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Excitonic insulator phase and condensate dynamics in a topological one-dimensional model
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We employ mean-field approximation to investigate the interplay between the nontrivial band topology and
the formation of excitonic insulator (EI) in a one-dimensional chain of atomic s-p orbitals in the presence
of repulsive interorbital Coulomb interaction. We find that our model, in a noninteracting regime, admits
topological and trivial insulator phases, whereas, in strong Coulomb interaction limit, the chiral symmetry is
broken and the system undergoes a topological-excitonic insulator phase transition. The latter phase transition
stems from an orbital pseudomagnetization and band inversion around k = 0. Our findings show that contrary
to the topological insulator phase, electron-hole bound states do not form exciton condensate in the trivial band
insulator phase due to lack of band inversion. Interestingly, the EI phase in low s-p hybridization limit hosts
a Bardeen-Cooper-Schrieffer–Bose-Einstein condensation crossover. Irradiated by a pump pulse, our findings
reveal that the oscillations of exciton states strongly depend on the frequency of the laser pulse. We further
explore the signatures of dynamics of the exciton condensate in optical measurements.
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I. INTRODUCTION

The many-body problem of exciton formation driven by
charge instability and Coulomb attraction between electron-
hole pairs has triggered intensive previous and contemporary
investigations in bulk and low-dimensional semiconduc-
tors [1–10]. Excitonic insulators (EI) arising from the
condensation of electron-hole bound states, despite being con-
ceptually introduced decades ago [11–13], have received new
attention in recent years due to possible realization in the bulk
of semiconductors [14,15].

Few layered transition metal dichalcogenide (TMD), are
reputedly known to host collective exciton condensation
due to low dimensionality and strong light-matter cou-
pling [16–18]. The prominent two-dimensional devices based
on strong moire periodic potential in nearly aligned het-
erostructures of TMDs facilitate the observation of band
dispersion flattening with the formation of strongly bound
states. These devices are interesting platforms for various
excitonic states studies, such as topological exciton bands and
strongly correlated exciton Hubbard model [19]. In nearly
aligned WSe2/WS2, within the A-exciton spectra region of
WSe2 layer, the spatially localized interlayer excitons have
been reported to respond differently to back gate doping.
The reason is ascribed to the spatial distribution of exci-
ton wave function and electron-exciton interactions based
on the electron doping region [19]. Thick encapsulation of
TMDs with hexagonal Boron Nitride (hBN) layers leading
to a weak coupling regime at nearly zero temperature can
tune the coherent radiative decay rates of neutral excitons in
these materials. Spontaneous photoinduced radiative recombi-
nation is believed to result in a photoluminescence spectra rise
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during the laser pump exposure, while the high-energy exciton
relaxation to radiative states dominates the post-laser pulse
exposure. In fact, the suppression of environmental dielectric
constant through the hBN encapsulation results in radiative
lifetime enhancement [20] and suppression of nonradiative
processes due to nearly zero temperature and the least exis-
tence of disorder and contamination [21].

Another intriguing platform to study the spontaneous ex-
citon condensation is the promising quasi-one-dimensional
(1D) chalcogenide Ta2NiSe5 [22–26]. The large bandgap
opening fingerprint in photoemission spectroscopy in a recent
study, is believed to mark the enhancement of exciton order in
the spatially separated Ni and Ta chains [23]. Moreover, the
newly reported novel low-frequency mode in Raman spectra
was proposed as evidence for the existence of an EI phase in
Ta2NiSe5 emerging below ≈ 328 K [23]. Further analytical
investigations suggested that the phase transition is associated
with a Bose-Einstein condensation (BEC) in the scheme of a
1D extended Falicov-Kimball model (EFKM) with an over-
lapping band semimetal as the normal state [27]. Meanwhile,
another plausible scenario is argued to be a spontaneous Ta-Ni
hybridization based on charge instability which breaks the
symmetry [24]. Besides, the importance of structural phase
transition as origin of electronic gap has been addressed in
recent pump-probe [28] and Raman spectroscopy [29] mea-
surements.

To date, the theorized models to understand the EI phase
are mostly based on the idea of strong correlations in a
semimetal with a small band overlap or a semiconductor with
a small gap [3,11,30]. Given the importance of designing
new models, here, we explore the EI phase in a 1D chain of
atomic s-p orbitals with the inclusion of odd parity hybridiza-
tion [31,32] [see Fig. 1(a)]. In the noninteracting scheme,
this model exhibits topological insulator (TI) and trivial band
insulator (BI) phases [32]. Adding the interorbital Coulomb
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FIG. 1. (a) Schematic illustration of a 1D s-p chain. The sphere-
shaped s orbitals and dumbbell-shaped p orbitals are marked in
orange and green colors, respectively. ts(tp) and Vsp are the intra-
and interorbital tunneling parameters. (b) Contour plot of exciton
parameter real part as a function of onsite energy (ε) and Coulomb
interaction (Usp) for Vsp = 1/2. The TI phase with winding number
ν = −1 and BI phase, share the zero exciton region (white area). In
a strongly coupled s-p chain, however, the chiral symmetry is broken
and the system undergoes a phase transition from TI to EI where
excitons emerge.

interaction, our main objection is to answer the following
questions. How do the latter phases change with correlations?
Do the TI and EI phases compete or coexist? In the condensed
phase, how do the collective modes affect the optical tran-
sitions? How does the nonequilibrium dynamics of exciton
condensate, coupled to a phonon bath, respond to ultrafast
pulses, and what are the experimental consequences in optical
measurements?

In this article, we show that the EI phase emerges out of the
topological insulator phase beyond a critical interaction, while
the BI phase remains remote in forming exciton condensate.
We show that both amplitude and phase collective modes are
gaped which are manifest as many-body excitations in optical
responses. Furthermore, our nonequilibrium analysis reveals
that the oscillation of exciton condensate strongly depends
on the frequency of driving pulse with signatures visible in
optical conductivity.

The paper is organized as follows. In Sec. II we present
the theoretical model for a 1D s-p chain in equilibrium and
address the nature of spontaneous exciton condensation in a
topological insulator phase. The linear response and collective
mode signatures are addressed in the last part of this section.
Next, we discuss the exciton dynamics in a stimulated pump-
probe situation in Sec. III. In Sec. IV, we present the results
for the optical spectra of a s-p chain in a linear response
regime. Our findings are summarized in Sec. V.

II. MODEL AND EQUILIBRIUM PHASE DIAGRAM

In this section, we introduce the 1D s-p chain and present
a comprehensive analysis of its equilibrium phase diagram.

A. Interacting s-p model

The noninteracting spinless model of a 1D chain of atoms
with s and p orbitals and lattice spacing a, as shown in
Fig. 1(a), reads [31–33]

H0 = εs

∑
j

c†
j c j + εp

∑
j

p†
j p j −

∑
j

ts(c
†
j c j+1 + c†

j+1c j )

+
∑

j

tp(p†
j p j+1+p†

j+1 p j ) + Vsp

∑
j

(c†
j p j+1 − c†

j+1 p j )

− Vps

∑
j

(p†
jc j+1 − p†

j+1c j ), (1)

where c†
j (c j ) and p†

j (p j ) are the charge creation and an-
nihilation operators in s and p orbitals of jth atomic site,
respectively. εs(εp) is the onsite energy, and ts(tp) is the hop-
ping parameter between nearest neighbors with same orbitals.
Also, Vsp(Vps) is the hybridization energy between s(p) and
p(s) orbitals in a neighboring site with an odd parity, i.e.,
Vsp(−x) = −Vsp(x). This odd parity is responsible for the
band inversion that leads to TI phase formation [32]. By
Fourier transformation to momentum space, the Hamiltonian
Eq. (1) becomes

H0 =
∑

k

(εs − 2ts cos ka)c†
kck +

∑
k

(εp + 2tp cos ka)p†
k pk

+ 2iVsp

∑
k

sin ka c†
k pk − 2iVps

∑
k

sin ka p†
kck . (2)

In a more generic model where repulsive short-range
Coulomb interactions are present, the interacting Hamiltonian
is He = H0 + HU , where

HU = Usp

∑
j

(c†
j c j − 1/2)(p†

j p j − 1/2). (3)

Here, Usp is the strength of interorbital Coulomb interaction
between spinless electrons residing in local s and p orbitals.
We treat the above interaction using the mean-field approx-
imation and decouple the local two-body terms into density
and exciton order parameter channels [10,34]. Fourier trans-
forming Eq. (3), we obtain

Usp

∑
k

[
(ns − 1/2)p†

k pk +(np − 1/2)c†
kck −φp†

kck −φ∗c†
k pk

]
,

where, φ = 〈c†
j p j〉 is the exciton order parameter. Moreover,

ns = 〈c†
j c j〉 and np = 〈p†

j p j〉 are the charge density order pa-
rameters of s and p orbitals, respectively. In momentum space
the two-band mean-field Hamiltonian is cast as a pseudospin
in a pseudomagnetic field [35]:

HMF
e =

∑
k,γ

Bγ

k Sγ

k , (4)

where Sγ

k is the pseudospin component,

Sγ

k = 1
2ζ

†
k σγ ζk, ζ

†
k = (c†

k , p†
k ), (5)
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with σγ (γ = 1 − 3) being the Pauli matrices, and σ0, the
identity matrix. In what follows, we set the parameters as
εs = −εp = ε, ts = tp = t and Vsp = Vps. Also, for the sake
of simplicity, we set a = 1 and t = 1, hereafter, unless other-
wise stated. With these identifications, the components of the
pseudomagnetic field, Bγ

k s, are

B0
k = Usp(ns + np − 1), (6a)

B1
k = −2Usp Re φ, (6b)

B2
k = −2Usp Im φ − 4Vsp sin k, (6c)

B3
k = 2ε − 4t cos k + Usp(np − ns). (6d)

Now, we adopt a self-consistent calculation to address the
energy dispersion and the order parameters in equilibrium
state at zero temperature. The procedure is as follows. First,
we solve the eigenvalue problem (HMF

k − Ek,±)|k,±〉 = 0, for
the Bloch Hamiltonian driven from Eq. (5), to find the eigen-
values, Ek,± = [B0

k ± |Bk|]/2, and their corresponding eigen
functions, |k,±〉. Next, we use this knowledge to evaluate the
expectation values of pseudospin components at equilibrium
using the following relation [35]:

〈
Sγ

k (0)
〉=

{
Bγ

k (0)
2|Bk (0)| { f [Ek,+(0)] − f [Ek,−(0)]} (γ = 1 − 3),
1
2 { f [Ek,+(0)] + f [Ek,−(0)]} (γ = 0),

(7)

where f (Ek,+(0)) is the Fermi-Dirac distribution function at
equilibrium. We start with an initial guess for 〈Sγ

k (0)〉 over
all momentum vector k. We then obtain the mean-field order
parameters via[

n0 φ∗

φ n1

]
= 1

N

∑
k

[〈Sk〉 · σ + 〈
S0

k

〉
σ0

]
. (8)

Eventually, the latter values are fed into HMF
e to find

〈Sγ

k (0)〉 through Eq. (7). Until reaching the convergence, this
process is iterated with the following assumption that the
system is at half filling, i.e., ns + np = 1.

Before we proceed any further, it is worthwhile to note
a few points about the symmetry in the EI phase. In the
absence of s − p orbitals hybridization, Vsp, in Hamiltonian
Eq. (1), both valence and conduction bands enjoy U (1) charge
conservation symmetry separately. This implies that the over-
all symmetry is Us(1) × Up(1) for s and p bands, which is
spontaneously broken in EI phase due to condensation of
complex exciton order parameter, φ = |φ|eiϕ . Here, ϕ is the
phase of the condensate whose fluctuations give rise to the
phase mode [7,36]. The net symmetry in our model, how-
ever, is explicitly broken down to a U (1) symmetry of total
charge conservation by a nonzero Vsp (and also by coupling
to phonons which we will discuss in Sec. III A). We further
find that the order parameter φ becomes real, Imφ = 0, at
equilibrium, which could be attributed to locking of the order
parameter to a particular direction due the aforementioned
symmetry breaking in the equilibrium ground state.

B. Equilibrium phase diagram

The equilibrium phase diagram in the plane of Usp and
onsite energy for a fixed value of interorbital hybridization

Vsp = 1/2 is shown in Fig. 1(b). In the noninteracting limit,
i.e., Usp = 0, a TI phase sets in for ε < 2, while the trivial BI
phase appears for ε > 2, consistent with previous studies [32].
In the TI phase, the bands undergo an inversion around k = 0
and thus the winding number becomes ν = −1. In the BI
phase, however, the valence and conduction bands are mostly
of p and s character, respectively, yielding a zero winding
number ν = 0. The definition of winding number and details
of calculations can be found in Appendix A.

As can be seen in Fig. 1(b), the TI phase, interestingly,
shrinks as the short-range interactions become stronger, until,
eventually, the EI phase emerges at Usp ≈ 3 for nearly zero
onsite energies. Therefore, in strongly correlated systems, the
EI phase surpasses the TI phase and we only have exciton and
band insulator states. In an intermediate coupling strength,
i.e., 2 < Usp < 3, all three topological phases can be reached
by varying onsite potential ε. In both TI and BI phases, where
the exciton order parameter vanishes, φ = 0, the mean-field
Bloch Hamiltonian has a chiral symmetry. This can be seen
from Eq. (4) with the following Bloch Hamiltonian:

HMF
k = d(k) · σ, (9)

where d(k) = 1/2(B1
k, B2

k , B3
k ), and also, B1

k = 0 when φ =
0. Hence, since {HMF

k , σ1} = 0, the system is manifestly
chiral symmetric and the winding of unit vector d̂(k) ≡
d(k)/||d(k)|| around the origin in the y-z plane determines ν

as one crosses the one-dimensional Brillouin zone. Therefore,
we obtain ν = −1 for TI phase and ν = 0 for BI phase.

In Figs. 2(a) and 2(b) the impact of the s-p orbitals hy-
bridization on the phase diagram is shown. The plots in
Figs. 2(a) and 2(b) depict the topological behavior of s-p chain
for two specific values of Usp = 3 and 6, respectively. As
can be seen in both panels, the EI state is limited to the low
hybridization region and enhances towards larger hybridiza-
tion as the short-range interactions become stronger. Thus,
larger the interorbital Coulomb interaction is, larger value of
hybridization is required for the TI phase to set in.

The physical picture obtained thus far is that the EI phase
emerges out of the TI phase in the strong interaction regime.
Therefore, the two phases compete with each other. Moreover,
we find that the EI phase is topologically trivial, and the
nonzero exciton parameter leads to B1

k �= 0 and, consequently,
breaks the chiral symmetry. This implies that the unit vec-
tor d̂(k) tips out of the y-z plane, and thus the closed path
traveled by d̂(k) can be shrunken to zero continuously. From
a mathematical viewpoint, in the EI phase, the latter unit
vector belongs to the surface of a sphere S2, and since the first
homotopy group of S2 is trivial π1(S2) = 0 [37], the phase is
trivial.

C. Phase transition to EI phase

To understand the phase transition to EI, we present an
analytical study of order parameters. To this end, we build
the mean-field Hamiltonian based on pseudospin components,
followed by calculation of the exciton parameter, so that we
find the criteria at which the EI phase could emerge. From
Eq. (8), we obtain the exciton parameter at the half filling
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FIG. 2. [(a),(b)] Surface plots of equilibrium exciton order, as
a function of onsite energy (ε) and s-p hybridization parameter
(Vsp) for fixed Coulomb interaction (a) Usp = 3, and (b) Usp = 6.
[(c),(d)] Self-consistent solutions for exciton order (orange) and z
component of pseudospin (red) as a function of Coulomb interaction.
The onsite energy is ε = 1/2 for both panels, whilst, the interor-
bital hopping parameter is set to (c) Vsp = 1/2, and (d) Vsp = 1,
respectively. S3 is proportional to ns-np and acts as an effective or-
bital pseudomagnetization. The susceptibility (i.e., the derivative of
the pseudomagnetization) at a critical pseudomagnetic field (dashed
line), becomes discontinuous, alluding a phase transition where ex-
citons emerges.

state, i.e., f [Ek,+(0)] − f [Ek,−(0)] = −1, as

φ= 1

N

∑
k

(〈
S1

k

〉+i
〈
S2

k

〉)= 1

N

∑
k

(Uspφ + 2iVsp sin k)/|Bk|.

(10)

To further simplify the above equation, we expand the
norm of the pseudomagnetic field vector,

|Bk|=
√

4U 2
sp|φ|2+16V 2

sp sin2 k+(2ε−4t cos k − 2Usp S3)2,

(11)

which, in fact, involves the evaluation of S3 = 1/N
∑

k〈S3
k 〉,

S3 = 1

2π

∫ π

−π

dk
−2ε + 4t cos k + 2UspS3

|Bk| , (12)

that practically plays the role of a pseudomagnetic order pa-
rameter. Since |Bk| is an even function of k, Eq. (10) simplifies
to

φ = 1

N

∑
k

Uspφ

|Bk| , (13)

which is not dissimilar to the Bardeen-Cooper-Schrieffer
(BCS) superconductor gap equation. Eventually, we have two
equations for φ and S3 that could be solved self-consistently
to obtain a concrete condition over which the exciton param-
eter becomes nonzero. The results are displayed in Figs. 2(c)
and 2(d) for the onsite energy ε = 1/2, and interorbital hop-
ping parameter Vsp = 1/2 [Fig. 2(c)], and Vsp = 1 [Fig. 2(d)].
As can be seen, a slope discontinuity occurs in z component
of pseudospin, S3, which presents the difference between s
and p orbitals charge density (ns − np), acting as an effec-
tive pseudomagnetization in the orbital basis. From Eqs. (10)
and (12), it is clear that φ and S3 make the in-plane and out
of plane components of the pseudomagnetization. With this
identification, the interorbital Coulomb interaction Usp acts
like a magnetic field. Hence, it is seen that ∂S3/∂Usp becomes
discontinuous at a critical value of interaction alluding a phase
transition to an ordered phase, i.e., EI. The nonzero φ amounts
to developing an x component of pseudomagnetization. This
is exactly the tipping of d̂(k) out of the y-z plane as we
mentioned in the preceding subsection. Note that the creation
of x-component is set by hybridization of s-p orbitals which
is facilitated in the band-inverted TI phase. Thus, contrary to
previous studies, in a BI phase in our model, no band mixing
occurs which is detrimental in forming nonzero φ even for
strong interactions.

D. BCS-BEC crossover in the EI phase

As we showed above, the strong interorbital Coulomb in-
teraction can establish the EI phase in the s-p model. Our
results further reveal that there is a BCS-BEC crossover
within the EI phase by varying interaction and hybridiza-
tion strength. To identify the crossover we use the shape of
the bands as an estimation of BCS and BEC phases. For a
more pricise identification of phases one has to use the size
of excitons [33,35,38]. In the BCS regime, the momentum
of maxima of valence band, kF , appears away from k = 0,
reflecting the existence of weakly bound excitons at finite k.
When moving toward stronger interaction regime, the Hartree
potential broadens the valence and conduction band densities
and pushes the maxima to k = 0. For bands being flattend
around the center of BZ, we use the increasing behavior of
φ by Usp from BCS, bands with two minima and maxima, to
characterize the crossover to the BEC phase. When φ start to
decrease, the BEC phase sets in (see Fig. 8 in Appendix B).

In Fig. 3 we present a phase diagram in Usp-Vsp plane
where the domain of BCS and BEC phases is indicated. BCS
phase can be only found in a low s-p hybridization energy
limit and by increasing the short-range interaction strength,
the bands are flattened until a BCS-BEC crossover occurs. In
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FIG. 3. The exciton order of a 1D s-p chain at equilibrium with
onsite energy of ε = 1/2. The BCS-BEC crossover is visible at low
values of Vsp. The details of BCS-BEC crossover with Coulomb
coupling enhancement is shown and discussed in the caption of
Fig. 8.

Appendix B we present the details of band evolution, which
clearly shows how the crossover takes place.

The BCS-BEC crossover has been addressed very recently
in a three-orbital model with the inclusion of spin-orbit cou-
pling (SOC) [39]. It has been shown that the SOC-originated
condensation of BCS type EI at intermediate Coulomb inter-
action region crosses over to a BEC type EI by increasing SOC
strength. This suggests that SOC in their model acts analo-
gously to the hybridization of the s and p orbital in our model.
Furthermore, in a very recent study, the Ta2NiSe5 phase tran-
sition that was observed as an anomaly in the resistivity at
Tc � 328K [1], has been modeled via 1D EFKM where a BEC
type condensation occurs even though the normal state is an
overlapping band semimetal [27]. This in fact alludes to the
notion of BCS-BEC crossover.

E. Collective modes

At equilibrium the mean-field ground state of the EI phase
is characterized by the order parameter φ discussed in preced-
ing sections. The fluctuations of amplitude and phase of the
order parameter create collective modes. To study the latter
modes, we condenser the retarded density correlation function
for the s-p chain using the Kubo formula,

χR
μν (t ) = −iθ (t )

〈0|[ρμ(t ), ρν (0)]|0〉
〈0|0〉 . (14)

Here, ρμ ≡ 1
N

∑
k ζ

†
k σμζk is the collective charge and ex-

citon modes, and |0〉 is the ground state of the interacting
system. The perturbative expansion of Eq. (14) can be evalu-
ated with the help of Wick’s theorem in the interaction picture.
By Fourier transformation to momentum and frequency do-
main, and within the random-phase approximation (RPA),
Eq. (14) can be cast as

χR(ω, q) = χ0(ω, q) + χ0(ω, q)U χR(ω, q), (15)

FIG. 4. [(a),(c)] Amplitude mode and [(b),(d)] phase mode of
the BCS and BEC exciton insulator. Results for a BCS EI with
ε = 1/2, Vsp = 1/2, Usp = 2.8, are illustrated in [(a),(b)] and those
for a BEC EI with ε = 1/2, Vsp = 1, Usp = 3.8 are presented in
panels (c) and (d). In all panels we set g ≈ 0.07 for electron-phonon
coupling strength.

where χ0(ω, q) is the bare susceptibility and U =
(Usp/2)diag(1,−1,−1,−1) + diag(0, D, 0, 0). Here, D =
g2D0/(1 − g2χ0

11D0) and D0 = 2ωph/((ω + i0+)2 − ω2
ph) are

the dressed and bare phonon propagators, with g as the
electron-phonon coupling and ωph being the frequency of
optical phonons. The details of phonon Hamiltonian and
electron-phonon coupling are discussed in next section.

The results for RPA susceptibility is shown in Fig. 4 for
both BCS and BEC exciton condensates. Here, we have set
ωph = 0.1 and used the broadening factor η = 0.01. Each row
indicates the collective modes in the amplitude (−χR

11/π ) and
phase (−χR

22/π ) direction for a specific s-p chain. Figures 4(a)
and 4(c) clearly indicate the gapped nature of the amplitude
mode, the lower excitation branch starting from a finite value
at q = 0. The upper branch is the onset of continuum of
excitations across the band gap.

The results for the dispersion of phase modes are shown
in Figs. 4(b) and 4(d) for BSC and BEC condensates, re-
spectively. It is clearly seen that the lower dispersive branch
is also gapped. Indeed, in the model used in our paper the
phase and amplitude modes are coupled to each other due
to the interorbital coupling Vsp, and consequently the gapped
amplitude modes result in massive phase modes in contrast to
collective modes of a EFKM EI [34].

III. EXCITONS IN NONEQUILIBRIUM STATE

Motivated by recent pump-probe measurements on flakes
of Ta2NiSe5 [26], in this section we study the nonequilib-
rium dynamics of the EI phase of the s-p model described
in the preceding section. The nonequilibrium dynamics of
excitons in a 1D s-p chain generated with a laser pump pro-
vides an excellent playground for understanding the collective
behaviors. We first present the details of the studied nonequi-
librium model, then we elaborate on the real-time evolution
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of exciton condensate. Note that, intra-atomic hybridization
between nonlocalized s and p orbitals leads to the dipolar
transitions [40], i.e., Hdip = E (t )

∑
j (c

†
j p j + c†

j p j ), and con-
sequently exciton order renormalization due to modification
of pseudomagnetic field component,

B1
k = −2UspReφ + 2gX + 2E (t ),

where E (t ) = − ∂
∂t A(t ) is the laser pulse electric field, and

A(t ) is its electromagnetic vector potential. However, for the
sake of simplicity we neglect the dipolar transitions.

A. Coupling to phonons and laser pulses

We consider the charge interactions with a bath of optical
phonons with h̄ωph energy. The Hamiltonian is modified as
H = He + Hph, where

Hph = h̄ωph

∑
j

b†
jb j + g

∑
j

(b†
j + b j )(c

†
j p j + p†

jc j ), (16)

g is the electron-phonon coupling, and b†
j (b j ) is the creation

(annihilation) operator for phonons. The charge-phonon inter-
action in mean-field approximation reduces to

HMF
ph = h̄ωph

∑
j

b†
jb j + gX

∑
j

(c†
j p j + p†

jc j )

+ g
∑

j

(b†
j + b j )(φ + φ∗), (17)

where X = 〈b†
j + b j〉 is the phonon displacement. The total

Hamiltonian in momentum space thus can be written as the
summation of Fourier transform of electron-phonon mean-
field Hamiltonian and Eq. (4),

HMF = H̄MF
e + h̄ωph

∑
j

b†
jb j + 2gRe φ

∑
j

(b†
j + b j ), (18)

with H̄MF
e being the electronic part of the mean-field Hamilto-

nian with a slightly modified pseudomagnetic field component
B1

k = −2Usp Re φ + 2gX .
Next, we model an optical laser pump pulse impinging on

the system. We assume the induced time-dependent electro-
magnetic vector potential as a Gaussian function,

A(t ) = �(t ) A0 e
− (t−tp )2

2τ2
p sin(�t/h̄). (19)

Here, we set the pulse amplitude (A0) to 0.05 and h̄ =
1 throughout this paper. We also set tp = 100 and τp = 30
as the duration and width of the pulse, respectively. The
nonequilibrium state could be modeled by a Peierls phase in
the mean-field Hamiltonian [35]. The Heisenberg equation of
motion provides the time evolution of electron-hole pairs,

∂〈Sk (t )〉
∂t

= Bk (t ) × 〈Sk (t )〉, (20a)

∂〈S0
k (t )〉
∂t

= 0, (20b)

∂X (t )

∂t
= ωphP(t ), (20c)

∂P(t )

∂t
= −ωphX (t ) − 4gRe φ. (20d)

Here, P(t ) = i〈b†
j − b j〉 is phonon momentum. We solve

the above set of Eqs. (20a)–(20d) numerically by Runge-
Kutta fourth-order method, where we insert the self-consistent
results as the initial value for exciton order parameter. We
assume that the system is at zero temperature and thus the
initial phonon momentum vanishes P(0) = 0. From Eq. (20d),
this assumption yields X (0) = −4gφ(0)/ωph. At equilibrium
(t � 0) the pseudomagnetic field component discussed be-
low Eq. (18), becomes B1

k = −2(Usp + 2λ)Reφ, with λ ≡
2g2/ωph being the electron-phonon coupling constant. Hence,
at equilibrium the latter interaction only shifts Usp [36]. In
the following we discuss the evolution of system for t > 0
irradiated by the pump pulse Eq. (19).

B. Real-time evolution of EI condensate

The time evolution of the exciton order is illustrated in
Fig. 5. Figures 5(a) and 5(b) show a BCS type EI dynamics,
while Figs. 5(c) and 5(d) depict those for a BEC EI. All EI
phases demonstrate an exciton order melt-down after the laser
pump exposure as a consequence of photoinduced breaking
of exciton bound states. In each panel, we show the real-time
evolution of Reφ for different values of pulse frequency �.
The black dashed line shows Reφ(t ) when � equates the
EI gap energy. From Fig. 5(b) we see that, when the pulse
frequency is lower than the gap, the oscillation of condensate
is almost the same for all. However, for � being larger than the
gap, the oscillations do depend on pulse frequency. This be-
havior can be ascribed to the type of band structure associated
with the BCS condensate illustrated in the inset of Fig. 5(a).
The variation of band structure near k = 0 introduces different
resonance energy scales for the condensate. For frequencies
well above the gap, these variations are smeared out; the same
reasoning holds for frequencies below the gap as shown in
Fig. 5(b).

The oscillation frequency ω̄ of Reφ(t ) with respect to pulse
frequency is depicted in the inset of Fig. 5(b). Note that in
all latter cases, ω̄ of exciton condensate coincides with the
phonon frequency, i.e., with the oscillation of X (t ). We note
that in the absence of electron-phonon coupling the atoms
oscillate with their natural optical frequency which we set to
be ωph = 0.1 throughout. However, when coupled to exciton
condensate the phonon frequencies change. The coupling be-
tween phonons and excitons has been argued to be crucial
in understanding the recent pump-probe measurements on
Ta2NiSe5 [23,26,36].

The results of the condensate dynamics for BEC type EI are
shown in Figs. 5(c) and 5(d). The band structure depicted in
Fig. 5(c) clearly shows that the direct gap is located at k = 0.
Again in this case the exciton order parameter is quenched by
the pump pulse and oscillates afterward. The main observation
now is that for pulse frequencies either below or above the
bandgap, the exciton frequencies ω̄ changes only mildly in
contrast to the BCS case discussed above. The reason can be
ascribed to the band structure of the BEC with only one di-
rect bandgap at k = 0. The nonequilibrium dynamics of BEC
condensate in our model is consistent with that of the EFKM
BEC, meaning that the exciton condensate undergoes a pho-
toinduced suppression. However, when moving energetically
far away form the bandgap, we do not observe any exciton
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FIG. 5. Time evolution of the exciton parameter for diverse s-p chain systems. Panels [(a),(b)] illustrate the results for a s-p chain
with ε = 1/2,Vsp = 1/2,Usp = 2.8, while panels [(c),(d)] show those for ε = 1/2,Vsp = 1,Usp = 3.8. Panels [(e),(f)] are exciton dynamics
for ε = 1/4,Vsp = 1/2,Usp = 4. Black dashed line indicates the exciton order time evolution for laser frequency � = Eg. For both EI
phases, [(a),(b),(e),(f)] BCS and [(c),(d)] BEC, the exciton order melts down during the exposure of laser pump and oscillates afterward.
In panels [(e),(f)] the exciton dynamics in t ∈ [300, 600] and Reφ(t ) ∈ [0.26, 0.28] window are magnified to ease the visualization. The
left (right) column insets are the corresponding band dispersion (oscillation frequency). The dashed (solid) lines depict energy dispersion for
noninteracting Usp = 0 (interacting Usp �= 0) s-p chain in the inset. Phonon-charge interactions addressed in III A, are considered in preparation
of this figure with the following assumptions. g = √

λωph/2 is the charge-phonon interaction factor. λ = 0.1 is the effective electron-phonon
coupling parameter, and ωph = 0.1 is the optical phonon energy. Note that since the imaginary part of the condensate is negligibly small, here
we only present Re φ.

condensate enhancement [35]. The suppression of condensate
by the photoexcitation for a BCS type EI is reported in a two-
orbital Hubbard model, while the photoinduced enhancement
of condensate is predicted for BEC condensate [41].

Finally, in Figs. 5(e) and 5(f), we present the results for
nonequilibrium dynamics of condensate in an EI with large
bandgap ∼3.41. Two observations are manifest. First, we see
that the condensate is less influenced by the laser pulse than

the other aforementioned cases. That is, Reφ drops to a small
fraction of its initial value; it changes from Reφ � 0.34 to
Reφ � 0.26 even at the resonance with the gap energy. Sec-
ond, in stark contrast to previous cases, no oscillation occurs
for a full range of pulse frequencies below and above the
EI gap. Compared to dynamics in Figs. 5(a)–5(d), one can
see that the effective coupling of condensate to phonons only
takes place in the EI phase with a narrow gap.
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Before moving to the next section, a remark is in order.
The condensate dynamics saturates to a mean steady value
after a melt-down and does not decay, which can be attributed
to the lack of damping mechanism induced by phonons, con-
tamination, doping, and defects in general. This is actually
the motivation behind the recent time-resolved photolumi-
nescence measurements reporting a high exciton lifetime in
encapsulated TMDs [20]. In our model the decay could be
considered by adding a damping term as −γ P(t ), with γ as a
damping parameter, phenomenologically [34] to the right side
of Eq. (20d), which leads to decay of oscillations.

IV. OPTICAL CONDUCTIVITY

This section aims to answer the last question posed in the
Introduction seeking the signature of EI phases in optical mea-
surements. The longitudinal optical conductivity can be found
using the relation σ (ω) = lim

q→0

i
ω
�R(ω, q), where �R(ω, q) is

the retarded current-current correlation function. The optical
conductivity can be written as σ (ω) = σ 0(ω) + σ v (ω) where
σ 0(ω) is the bare optical conductivity and σ v (ω) includes the
vertex corrections due to interorbital Coulomb interaction and
electron-phonon coupling. The bare part reads as

σ 0(ω) = i

ω

∫
dk

2π

(
1

ω − ωk + i0+ − 1

ω + ωk + i0+

)
|J |2,

(21)

where ωk = Ek,+ − Ek,−, ω is the probe frequency, and J
is the current matrix element between the conduction and
valence bands,

J = − 2e

{
t sin k

B1
k + iB2

k

|Bk|

−i
Vsp

2
cos k

[(
1 + B3

k

|Bk|
)

e2iθ +
(

1 − B3
k

|Bk|
)]}

, (22)

with θ = arctan B2
k/B1

k . From Eq. (22) we see that, the current
matrix element is a function of exciton parameter (B1

k + iB2
k)

and the s-p orbitals hybridization parameter (Vsp). Also, via
setting Vsp = 0, one can reproduce the relation for current
density operator of a 1D EFKM [35], J = −2et sin k(B1

k +
iB2

k )/|Bk|. We also note that when both φ and Vsp are zero,
optical conductivity vanishes, since J = 0. However, when
the exciton condensation is formed, the matrix element be-
comes nonzero and optical response acquire finite values as a
function of measured frequencies.

The real part of the bare optical conductivity σ 0(ω) is
shown in Fig. 6 for diverse values of Hamiltonian parameters
at equilibrium. Figures 6(a) and 6(b) present the longitudinal
optical spectra for BCS and BEC EIs, respectively. Note that
both plots demonstrate condensations in the TI phase. From
the optical spectra, one can clearly see that in the linear
response regime denoted in orange color, more than one ex-
citonic bound state form, including at exact bandgap energy
transitions (Eα), and the BZ edge transitions [Eβ in Figs. 6(c)
and 6(d)]. Thus, the exciton order, at equilibrium state, is a su-
perposition of all bound states. There also exists an additional
peak in the optical absorption of BCS type EI which stems
mostly from the zero momentum transitions (Eγ ).

FIG. 6. [(a),(b)] Optical conductivity and [(c),(d)] mean-field
energy dispersion of 1D s-p chain at t = 0 (equilibrium state). Pan-
els [(a),(c)] depict results for ε = 1/2, Vsp = 1/2, Usp = 3.2, while
panels [(b),(d)] illustrate those for ε = 1/2, Vsp = 1/2, Usp = 5. In
panels [(a),(b)] the orange curve indicates the real part of the bare
optical conductivity σ 0(ω), and the optical conductivity including
vertex corrections, σ (ω), is shown in dark red. In panels (c) and
(d) black arrows depict the optical transitions with strongest con-
tribution to the bare optical response. The appearance of many-body
optical transition associated with the collective modes is manifest as
a sharp peak in the single-particle gap. We set g ≈ 0.07 for electron-
phonon coupling.

The vertex corrected part of conductivity, σ v (ω), is

σ v (ω) =
∑
μν

∫
dk

2π

dk′

2π
�μ(k′, ω)Vμν (ω)�ν (k, ω), (23)

with the vertex �μ(k, ω) reading as

�μ(k, ω) =
∑
αβγ

∂Bγ

k

∂k

f (Ek,α ) − f (Ek,β )

ω + Ek,α − Ek,β + i0+ σ
γ

αβσ
μ

βα, (24)

where σ
μ
αβ = 〈α|σμ|β〉 are matrix elements of Pauli matrices

w.r.t eigenstates of mean-field Hamiltonian Eq. (4). The effec-
tive interaction with polarization insertion is as follows:

V (ω) = [1 −Uχ0(ω)]−1U. (25)

The vertex corrections change the optical transitions sub-
stantially. The optical conductivity σ (ω) is shown by dark
red color in Figs. 6(a) and 6(b). It is clearly seen that the
interactions smear out the single-particle β peak for both BSC
and BEC phases. The single-particle transitions at α and γ are
also shifted. Besides, an additional many-body peak appear at
low frequencies which is associated with the collective modes
described in Sec. II E.

We now utilize a similar procedure to evaluate the optical
absorption spectra in a photoinduced excited regime (nonequi-
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FIG. 7. Optical response of (a)–(c) BCS, (d)–(f) BEC EI systems introduced in Fig. 6, for finite time after the laser pulse exposure. Each
panel presents the optical conductivity for specific laser pump frequency (�). Black bottom line in each panel is the optical spectra for the
corresponding EI at equilibrium. The energy dispersion at times shown in panels, are plotted for comparison (see top right of each panel). The
dashed line indicates the energy dispersion at equilibrium. The electron-phonon coupling (λ) is set to 0.1 in all panels.

librium state after the imposition of a laser pump). Figure 7
represents the real part of longitudinal optical conductivity
for Figs. 7(a)–7(c) BCS and Figs. 7(d)–7(f) BEC EI previ-
ously discussed in Fig. 6. Each column depicts the optical
response to a specific laser pump energy (�). The bottom
plot marked in black in each panel depicts the equilibrium
optical response for the corresponding system. As previously
discussed, single-particle peaks and also many-body transition
appear in the equilibrium optical response. The single-particle
peaks stem from the optical transitions close to the BZ center
[black bottom curves in Figs. 7(a)–7(c)].

At a finite time far away from the laser pump exposure time
(tp), when the pulse energy is lower that the bandgap, we see
that all excitonic transitions remain almost intact indicating
that the energy bands are not significantly altered in both BCS
and BEC EIs as shown in Figs. 7(a) and 7(d).

On the contrary, for the laser pulses with equal and
larger energies compared to bandgap, in the BEC EI shown
in Figs. 7(e) and 7(f), we observe that the manybody ex-
citations are quenched while the single-particle excitations
redshift to lower energies as a consequence of photoinduced
bandgap shrinkage. This is clearly seen in the band dispersion
shown in the top right of each panel; the energy dispersion

(solid lines) at finite times compared to one at equilibrium
(dashed line). Note the time scale over which the exciton
order parameter changes, which is about ω̄−1 ∼ 100 fs, and
is much larger than the intrinsic lifetime of the system, e.g.,
E−1

g ∼ 1 fs. Therefore, one can think of energy dispersion
as instantaneous energies of Hamiltonian being evolved adi-
abatically. Moreover, each band structure can be measured
in the angle-resolved photoemission spectroscopy within the
time domain [3]. However, for a more precise evaluation of
optical conductivity one may use the nonequilibrium two-time
Green’s function method [42].

The optical response to a pump laser pulse is rather
complex in the BCS EI. The many-body peak is strongly
pronounced at finite times long after the high energy pulse
exposure and start to oscillate in time as shown in Fig. 7(b)
through φ(t ). Figure 7(c) shows that at much higher laser
pulse frequency, stronger many-body transition appears at
finite times long after the pulse exposure.

V. CONCLUSIONS

In this paper, we studied the exciton insulator phase in a
one-dimensional chain of atomic s-p orbitals in the presence
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FIG. 8. The evolution of band dispersion for a 1D s-p chain with increment of Usp from 3 to 7. Top row plots are for a s-p chain with
ε = 1/2,Vsp = 1/2, and the bottom row plots for one with ε = 1/2,Vsp = 1. For bands being flattened near k = 0 we use the increasing
behavior of φ by Usp from BCS, bands with two minima and maxima, to characteize the crossover to the BEC phase. Here, we clearly see a
BCS-BEC crossover with enhancement of interorbital Coulomb interaction Usp.

of onsite interorbital Coulomb interaction. The model in the
noninteracting regime presents a topological phase transition
from a TI to trivial BI, providing a playground to study the
possible formation of the exciton condensate in insulators
with a nontrivial band topology. At equilibrium, our mean-
field study reveals that contrary to the absence of exciton
formation in the trivial BI phase, exciton condensate is formed
in the TI phase at strong Coulomb interaction. This implies
that the band inversion is crucial in the formation of exci-
ton condensate, meaning that the in-plain and out-of-plain
pseudomagnetic field related to bands with different parities
compete. Our findings also show that BCS-BEC crossover is
present in the low s-p hybridization limit. Furthermore, we
found that the collective modes in the phase direction are
gaped as a consequence of interorbital coupling.

Motivated by recent pump-induced coherent dynamics of
exciton condensates, we also studied the time-evolution of
the exciton order parameter irradiated by a pump pulse and
coupled to an optical phonon bath. We showed that exciton
dynamics clearly depend upon the driven laser frequency, and
the nature of EI phases, BCS versus BEC condensates, reveal
different optical transitions. Also, the fingerprint of photoin-
duced bandgap shrinkage is observable as an energy redshift
in the optical spectra of both EI types. Moreover, we found
that long after the pulse exposure, the many-body transition is
enhanced in the BSC EI phase, while it is suppressed in the
BEC EI phase.

The model studied in this paper can be generalized to in-
clude the spin degrees of freedom and possibly a richer phase
diagram emerges. Also, in the light of recent experiments on
Ta2NiSe5 and its quasi-one-dimensional nature, it would be
interesting to see if the band parities might affect the exciton
formation in this material, which we leave it for future study.
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APPENDIX A: WINDING NUMBER

In this Appendix we present the details of computation
of winding number for noninteracting Hamiltonian (2). The
Bloch Hamiltonian of Eq. (2), transforms under the following
unitary transformation,

U = 1√
2

[
1 1
1 −1

]
, (A1)

to

H0(k) =
(εs + εp

2
− ts cos k + tp cos k

)
I2×2 + d(k) · σ,

(A2)
where

dx(k) = εs − εp

2
− ts cos k − tp cos k, (A3)

dy(k) = 2Vsp sin k, dz(k) = 0. (A4)

For εs = −εp = ε > 0, ts = tp = t = 1, the H0(k) is chiral
symmetric, since {H0(k), σz} = 0. Thus, the winding number
can be written as [43]

ν = 1

2iπ

∫ π

−π

dk
d

dk
ln d̃ (k)

= V̄

2π

∫ π

−π

dk
ε̄ cos k − 1

(ε̄ − cos k)2 + V̄ 2 sin2 k
, (A5)
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where we have used

d̃ (k) = dx(k) + idy(k) = |d(k)|eiϕk , (A6a)

|d(k)| =
√

(ε − 2t cos k)2 + 4V 2
sp sin2 k, (A6b)

ϕk = tan−1[dy(k)/dx(k)], (A6c)

ε̄ = ε/2t, (A6d)

V̄ = Vsp/t . (A6e)

Therefore, for a noninteracting s-p chain (Usp = 0), when
ε > 2 ⇒ dx(k) > 0, and the winding number becomes zero.
In fact, in a high onsite energy regime, s and p orbitals are

energetically separated leading to an effectively insignificant
hybridization between s and p orbitals, thus a semiconductor
forms. However, in a small ε regime, the s-p hybridization
significantly contributes to band inversion and leads to a TI
phase forming.

APPENDIX B: BCS-BEC CROSSOVER

In the low s-p hybridization energy limit, the band struc-
ture of a BCS type EI evolves as the interorbital Coulomb
interaction is enhanced. The valence and conduction bands
are flattened at k = 0 with Usp increment until eventually, a
BCS-BEC crossover occurs. Figure 8 illustrates the gradual
evolution of band dispersion proportional to Usp strength.
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