2 φ + sin2 θ cos2 φ)

]
, (23)

from which the energetically favored ground states can be
identified directly.

We see two ground states by inspecting the second line of
the free energy. The first ground state is the p ± ip chiral order
(pCSC) at θ = 0, π and φ = ±π/2, where n̂1 = ±n̂2 = n̂
and �2 = ±i�1. This state breaks the time-reversal symmetry
spontaneously and manifests the gap function

�C
±(n̂) = 1

2�τ 0(d1 ± id2)(n̂ · σ), (24)

whose phase winds for ±2π around the Fermi surface

�C
±,θk

(n̂) = 1√
6
�e±iθk (n̂ · σ ) (25)

with the polar angle θk. The axial direction of the order
parameter n̂ can lie in an arbitrary direction, corresponding
to the spontaneous breakdown of spin SU(2) symmetry. On
the other hand, the second ground state is the p-wave helical
order (pHSC) at θ = π/2 and φ = 0, π , with n̂1 · n̂2 = 0 and
�1 = ±�2. The time-reversal symmetry is preserved, and the
gap function is

�H(n̂1, n̂2) = 1
2�τ 0(d1n̂1 + d2n̂2) · σ (26)

with the momentum-space form

�H
θk

(n̂1, n̂2) = 1√
6
�(cos θkn̂1 + sin θkn̂2) · σ. (27)

This ground state can be regarded as a composition of two
chiral orders, where the equal-spin pairings with opposite
spins ↑↑,↓↓ exhibit opposite phase windings ±2π . The spin
SU(2) symmetry is again broken spontaneously, and a ±2π

winding in the plane formed by n̂1 and n̂2 can be observed
around the Fermi surface.

The superconducting ground states exhibit fully gapped
quasiparticle spectra and belong to distinct Z topological clas-
sification [27,61]. Since the two ground states sit at disjoint
free energy minima in the order parameter space, a first-order
phase transition is expected to occur in between.

C. d-wave superconductivity

For the d-wave superconductivity, the two degenerate com-
plex scalar order parameters

�†
a =

〈
ψ

†
+

(
σ 0

√
2

)
da[i(iσ 2)(ψ†

−)T ]

〉
(28)

with a = 1, 2 are manifest. Here the irreducible valley pairing
representation is again reduced. The Ginzburg-Landau free
energy in the vicinity of mean-field critical temperature Tc

reads (Appendix E) [28,56]

f = c(2)(|�1|2 + |�2|2) + c(4)
[
(|�1|2 + |�2|2)2

+ 1
3

( − 2|�1|2|�2|2 + �2
1�̄

2
2 + �̄2

1�
2
2

)]
. (29)

In accordance with the development of superconductivity be-
low Tc, the quadratic prefactor c(2) ∼ T − Tc turns negative
while the quartic prefactor c(4) remains positive. The types
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TABLE IV. The potential correlated phases in our model and their features. Here T is the time-reversal symmetry, while the symmetries
with subscripts c, s, and v are those in the charge, spin, and valley sectors, respectively. FS denotes the Fermi surface, and LDOS refers to the
local density of states.

Phase Broken symmetry Low-energy spectrum Experimental probe

sFM SUs(2), T Spin-splitted FS Magnetic susceptibility
pCSC Uc(1), SUs(2), T Fully gapped Spin and thermal quantum Hall effects, polar Kerr effect
pHSC Uc(1), SUs(2) Fully gapped Nontrivial Josephson coupling
dCSC Uc(1), T Fully gapped Spin and thermal quantum Hall effects, polar Kerr effect
f VP Uv (1), T Valley-splitted FS Valley Hall effect
pPVP Uv (1), T , C3z Anisotropic valley-splitted FS Valley Hall effect, anisotropic LDOS or transport signal

of energetically favored ground states are determined by the
anisotropic terms at quartic order. With φ = Arg(�2/�1) de-
fined as the phase difference between the order parameters,
the free energy reduces to

f = c(2)(|�1|2 + |�2|2) + c(4)
[
(|�1|2 + |�2|2)2

− 4
3 |�1|2|�2|2 sin2 φ

]
. (30)

We identify the ground state as the d ± id chiral order (dCSC)
at φ = ±π/2, which indicates �2 = ±i�1. The gap function

�C
± = 1

2�τ 3(d1 ± id2)σ 0 (31)

manifests ±4π phase winding around the Fermi surface

�C
±,θk

= 1√
6
�e±i2θkσ 0, (32)

indicating the spontaneous breakdown of time-reversal sym-
metry. This state exhibits fully gapped quasiparticle spectrum
and belongs to Z topological classification [27,61]. Note that
the spin SU(2) symmetry is preserved by the spin singlet
pairing.

D. p-wave valley-polarized order

The two degenerate real order parameters in the p-wave
valley-polarized order are

�a =
〈
ψ†

(
τ 3

√
2

)(
σ 0

√
2

)
daψ

〉
(33)

with a = 1 and 2. We derive the Ginzburg-Landau free energy
in the vicinity of mean-field critical temperature Tc (Appendix
E)

f = c(2)
(
�2

1 + �2
2

) + c(4)
(
�2

1 + �2
2

)2

+ c(6)(�2
1 + �2

2

)3(
1 + 1

10 cos 6θ�

)
+ c(8)

(
�2

1 + �2
2

)4(
1 + 8

35 cos 6θ�

)
. (34)

Here the angle θ� = tan−1(�2/�1) is defined. The quadratic
prefactor c(2) ∼ T − Tc turns negative below Tc, where the
valley-polarized order develops. At higher orders in the ex-
pansion, the prefactors c(4) and c(8) are positive, while c(6)

is negative. The anisotropic terms exist and select particular
directions under spontaneous C3z rotation symmetry breaking
[62]. Since the octic order terms are perturbatively smaller
than the sextic order ones, the free energy minima occur at
θ� = nπ/3 with n = 0, 1, 2. The gap function of such polar

order (pPVP)

�(θ�) = 1
2�τ 3(d1 cos θ� + d2 sin θ�)σ 0 (35)

manifests one of the patch orders (2,−1,−1), (−1, 2,−1),
and (−1,−1, 2), and the momentum-space form reads

�θk (θ�) = 1√
6
� cos(θk − θ�)σ 0. (36)

Accordingly, the Fermi surface undergoes a deformation
which is anisotropic in the momentum space.

VII. DISCUSSION

We have analyzed the correlated phases that may arise
as weak-coupling instabilities when multiple high-order Van
Hove points occur within the Brillouin zone, in a model in-
spired by twisted bilayer graphene. The parquet renormaliza-
tion group analysis uncovers five different correlated phases
starting from weakly repulsive primary interactions and sec-
ondary intervalley exchange (Table IV). These include s-wave
ferromagnetism, p-wave chiral/helical superconductivity, d-
wave chiral superconductivity, f -wave valley-polarized order,
and p-wave polar valley-polarized order. The Fermi sur-
faces are present in the spin- and valley-polarized orders
with splittings and/or anisotropic deformations, while the
chiral and helical superconductivities are fully gapped. Sig-
nificantly, the phase diagram is determined primarily by the
zero-momentum particle-hole and particle-particle suscepti-
bilities. This indicates the stability of our results against band
deformations which preserve the high-order Van Hove singu-
larity. Our work thus serves as a potential guide toward the
understanding of experimentally observed correlated phases
in twisted bilayer graphene under various conditions.

It is worth discussing the experimental manifestations of
the correlated phases we uncover. The spin- and valley-
polarized orders may be observed from the measurements of
magnetic susceptibility and valley Hall effect, respectively.
When spatial rotation symmetry is broken, the according
anisotropy can be observed in the probe of local density
of states [10,16] or transport measurement [20]. The chiral
and helical superconductivities can manifest topological re-
sponses. While the chiral ordered states exhibit the spin and
thermal quantum Hall effects [63–65] and polar Kerr effect
[66], the helical ordered state exhibits nontrivial Josephson
coupling with trivial superconductors [67]. Whether the char-
acteristics of these correlated phases can be probed in the
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experimental twisted bilayer graphene systems deserves fur-
ther examination.
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APPENDIX A: HIGH-ORDER VAN HOVE SINGULARITY

We discuss the general properties of high-order Van Hove
singularity in this section. Our discussion focuses on a high-
order saddle point P with the general form of dispersion
energy in its vicinity

εP,k ≈ A+kn+
+ − A−kn−

− . (A1)

Here the prefactors A± > 0 are assumed, k = (k+, k−) de-
notes the momentum deviation from P, and n± are positive
even integers.

1. Density of states

The density of states D(ε) = ∮
FSε,k

acquires a power-law
divergence at the high-order saddle point P. Here FSε repre-
sents the Fermi surface at the energy ε. Assume an ultraviolet
(UV) cutoff � for the dispersion energy and define the param-
eters a± = A±kn±

±

D(ε) =
∫ �

0

∏
s=±

2

2πnsA
1/ns
s

dasa
1/ns−1
s δ(a+ − a− − ε). (A2)

Integrating out a+ and setting a = a−, the integral becomes

D(ε) =
∏
s=±

1

πnsA
1/ns
s

×
∫ �

0
da(a + ε)1/n+−1a1/n−−1θ (a + ε). (A3)

We separate the integrals for ε > 0 and ε < 0. With the
reparametrization u = a/|ε| and the scaling dimension

ε = 1 − 1

n+
− 1

n−
, (A4)

the integral reads

D(ε) =
∏
s=±

1

πnsA
1/ns
s

|ε|−ε

[
θ (ε)

∫ �/ε

0
du

u1/n−−1

(1 + u)1/n−+ε

+ θ (−ε)
∫ �/|ε|

1
du

(u − 1)1/n+−1

u1/n++ε

]
. (A5)

Performing a further reparametrization u′ = u − 1 for the sec-
ond integral and pushing the limit of UV cutoff to infinity

�/|ε| → ∞, we rewrite the integral in terms of the Beta
functions

D(ε) =
∏
s=±

1

πnsA
1/ns
s

|ε|−ε

× [θ (ε)B(1/n−, ε) + θ (−ε)B(1/n+, ε)]. (A6)

Using B(x, y) = �(x)�(y)/�(x + y) and �(1 − z)�(z) =
π/ sin(πz), we arrive at the final form

D(ε) = D0

[
θ (ε) sin

π

n+
+ θ (−ε) sin

π

n−

]
|ε|−ε (A7)

with the prefactor

D0 = �(ε)

π

∏
s=±

�(1/ns)

πnsA
1/ns
s

. (A8)

Note that an asymmetry can generically be present on the two
sides of the Van Hove doping.

2. Susceptibility

We now proceed to calculate the static susceptibilities
(6) in the particle-hole (ph) and the particle-particle (pp)
channels at the high-order Van Hove singularity. We focus
particularly on the zero-momentum susceptibilities, while the
finite-momentum ones depend generically on the structure
of Fermi surface. The zero-momentum particle-hole suscep-
tibility 

ph
0 = 

ph
q |q→0 corresponds directly to the power-law

divergent density of states (A7) 
ph
0 = − ∫

dεD(ε)∂εnF (ε −
μ)


ph
0 = D0

2
T −ε

∫
dx|x|−ε cosh−2 x − μ/T

2

× 1

2

[
θ (x) sin

π

n+
+ θ (−x) sin

π

n−

]
. (A9)

At μ = 0, we have


ph
0 = D0

2
T −ε

∫
dx|x|−ε cosh−2 x

2

× 1

2

[
θ (x) sin

π

n+
+ θ (−x) sin

π

n−

]
. (A10)

Note that the power-law divergence is now controlled by the
natural infrared (IR) cutoff T with the same exponent −ε.
Meanwhile, the zero-momentum particle-particle susceptibil-
ity enjoys the Cooper divergence


pp
0 = −

∫
dεD(ε)

nF (ε − μ) − nF (−[ε − μ])

2(ε − μ)
. (A11)

A direct evaluation leads to


pp
0 = D0

2
T −ε

∫
dx|x|−ε tanh[(x − μ/T )/2]

x − μ/T

×
[
θ (x) sin

π

n+
+ θ (−x) sin

π

n−

]
, (A12)
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FIG. 9. One-loop corrections to the interactions.

which becomes


pp
0 = D0

2
T −ε

∫
dx|x|−ε tanh(x/2)

x

×
[
θ (x) sin

π

n+
+ θ (−x) sin

π

n−

]
(A13)

at μ = 0. Pushing the UV cutoff to infinity for the integral, an
approximate relation with 

ph
0 [44] can be established by an

integration by parts


pp
0 = 1

ε


ph
0 . (A14)

APPENDIX B: RENORMALIZATION GROUP EQUATIONS

In this section, we derive the renormalization group (RG)
equations for the nine eligible interactions in the patch model.
Consider the one-loop corrections to the interactions with
decreasing temperature T → 0 (Fig. 9). The according RG
equations for the primary interactions without intervalley ex-
change read (Fig. 10)

λ̇14 = ελ14 + dph
0 λ14(λ14 + 2λ44)

+ {
dph

0 λ11(λ11 + 2λ41)
}

wIVE,

λ̇22 = ελ22 + dph
0 [2λ22(λ14 − 2λ24 − λ44)

+ 2λ42(λ14 − 2λ24)]

+ {
2dph

0 (λ11λ24 + λ11λ44 + λ24λ41)
}

wIVE,

λ̇24 = ελ24 + dph
0 [2λ22(−λ22 − 2λ42)

+ 2λ24(λ14 − λ24 − λ44) + 2λ14λ44]

+ {
2dph

0 (λ11λ22 + λ11λ42 + λ22λ41)
}

wIVE, (B1)
and (Fig. 11)

λ̇32 = ελ32 − λ32(λ32 + 2λ42)

+{−λ31(λ31 + 2λ41)}wIVE,

λ̇42 = ελ42 + dph
0 [4λ22(λ14 − 2λ24) − 2λ42λ44]

+ dph
Qoλ

2
42 − (

2λ2
32 + λ2

42

)
+ {

2dph
0 (2λ11λ24 + λ41λ44) − (

2λ2
31 + λ2

41

)}
wIVE,

λ̇44 = ελ44 + dph
0

[
2λ14(λ14 + 2λ24) − 4λ2

22 − 4λ2
24

−2λ2
42 + λ2

44

] − dpp
−Qoλ

2
44

+ {
dph

0 [2λ11(λ11 + 2λ22) + λ41(λ41 + 2λ42)]
}

wIVE.

(B2)

The curly brackets indicate the corrections with intervalley
exchange (wIVE), and are not included in the analysis with
only primary interactions (Sec. III). Meanwhile, the correc-
tions to the interactions with intervalley exchange take the
form (Fig. 12)

λ̇11 = ελ11 + 2dph
0 (λ11λ14 + λ11λ44 + λ14λ41),

λ̇31 = ελ31 − 2(λ31λ32 + λ31λ42 + λ32λ41),

λ̇41 = ελ41 + 2dph
0 (2λ11λ14 + λ41λ44)

+ 2dph
Qoλ41(−λ41 + λ42) − 2(2λ31λ32 + λ41λ42).

(B3)

The whole set of RG equations (B1)–(B3) is included in the
analysis with intervalley exchange (Sec. V).

APPENDIX C: TEST VERTEX ANALYSIS

We conduct the test vertex analysis in the irreducible
pairing channels which can receive the leading power-law
divergence. These include the pairing channels at momenta
0 and Qo in both particle-hole and particle-particle branches.
Introducing the perturbing Hamiltonian (12) with infinitesi-
mal test vertices, we identify the one-loop corrections to the
test vertices under RG (Fig. 13). Such procedure is captured
by a set of differential equations. The diagonalization of such
equations indicates the irreducible pairing channels and the
interactions therein.

1. Particle-hole channels

a. Zero-momentum equal-spin pairings

We first consider the test vertices involving zero-
momentum particle-hole pairings with equal spin. The
perturbing Hamiltonian (12) reads

δH =
∑
ατσ

�ατσψ†
ατσψατσ (C1)

with real test vertices �αστ . The test vertices receive the cor-
rections from the zero-momentum particle-hole susceptibility


ph
0 under RG [Fig. 13(a)]. This procedure is captured by the

equation

�̇ατσ = −dph
0

[
− λ44�ατσ − λ14

∑
β =α

�βτσ

+
{ ∑

τ =τ ′

(
− λ41�ατ ′σ − λ11

∑
β =α

�βτ ′σ

)}
wIVE

+
∑
σ ′

(
λ44�ατσ ′ + λ24

∑
β =α

�βτσ ′

+
∑
τ =τ ′

[
λ42�ατ ′σ ′ + λ22

∑
β =α

�βτ ′σ ′

])]
. (C2)

The diagonalization in the patch sector identifies two pairing
channels l = 0, 1 with different patch orders d0 and d1,2,
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FIG. 10. RG equations of the primary interactions without intervalley exchange (Part one). The red diagrams are those involve the
intervalley exchange.

respectively,

�̇lτσ = −dph
0

[
λ1

l �lτσ +
{

λ4
l

∑
τ =τ ′

�lτ ′σ

}
wIVE

+
∑
σ ′

(
λ2

l �lτσ ′ + λ3
l

∑
τ =τ ′

�lτ ′σ ′

)]
. (C3)

Here the interactions are defined as

λ1
0 = −2λ14 − λ44, λ1

1 = λ14 − λ44,

λ2
0 = 2λ24 + λ44, λ2

1 = −λ24 + λ44,

λ3
0 = 2λ22 + λ42, λ3

1 = −λ22 + λ42,{
λ4

0 = −2λ11 − λ41, λ4
1 = λ11 − λ41

}
wIVE. (C4)

We next diagonalize the equation in the spin sector, leading
to two pairing channels s = 0, 1 with spin singlet and triplet

pairings, respectively

�̇lτ s = −dph
0

(
λ1

ls�lτ s + λ2
ls

∑
τ =τ ′

�lτ ′s

)
. (C5)

The interactions in the equation now read

λ1
l0 = 2λ2

l + λ1
l , λ1

l1 = λ1
l ,

λ2
l0 = 2λ3

l + {
λ4

l

}
wIVE, λ2

l1 = {
λ4

l

}
wIVE. (C6)

Finally, we diagonalize the equation in the valley sector and
get two pairing channels v = e, o with even and odd valley
pairings, respectively. The equation takes the form (13)

�̇lvs = −dph
0 λlvs�lvs (C7)

with the interactions

λle/os = ±λ2
ls + λ1

ls. (C8)

There are eight irreducible pairing channels in total. The
first ones are s- and d-wave Pomeranchuk orders (s/dPOM),
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FIG. 11. RG equations of the primary interactions without intervalley exchange (part two). The red diagrams are those involve the
intervalley exchange.

as well as f - and p-wave valley-polarized orders ( f /pVP).
The interactions λsPOM/ f VP = λ0e/o0 and λdPOM/pVP = λ1e/o0

are derived as

λsPOM/ f VP = −2λ14 ± 4λ22 + 4λ24 ± 2λ42 + λ44

+{∓2λ11 ∓ λ41}wIVE,

λdPOM/pVP = λ14 ∓ 2λ22 − 2λ24 ± 2λ42 + λ44

+{±λ11 ∓ λ41}wIVE. (C9)

Meanwhile, there are s- and d-wave ferromagnetisms
(s/dFM), as well as f - and p-wave spin-valley-polarized
orders ( f /pSVP). The interactions λsFM/ f SVP = λ0e/o1 and
λdFM/pSVP = λ1e/o1 take the form

λsFM/ f SVP = −2λ14 − λ44 + {∓2λ11 ∓ λ41}wIVE,

λdFM/pSVP = λ14 − λ44 + {±λ11 ∓ λ41}wIVE. (C10)

b. Zero-momentum opposite-spin pairings

We next consider the zero-momentum particle-hole pair-
ings with opposite spins. The perturbing Hamiltonian reads

δH =
∑

ατ,σ>σ ′
(�ατσσ ′ψ†

ατσψατσ ′ + H.c.), (C11)

where the test vertices �ατσσ ′ receive corrections from the
zero-momentum particle-hole susceptibilities 

ph
0 under RG

[Fig. 13(a)]. Note that the diagrams with internal fermion
loops are not involved in the corrections. The according equa-
tion reads

�̇ατσσ ′ = −dph
0

[
− λ44�ατσσ ′ − λ14

∑
β =α

�βτσσ ′

+
{ ∑

τ =τ ′

(
−λ41�ατ ′σσ ′ − λ11

∑
β =α

�βτ ′σσ ′

)}
wIVE

]
.

(C12)
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FIG. 12. RG equations of the interactions with intervalley exchange. The red diagrams are those involve the intervalley exchange.

The diagonalization in the patch sector identifies two pairing
channels l = 0, 1 with different patch orders d0 and d1,2, re-
spectively

�̇lτσσ ′ = −dph
0

(
λ1

l �lτσσ ′ +
{

λ2
l

∑
τ =τ ′

�lτ ′σσ ′

}
wIVE

)
.

(C13)

Here the interactions read

λ1
0 = −2λ14 − λ44, λ1

1 = λ14 − λ44,{
λ2

0 = −2λ11 − λ41, λ2
1 = λ11 − λ41

}
wIVE. (C14)

A further diagonalization in the valley sector finds two pairing
channels v = e, o with even and odd valley pairings, respec-
tively

�̇lvσσ ′ = −dph
0 λlv�lvσσ ′ . (C15)

The interactions in these two channels are

λle/o = λ1
l + { ± λ2

l

}
wIVE. (C16)

The four irreducible pairing channels correspond to the
s- and d-wave ferromagnetisms, as well as the f - and p-
wave spin-valley-polarized orders. Note that the interactions
λsFM/ f SVP = λ0e/o and λdFM/pSVP = λ1e/o are consistent with
the results (C10) from the equal-spin pairings.

c. Charge and spin density waves

With the test vertices coupled to the particle-hole pairings
at finite momenta Qo’s, the perturbing Hamiltonian

δH =
∑

α,τ<τ ′,σσ ′
(�ατσσ ′ψ

†
ατ ′σ ′ψατσ + H.c.) (C17)

is introduced. The test vertices receive the corrections from
the finite-momentum particle-hole susceptibilities 

ph
Qo under

RG [Fig. 13(b)]. For the equal-spin pairings with σ = σ ′, the
corrections are described by the equation

�̇ατσ = −dph
Qo

(
−λ42�ατσ +

{∑
σ ′

λ41�ατσ ′

}
wIVE

)
.

(C18)

A diagonalization in the spin sector finds the spin singlet and
triplet solutions s = 0, 1

�̇ατ s = −dph
Qoλs�ατ s. (C19)

These two solutions correspond to the charge and spin density
wave channels (C/SDWo), respectively. With λCDWo = λ0 and
λSDWo = λ1, we find

λCDWo = −λ42 + {2λ41}wIVE,

λSDWo = −λ42. (C20)

For the opposite-spin pairings with σ = σ ′, the diagrams
with internal fermion loops are not involved in the corrections

�̇ατσσ ′ = −dph
Qo (−λ42)�ατσσ ′ . (C21)

The solution to this equation corresponds to the spin density
wave channel, and the interaction is consistent with the result
(C20) from the equal-spin pairings.

2. Particle-particle channels

a. Superconducting channels

For the zero-momentum particle-particle pairing channels,
the perturbing Hamiltonian (12) induced by the test vertices is

δH =
∑

α,τ =τ ′,σσ ′
(�ατσσ ′ψ†

ατσ ψ
†
ατ ′σ ′ + H.c.). (C22)

245122-16



PARQUET RENORMALIZATION GROUP ANALYSIS … PHYSICAL REVIEW B 102, 245122 (2020)

(a)

= + + +

+ +

+ +

(b)

= +

(c)

= + + +

(d)

=

FIG. 13. The corrections to the test vertices under RG in the
particle-hole [(a) and (b)] and particle-particle [(c) and (d)] channels
with zero-momentum [(a) and (c)] and finite-momentum Qo [(b) and
(d)] pairings. The red diagrams are those involve the intervalley
exchange. For the particle-hole channels [(a) and (b)], the diagrams
with internal fermion loops are involved only for equal-spin pairings.

The test vertices receive the corrections from the zero-
momentum particle-particle susceptibility 

pp
0 under RG

[Fig. 13(c)], as captured by the equation

�̇ατσσ ′ = −
[
λ42�ατσσ ′ + λ32

∑
β =α

�βτσσ ′

+
{ ∑

τ ′ =τ

(
λ41�ατ ′σσ ′ + λ31

∑
β =α

�βτ ′σσ ′

)}
wIVE

]
.

(C23)

The diagonalization in the patch sector identifies two pairing
channels l = 0, 1 with different patch orders d0 and d1,2,

respectively

�̇lτσσ ′ = −
(

λ1
l �lτσσ ′ +

{
λ2

l

∑
τ ′ =τ

�ατ ′σσ ′

}
wIVE

)
. (C24)

The interactions here are derived as

λ1
0 = 2λ32 + λ42, λ1

1 = −λ32 + λ42,{
λ2

0 = 2λ31 + λ41, λ2
1 = −λ31 + λ41

}
wIVE. (C25)

A further diagonalization in the valley sector uncovers two
pairing channels v = e, o with even and odd valley pairings,
respectively,

�̇lvσσ ′ = −λlv�lvσσ ′ , (C26)

and the interactions are

λle/o = λ1
l + { ± λ2

l

}
wIVE. (C27)

We thus identify the four superconducting channels with
s-, f -, d-, and p-wave orders (s/ f /d/pSC). The interactions
λs/ f SC = λ0e/o and λd/pSC = λ1e/o are derived as

λs/ f SC = 2λ32 + λ42 + {±2λ31 ± λ41}wIVE,

λd/pSC = −λ32 + λ42 + {∓λ31 ± λ41}wIVE. (C28)

b. Pair density waves

With the test vertices coupled to the particle-particle pair-
ings at finite momenta Qo’s, the perturbing Hamiltonian

δH =
∑

ατσσ ′
(�ατσσ ′ψ

†
ατσ ′ψ

†
ατσ + H.c.) (C29)

is introduced. The test vertices receive the corrections from
the finite-momentum particle-particle susceptibilities 

pp
Qo un-

der RG [Fig. 13(d)], which is described by the equation

�̇ατσσ ′ = −dpp
−Qoλ44�ατσσ ′ . (C30)

The interaction in the according pair density wave channels
(PDWo) is thus identified as

λPDWo = λ44. (C31)

APPENDIX D: PHASE DIAGRAM

In Sec. IV, we have shown selected two-interaction phase
diagrams of the potential instabilities from the weakly repul-
sive primary interactions (Fig. 6). Here we list the full set
of two-interaction phase diagrams (Fig. 14), from which the
features discussed in Sec. IV may be more easily observed.

APPENDIX E: GINZBURG-LANDAU FREE ENERGY

Our RG analysis has uncovered three potential instabil-
ities with degenerate structures. These include the p-wave
superconductivity, the d-wave superconductivity, and the p-
wave valley-polarized order. The degeneracy breakdown in
these degenerate channels can be solved by the Ginzburg-
Landau analysis. By expanding the free energy with respect
to the infinitesimal order parameters near the critical tempera-
ture, the energetically favored ground states are determined
through the free energy minimization. Here we derive the
expanded free energy near the critical temperature, known as
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FIG. 14. The full set of two-interaction phase diagrams.

the Ginzburg-Landau free energy. The results are then adopted
in the analysis in Sec. VI, where the energetically favored
ground states are identified.

1. p-wave superconductivity

We project the interacting model onto the p-wave super-
conducting channel. The action reads

S =
∫

τ

[∑
κ

ψ†
κ (∂τ + ξκ )ψκ + gpSC

2
(P†

1 · P1 + P†
2 · P2)

]
,

(E1)

where τ is the imaginary time and the pairing operator

P†
a = ψ

†
+

(
σ√
2

)
da[i(iσ 2)(ψ†

−)T ] (E2)

is defined. We have reduced the irreducible valley pairing
representations and take ψ± as in the κ = ± valleys, re-
spectively. The interaction is taken negative gpSC < 0. We
conduct a Hubbard-Stratonovich transformation, where the
pairing operators are decoupled by the bosonic complex vec-
tor order parameters �1,2. Impose the static condition for the
order parameters �a(τ ) = �a. Defining the Nambu spinor
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� = (ψ+, i[iσ 2][ψ†
−]T )T and integrating it out in the Matsub-

ara frequency representation �(τ ) = √
T

∑
n �ne−iωnτ , we

arrive at the mean-field free energy

f = 2

|gpSC| (|�1|2 + |�2|2) − Tr ln(−G−1). (E3)

The inverse Gor’kov Green’s function has been defined

G−1 =
(

G−1
+

∑
a �a · [σ/

√
2]da∑

a �̄a · [σ/
√

2]da G−1
−

)
, (E4)

where the free electron and hole propagators are G± = [iωn ∓
(ε± − μ)]−1.

We expand the free energy with respect to the infinitesimal
order parameters near the critical temperature Tc. Define G0 =
G0(�1,2 = 0) and �̂ = G−1 − G−1

0 . Ignoring the constant part
of the free energy, we perform the expansion up to quartic
order

f = 2

|gpSC| (|�1|2 + |�2|2) + 1

2
Tr(G0�̂)2 + 1

4
Tr(G0�̂)4.

(E5)
Here the infinitesimal expansion parameter reads

(G0�̂)2 = 1

2
G+G−

∑
ab

dadb

× diag([�a · σ][�̄b · σ], [�̄a · σ][�b · σ]).

(E6)

The quadratic-order terms in the free energy are

f (2) = 2

|gpSC| (|�1|2 + |�2|2) + 1

4
Tr

[
G+G−

∑
ab

dadb

× diag([�a · σ][�̄b · σ], [�̄a · σ][�b · σ])

]
. (E7)

Utilizing Tr(σ iσ j ) = 2δi j and Tr(dadb) = δab, we obtain

f (2) =
[

2

|gpSC| + Tr(G+G−)

]
(|�1|2 + |�2|2). (E8)

The square bracket term takes the form T − Tc and turns
negative below Tc. Meanwhile, the quartic order terms

read

f (4) = 1

16
Tr

[
G2

+G2
−

∑
abcd

dadbdcdd

× diag([�a · σ][�̄b · σ][�c · σ][�̄d · σ],

[�̄a · σ][�b · σ][�̄c · σ][�d · σ])

]
, (E9)

where the term Tr(G2
+G2

−) can be verified to be positive. The
nonvanishing traces in the patch sector are Tr(d4

1 ) = Tr(d4
2 ) =

1/2 and Tr(d2
1 d2

2 ) = Tr(d1d2d1d2) = 1/6. This implies

f (4) = 1

16
Tr(G2

+G2
−)

×
{∑

a

Tr(�a · σ )(�̄a · σ )(�a · σ )(�̄a · σ )

+ 1

3

∑
a =b

[Tr(�a · σ )(�̄a · σ )(�b · σ)(�̄b · σ )

+ Tr(�a · σ)(�̄b · σ )(�b · σ )(�̄a · σ )

+ Tr(�a · σ)(�̄b · σ )(�a · σ )(�̄b · σ )]

}
. (E10)

In the spin sector, the nonvanishing terms are Tr(σ i )4 = 2 and
Tr[(σ i)2(σ j )2] = −Tr(σ iσ jσ iσ j ) = 2 for i = j, leading to

Tr[(�a · σ)(�̄b · σ)(�c · σ )(�̄d · σ )]

= 2
∑

i

�ai�̄bi�ci�̄di + 2
∑
i = j

(�ai�̄bi�c j�̄d j

−�ai�̄b j�ci�̄d j + �ai�̄b j�c j�̄di ). (E11)

Adopting this result to the quartic terms with different patch
configurations separately, we derive

Tr[(�a · σ )(�̄a · σ )(�a · σ )(�̄a · σ )]

= 2|�a|4 + 2|�̄a × �a|2,
Tr[(�a · σ )(�̄a · σ )(�b · σ)(�̄b · σ )]

= 2|�a|2|�b|2 − 2|�a · �b|2 + 2|�a · �̄b|2,
Tr[(�a · σ )(�̄b · σ)(�b · σ )(�̄a · σ )]

= 2|�a|2|�b|2 − 2|�a · �b|2 + 2|�a · �̄b|2,
Tr[(�a · σ )(�̄b · σ)(�a · σ)(�̄b · σ )]

= 4(�a · �̄b)2 − 2�2
a�̄

2
b. (E12)

The quartic terms are then identified as

f (4) = 1
8 Tr(G2

+G2
−)

{
(|�1|2 + |�2|2)2

+ |�̄1 × �1|2 + |�̄2 × �2|2
+ 1

3 [−2|�1|2|�2|2 − �2
1�̄

2
2 − �̄2

1�
2
2

+ 2(�1 · �̄2)2 + 2(�̄1 · �2)2

− 4|�1 · �2|2 + 4|�1 · �̄2|2]
}
. (E13)
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With the identities

|�1 × �2|2 = |�1|2|�2|2 − |�1 · �̄2|2,
|�̄1 × �2|2 = |�1|2|�2|2 − |�1 · �2|2, (E14)

(�1 × �̄2)2 = �2
1�̄

2
2 − (�1 · �̄2)2,

the quartic terms can be reformulated as

f (4) = 1
8 Tr(G2

+G2
−)

{
(|�1|2 + |�2|2)2

+ |�̄1 × �1|2 + |�̄2 × �2|2
+ 1

3

[−2|�1|2|�2|2 + �2
1�̄

2
2 + �̄2

1�
2
2

−2(�1 × �̄2)2 − 2(�̄1 × �2)2

+ 4|�̄1 × �2|2 − 4|�1 × �2|2
]}

. (E15)

Combining these results, we obtain the Ginzburg-Landau free
energy (22) which is adopted in Sec. VI.

2. d-wave superconductivity

We now project the interacting model onto the d-wave
superconducting channel. The action reads

S =
∫

τ

[∑
κ

ψ†
κ (∂τ + ξκ )ψκ + gdSC

2
(P†

1 P1 + P†
2 P2)

]
,

(E16)
where the pairing operator

P†
a = ψ

†
+

(
σ 0

√
2

)
da[i(iσ 2)(ψ†

−)T ] (E17)

is defined. We have again reduced the irreducible valley pair-
ing representations. The interaction is taken negative gdSC <

0. We conduct a Hubbard-Stratonovich transformation, where
the pairing operators are decoupled by the bosonic complex
scalar order parameters �1,2. Impose the static condition for
the order parameters �a(τ ) = �a. Defining the Nambu spinor
� = (ψ+, i[iσ 2][ψ†

−]T )T and integrating it out in the Matsub-
ara frequency representation �(τ ) = √

T
∑

n �ne−iωnτ , we
arrive at the mean-field free energy

f = 2

|gdSC| (|�1|2 + |�2|2) − Tr ln(−G−1). (E18)

Here the inverse Gor’kov Green’s function has been defined

G−1 =
(

G−1
+

∑
a �a[σ 0/

√
2]da∑

a �̄a[σ 0/
√

2]da G−1
−

)
. (E19)

We expand the free energy with respect to the infinitesimal
order parameters near the critical temperature Tc. Define G0 =
G0(�1,2 = 0) and �̂ = G−1 − G−1

0 . Ignoring the constant part
of the free energy, we perform the expansion up to quartic
order

f = 2

|gdSC| (|�1|2 + |�2|2) + 1

2
Tr(G0�̂)2 + 1

4
Tr(G0�̂)4.

(E20)
Here the infinitesimal expansion parameter reads

(G0�̂)2 = 1

2
G+G−

∑
ab

dadb

× diag([�aσ
0][�̄bσ

0], [�̄aσ
0][�bσ

0]). (E21)

The quadratic-order terms in the free energy are

f (2) = 2

|gdSC| (|�1|2 + |�2|2) + 1

4
Tr

[
G+G−

∑
ab

dadb

× diag([�aσ
0][�̄bσ

0], [�̄aσ
0][�bσ

0])

]
, (E22)

which are derived as

f (2) =
[

2

|gdSC| + Tr(G+G−)

]
(|�1|2 + |�2|2). (E23)

The square bracket term takes the form T − Tc and turns
negative below Tc. Meanwhile, the quartic order terms read

f (4) = 1

16
Tr

[
G2

+G2
−

∑
abcd

dadbdcdd

× diag([�aσ
0][�̄bσ

0][�cσ
0][�̄dσ

0],

[�̄aσ
0][�bσ

0][�̄cσ
0][�dσ

0])

]
, (E24)

which can be evaluated as

f (4) = 1
8 Tr(G2

+G2
−)

[
(|�1|2 + |�2|2)2

+ 1
3

( − 2|�1|2|�2|2 + �2
1�̄

2
2 + �̄2

1�
2
2

)]
. (E25)

Combining these results, we obtain the Ginzburg-Landau free
energy (29) which is adopted in Sec. VI.

3. p-wave valley-polarized order

Projecting the interacting model onto the p-wave valley-
polarized order channel, we have the action

S =
∫

τ

[
ψ†(∂τ + ξ )ψ + gpVP

2
(P2

1 + P2
2 )

]
. (E26)

Here the interaction is taken negative gpVP < 0 and the pairing
operator

Pa = ψ†

(
τ 3

√
2

)(
σ 0

√
2

)
daψ (E27)

is defined. We perform a Hubbard-Stratonovich transfor-
mation, where the pairing operators are decoupled by the
bosonic real scalar order parameters �1,2. Impose the static
condition for the order parameter �a(τ ) = �a. Integrating
the fermions out in the Matsubara frequency representation
ψ (τ ) = √

T
∑

n ψne−iωnτ , we arrive at the mean-field free
energy

f = 2

|gpVP|
(
�2

1 + �2
2

) − Tr ln(−G−1). (E28)

The inverse Green’s function is defined

G−1 = G−1 +
∑

a

�a

(
τ 3

√
2

)(
σ 0

√
2

)
da (E29)

with the free electron propagator G = [iωn − (ε − μ)]−1.
We expand the free energy with respect to the infinitesi-

mal order parameters near the critical temperature Tc. Define
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G0 = G0(�1,2 = 0) and �̂ = G−1 − G−1
0 . Ignoring the con-

stant part of the free energy, we perform the expansion up to
octic order

f = 2

|gpVP|
(
�2

1 + �2
2

) + 1

2
Tr(G0�̂)2 + 1

4
Tr(G0�̂)4

+ 1

6
Tr(G0�̂)6 + 1

8
Tr(G0�̂)8. (E30)

The expansion parameter reads

G0�̂ = 1

2
G

∑
a

da�aτ
3σ 0. (E31)

Note that the odd-power terms all vanish since Tr[(τ 3)n] =
Trτ 3 = 0 for odd n’s. The quadratic terms read

f (2) =
[

2

|gpPOM| + 1

2
Tr(G2)

](
�2

1 + �2
2

)
, (E32)

with the square bracket term ∼T − Tc turning negative below
Tc, and the quartic terms are

f (4) = 1
32 Tr(G4)

(
�2

1 + �2
2

)2
(E33)

with positive prefactor. For the sextic terms, we have

f (6) = 1

96
Tr

[
G6

∑
abcde f

dadbdcdd ded f �a�b�c�d�e� f

]
.

(E34)

The nonvanishing traces of da’s are Tr(d6
1 ) = 11/36,

Tr(d4
1 d2

2 ) = 1/36, Tr(d2
1 d4

2 ) = 1/12, Tr(d6
2 ) = 1/4, and the

traces of their permutations. This implies

f (6) = 1
96 Tr(G6)

(
�2

1 + �2
2

)3[ 10
36 + 1

36 cos 6θ�

]
, (E35)

where θ� = tan−1(�2/�1) and the prefactor is negative. At
octic order

f (8) = 1

512
Tr(G8)

∑
abcde f gh

Tr(dadbdcdd ded f dgdh)

×�a�b�c�d�e� f �g�h, (E36)

the nonvanishing traces of da’s are Tr(d8
1 ) = 43/216,

Tr(d6
1 d2

2 ) = 1/216, Tr(d4
1 d4

2 ) = 1/72, Tr(d2
1 d6

2 ) = 1/24,
Tr(d8

2 ) = 1/8, and the traces of their permutations. The octic
order terms are then obtained as

f (8) = 1
512 Tr(G8)

(
�2

1 + �2
2

)4[ 35
216 + 1

27 cos 6θ�

]
(E37)

with positive prefactor. Combining these results, we obtain
the Ginzburg-Landau free energy (34) which is adopted in
Sec. VI.
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