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A framework is presented for modeling and understanding magnetic excitations in localized, intermediate
coupling magnets where the interplay between spin-orbit coupling, magnetic exchange, and crystal-field effects
are known to create a complex landscape of unconventional magnetic behaviors and ground states. A spin-orbit
exciton approach for modeling these excitations is developed based upon a Hamiltonian which explicitly
incorporates single-ion crystalline electric field and spin exchange terms. This framework is then leveraged
to understand a canonical Van Vleck jeff = 0 singlet ground state whose excitations are coupled spin and
crystalline electric-field levels. Specifically, the anomalous Higgs mode [Jain et al., Nat. Phys. 13, 633 (2017)],
spin-waves [Kunkemöller et al., Phys. Rev. Lett. 115, 247201 (2015)], and orbital excitations [Das et al., Phys.
Rev. X 8, 011048 (2018)] in the multiorbital Mott insulator Ca2RuO4 are captured and good agreement is found
with previous neutron and inelastic x-ray spectroscopic measurements. Furthermore, our results illustrate how a
crystalline electric-field-induced singlet ground state can support coherent longitudinal, or amplitude excitations,
and transverse wavelike dynamics. We use this description to discuss mechanisms for accessing a nearby critical
point.
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I. INTRODUCTION

The magnetism inherent to Hund’s metals [1] and their
parent multiorbital Mott states [2] is believed to play a cru-
cial role in many of their anomalous electronic properties
[3], ranging from unconventional superconductivity [4] to
violations of Fermi liquid theory to the recent unveiling of
nonequilibrium states [5]. This is perhaps most clearly illus-
trated in the range of emergent phenomena that appear in
4d transition metal oxides—where an intermediate coupling
regime manifests. In this regime, spin-orbit coupling, mag-
netic exchange, and crystalline electric-field energies compete
with one another on equal footing in determining a material’s
ground-state properties.

Due to the interplay of these competing energy scales,
modeling the excitations out of the unusual ground states
realized in this intermediate coupling regime and ultimately
understanding their microscopic Hamiltonians is an endur-
ing challenge. Magnetic excitations in this space become
intertwined with other degrees of freedom as local orbital
degeneracies are quenched via both the electrostatic crystal-
field potential and via spin-orbit coupling. This often yields a
complex excitation spectrum reflective of transitions between
exchange-coupled single-ion states and an “excitonic” energy
landscape which is difficult to experimentally interpret.

One example of this richness appears in the unusual mag-
netic ground state of the multiorbital Mott insulator Ca2RuO4

[6–13]. Ca2RuO4 possesses a distorted K2NiF4 structure

[14–17] (Fig. 1) with Ru4+ cations in a t4
2g orbital configura-

tion present in a strong crystalline electric field. In this setting,
Ru4+ cations possess a spin angular momentum S = 1 and
an effective orbital angular momentum of l = 1, yielding a
nonmagnetic singlet jeff = 0 ground state. Neutron scatter-
ing measurements nevertheless observe long-range ordered
antiferromagnetism, albeit with a reduced ordered moment
∼1 μB. The result is an unusual manifestation of a spin-
orbit-induced mixing of higher energy crystal-field levels
[18] that stabilizes a static magnetic moment in a naively
jeff = 0 singlet ground state—a higher order state mixing
leading to analogies with Van Vleck susceptibility [19]. The
ground state in Ca2RuO4 is different from the weakly mag-
netic ground states observed in compounds based on Kramers
ions (e.g., CeRhSi3 [20] and YbRh2Si2 [21]) that result from
the near cancellation of the elastic magnetic cross section
from contributions from differing members of the ground state
doublet.

Recent experiments have since confirmed this mixed level
structure in Ca2RuO4 [22], harking back to previous effects
observed in rare-earth intermetallic compounds [23]. Com-
pounds such as PrTl3 [24,25] and TbSb [26] possess similar
singlet magnetic non-Kramers ground states yet nevertheless
also exhibit coherent sharp spin waves [27] with ferromagnet-
ically polarized ground states [28,29]. Ca2RuO4 is analogous
[30] in this regard, given the apparent contradiction of its
nonmagnetic jeff = 0 ground state hosting weak antiferro-
magnetic order along with highly dispersive, coherent spin
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FIG. 1. (a) Isometric view of the orthorhombic Pbca (S.G. No. 61) unit cell of Ca2RuO4 consisting of quasi-two-dimensional psuedosquare
lattice layers of corner-sharing distorted RuO6 octahedra [14]. (b) Calculated energy eigenvalues as a function of the tetragonal distortion and
the magnetic molecular field perturbations applied to the individual jeff manifolds of the ground-state crystal-field triplet 3T1g (l = 1, S = 1)
of Ru4+ in octahedral coordination. Both the eigenvalues and individual parameters � and HMF have been normalized and are presented to
scale. (c) Calculated Tanabe-Sugano diagram for d4 in perfect octahedral coordination with a C/B ratio of 4.6. Shaded rectangle corresponds
to the 10 Dq/B regime of interest for Ca2RuO4 [47].

excitations [31]. Notably, however, the spin dynamics aris-
ing from the weak magnetic order in Ca2RuO4 have so far
been analyzed through conventional Holstein-Primakoff ap-
proaches [32] rather than employing the spin-orbit exciton
framework [33] endemic to more strongly spin-orbit-coupled
rare-earth systems.

Here we adapt the spin-orbit exciton framework to interme-
diate coupling oxides by modeling the low-energy collective
and single-ion magnetic excitations in Ca2RuO4. Comparison
is made with previously reported spectroscopic data with the
goal of understanding the origin of the anomalous transverse
and longitudinal spin fluctuations reported in neutron scatter-
ing measurements [32,34]. The model further accounts for
the single-ion physics and crystal-field levels reported with
inelastic x-rays [35] by including the Heisenberg interaction
between spins and the single-ion terms in the Hamiltonian
with equal weighting. This formalism implicitly includes the
multiorbital nature of the Ru4+ ion in Ca2RuO4’s Mott state,
where intermediate coupling requires orbital and spin de-
grees of freedom be necessarily linked in the Hamiltonian

through the spin-orbit interaction term. In using this minimal
model and alternative approach, we are able to reproduce the
anomalous collective transverse and longitudinal/amplitude
excitations observed with neutrons as well as the higher
energy spin-orbit transitions reported from inelastic x-ray
experiments. This approach and its ability to quantitatively
parametrize the magnetic Hamiltonian of Ca2RuO4 suggests
its broader utility to model other multiorbital Mott states in
the intermediate coupling regime as well its broader relevance
for understanding the parent magnetic instabilities governing
the behaviors of Hunds’ metals.

This paper is divided into five sections including this In-
troduction. In Sec. II, we first state the definitions of the
problem in terms of response functions and the Hamiltonian
under consideration. In Sec. III, we establish the theoretical
framework of the spin-orbit exciton model. In the Sec. IV,
we then utilize the exciton model to account for previously
reported inelastic neutron [32] and x-ray spectroscopic data
[35], yielding optimized parameters in the model Hamiltonian
whose values are directly compared to their corresponding
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physical quantities reported in literature. In the fifth and final
section, we infer necessary conditions for a crystalline electric
field-induced singlet ground state to host both longitudinal ex-
citations and transverse wavelike dynamics, while providing
possible mechanisms to achieve quantum criticality.

II. DEFINITIONS: CORRELATION, RESPONSE
FUNCTIONS, AND SCATTERING CROSS SECTIONS

In this section, we present both the theoretical framework
and the definitions of the spin-orbit exciton model, while
providing a description of its ability to directly parametrize
the magnetic neutron scattering response in Ca2RuO4.

Previously utilized to address the temperature dependence
of the low-energy magnetic fluctuations in PrTl3 by Buyers
et al. [36] and more recently to understand the complex ex-
citation spectra in CoO [37], the spin-orbit exciton model
employs the direct proportionality of the magnetic neutron
cross section and the magnetic dynamic structural factor
S(Q, ω) given by

S(Q, ω) = g2
L f 2(Q)

∑
αβ

(δαβ − Q̂αQ̂β )Sαβ (Q, ω),

corresponding to a product of the Landé g factor gL, the
magnetic form factor f (Q), a polarization factor providing
sensitivity to the component exclusively perpendicular to the
momentum transfer Q, and the dynamic spin structure factor
Sαβ (Q, ω). Corresponding to the Fourier transform of the
spin-spin correlations,

Sαβ (Q, ω) = 1

2π

∫
dteiωt 〈Ŝα (Q, t )Ŝβ (−Q, 0)〉,

where α, β = x, y, z, Sαβ (Q, ω) as written above considers
only the spin contribution to the neutron scattering cross sec-
tion, a valid approximation given the expectation value of
the orbital angular momentum 〈L̂〉 ≡ 0 via quenching for d
orbitals [38]. In the next section, we will show that the orbital
contribution to the scattering cross section does exist, and
is enabled through a spin-orbit (L̂ · Ŝ) coupling term in the
model Hamiltonian.

The relation of the structure factor Sαβ (Q, ω) to the
response function is given by the fluctuation-dissipation
theorem,

Sαβ (Q, ω) = − 1

π

1

1 − exp(ω/kBT )
�Gαβ (Q, ω), (1)

and allows the magnetic neutron cross section to be defined in
terms of a Green’s response function Gαβ (Q, ω) [39]. Recog-
nizing that the neutron response function is proportional to the
temperature-dependent Bose factor multiplied by the Fourier
transform of the retarded Green’s function,

Gαβ (i j, t ) = G(Ŝα (i, t ), Ŝβ ( j, 0))

= −i�(t )〈[Ŝα (i, t ), Ŝβ ( j, 0)]〉,
where Ŝ here denotes a generic angular momentum operator,
it can be shown that the application of appropriate boundary
conditions onto the time Fourier transform of the first time
derivative of Gαβ (i j, t ) yields an equation-of-motion of the

general form

ωG(â, â′, ω) = 〈[â, â′]〉 + G([â, Ĥ], â′, ω) (2)

for a magnetic Hamiltonian Ĥ and a generic component of
a general angular momentum operator â. The presence of
[â, Ĥ] in Eq. (2) demonstrates that the employment of re-
sponse function Gαβ (Q, ω) allows for the magnetic neutron
cross section to be directly parametrized via the individual
contributing terms to Ĥ. This equation-of-motion provides a
direct connection between the model microscopic Hamilto-
nian of interest to the neutron scattering cross section that is
measured experimentally.

In the case of magnetic fluctuations that stem from local-
ized magnetic moments on site i with spin Ŝ(i), each with a
single-ion crystal field (CF) contribution, and coupled to each
other by Heisenberg exchange between sites i and j defined
by J (i j), Ĥ can be written as

Ĥ = ĤCF +
∑

i j

J (i j)Ŝ(i) · Ŝ( j). (3)

At temperatures T < T N (or T C), a molecular field stem-
ming from the presence of long-range magnetic order will
be present at each given site i. This collective effect can be
accounted for by a Zeeman-like term in the Hamiltonian given
by

ĤMF(i) =
∑

i

HMF(i)Ŝz(i), (4)

where the molecular field is

HMF(i) = 2
∑
i> j

J (i j)〈Ŝz( j)〉. (5)

Using these definitions, it can be shown [36,37] that Ĥ can
be divided into a sum of a single-ion (Ĥ1) and an interion (Ĥ2)
term given by

Ĥ1 =
∑

i

ĤCF(i) +
∑

i

ĤMF(i)

and

Ĥ2 =
∑

i j

J (i j)Ŝz(i)[Ŝz( j) − 2〈Ŝz( j)〉]

+ 1

2

∑
i j

J (i j)[Ŝ+(i)Ŝ−( j) + Ŝ−(i)Ŝ+( j)],

respectively.
In the spin-orbit exciton model for magnetic excitations,

the single-ion term is first diagonalized for a given molecular
field to provide the basis states |n〉. In second quantization
formalism, the diagonalization of Ĥ1 is written as

Ĥ1|n〉 = ωn|n〉, (6)

where ωn corresponds to the energy eigenvalue of the |n〉 Fock
state. Such a diagonalization facilitates a redefinition of Ĥ1 in
terms of ladder operators C(i) and C†(i), such that

Ĥ1 =
∑

n

∑
i

ωnC
†
n (i)Cn(i), (7)
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where C(i) and C†(i) satisfy the commutation relations
[Cn(i),C†

m( j)] = δi jδnm. It should be noted that for the pur-
poses of conciseness, the circumflex accent ˆ in the case of
operators has not been included, as will remain convention
for the remainder of this text.

Since the equation-of-motion [Eq. (2)] involves the com-
mutator of angular momentum operators with Ĥ [Eq. (3)], the
evaluation of the response function requires a common basis.
In the spin-orbit exciton model, the Fock states {|n〉} accom-
panying the diagonalization of Ĥ1 [Eqs. 6) and (7)] provide
a natural basis for such a task. By noting that the interion
term Ĥ2 is itself a function of angular momentum operators,
it becomes clear that the evaluation of the equation-of-motion
requires the rotation of the components of the angular momen-
tum operator Ŝ onto the {|n〉} basis. Such a coordinate rotation
is given by

S(±,z) =
∑
mn

S(±,z)mnC
†
mCn,

utilizing the same ladder operators that were previously de-
fined in Eq. (7). Such an approach is analogous to the bosonic
approach of SU(N) spin-wave theory previously discussed in
the context of Kramers jeff = 1

2 magnets [40,41]. However,
our excitonic description includes the crystalline electric-field
contribution explicitly in this analysis to calculate the un-
coupled single-ion states. In later sections, we will use this
excitonic formalism to investigate how the crystalline electric
field can be tuned to access nearby critical points and induce
anomalous excitations.

As shown by Buyers et al. [36] in the context of PrTl3, and
further applied to CoO by Sarte et al. [37,42], the evaluation
of the equation-of-motion begins by first defining an interlevel
susceptibility G̃

Gαβ (i, j, ω) =
∑
mn

SαmnG̃β (m, n, i, j, ω).

The use of Gαβ (i, j, ω), in combination with the projection
of the full magnetic Hamiltonian Ĥ = Ĥ1 + Ĥ2 onto the {|n〉}
basis, reduces the second term of the equation-of-motion,
Eq. (2), to three sets of commutators, termed diagonal, trans-
verse, and longitudinal, with each commutator involving spin
operators that are written in terms of ladder operators. When
combined [37] with the random phase decoupling method
[43–46], the evaluation of the three commutators in the T →
0 K limit reduces the Fourier transform of the equation-of-
motion, Eq. (2), into a set of coupled linear and homogeneous
equations given by

Gαβ (Q, ω) = gαβ (ω) + gα+(ω)J (Q)G−β (Q, ω)

+ gα−(ω)J (Q)G+β (Q, ω)

+ 2gαz(ω)J (Q)Gzβ (Q, ω), (8)

describing the coupling of the single-site response function,

gαβ (ω) =
∑

n

{
Sα0nSβn0

ω − ωn0
− Sαn0Sβ0n

ω + ωn0

}
, (9)

by the Fourier transform of the exchange interaction

J (Q) =
∑
i 	= j

Ji je
iQ·di j . (10)

By noting that the nonzero single-site response functions in
a highly symmetric local octahedral coordination environment
are restricted to +−, −+, or zz combinations for αβ, Eq. (8),
upon the inclusion of site indices, can be simplified to

Gαβ
i j (Q, ω) = δi jg

αβ
i (ω)

+
∑

0�k� j−1

gαβ
i (ω)	Ji,i+k (Q)Gαβ

i+k, j (Q, ω),

(11)

where αβ = {+−,−+, zz}, and the prefactor 	 = 2 when
α = z, and 1 otherwise.

Finally, the sum of Eq. (11) over both αβ and i j combina-
tions yields the total response function,

G(Q, ω) =
∑
αβ

∑
i j

Gαβ
i j

= G+−(Q, ω) + G−+(Q, ω) + Gzz(Q, ω), (12)

whose imaginary component, by the fluctuation-dissipation
theorem [Eq. (1)], is proportional to the total dynamic struc-
ture factor, and thus the low-temperature magnetic neutron
cross section.

III. MICROSCOPIC MODEL: SINGLE-ION TERMS
AND HEISENBERG SPIN EXCHANGE

The simplification of the equation-of-motion [Eq. (2)] to
a set of coupled linear and homogeneous equations [Eq. (8)
or, equivalently Eq. (11)] yields a model whose ω and Q
dependence is explicitly parametrized by the single-site re-
sponse function gαβ (ω) coupled by the Fourier transform
of the exchange interaction J (Q), respectively. This explicit
parametrization corresponds to one of the main advantages
of the excitonic approach in addressing the scattering cross
section as the single-ion physics, corresponding to the effects
of the crystalline electric field, is directly incorporated through
the uncoupled single site response function g(ω). In this sec-
tion, we will discuss both the individual contributions to, and
evaluation of, both these two terms in the equation-of-motion.

A. Single site gαβ(ω): Parameters and approximations

With a sample temperature (5 K) much smaller than the
energy transfers of interest (h̄ω > 15 meV), it is a valid
approximation to restrict the discussion exclusively to the
T → 0 K limit. In this limit, the single-site response function
gαβ (ω) [Eq. (9)] is solely a function of the single-ion Hamil-
tonian Ĥ1 [Eq. (6)].

As illustrated in Fig. 1(b), there are four terms comprising
the single-ion Hamiltonian for Ru4+ in a local octahedral
crystalline electric field

Ĥ1 = ĤCF + ĤMF

= (ĤCEF + ĤSO + Ĥdis) + ĤMF,
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corresponding to the individual contributions from the oc-
tahedral crystalline electric field ĤCEF, spin-orbit ĤSO, the
structural distortion Ĥdis away from ideal octahedral coor-
dination, and a mean molecular field ĤMF stemming from
long-range magnetic order. Additional contributions such as
hyperfine nuclear splitting exhibit much weaker energy scales
(∼μeV), and are thus neglected in the current discussion [48].
We will now discuss each contributing term to this single-ion
Hamiltonian, and thus the terms that ultimately parametrize
the uncoupled single site susceptibilities g(ω).

1. The octahedral crystalline electric field, ĤCEF

In the case of the 4d4 ion Ru4+ in an octahedral envi-
ronment surrounded by six oxygens, with a reported crystal
field strength (10Dq) of ∼4 eV [22,47], it cannot be assumed
that the d-orbital splitting induced by the crystalline electric
field is small in comparison to the energy cost of violating the
Pauli principle and pairing electrons in individual d orbitals.
This contrasts with the case of 3d ions such as Co2+ where a
weak crystalline electric field is present, allowing both Hund’s
rules and the Pauli exclusion principle to be applied amongst
the five degenerate d orbitals [49]. With a strong crystalline
electric field, the basis is taken to be {|t〉, |e〉}, corresponding
to the d orbital states that have been split electrostatically into
a low energy triplet |t〉 and higher energy doublet |e〉 states
[50–52], separated in energy by a value of 
 = 10Dq.

The electronic configuration of the ground state can be
determined by Hund’s rules combined with the Pauli princi-
ple, albeit in the context of a large gap 
 ≡ 10Dq. Whereas
in the case of weak crystal-field theory, where the values
of both S and L are those for the free-ion states that are
obtained from the direct application of Hund’s rules and Pauli
principle on five degenerate d orbitals, in the case of Hund’s
first rule and the spin angular momentum quantum number S,
its value is still maximized, but bound by the restriction that
the |t〉 manifold must be fully populated before proceeding
to populating the higher energy |e〉 manifold. Based on such
a restriction, Hund’s first rule yields two unpaired electrons
for a d4 free-ion configuration, corresponding to a total spin
angular momentum quantum number S = ∑

mS = 1. This
gives a |t4〉|e0〉 configuration.

In the case of the total orbital angular momentum number
L, it is not clear on what this value should be simply based
on Hund’s second rule since the dxy, dxz, and dyz orbitals
which make up the |t〉 manifold are mixtures of uncoupled
|m〉 states which are eigenstates of the L̂z operator. Given the
application of the Pauli principle discussed in the previous
paragraph, we expect the orbital ground state to be triply
degenerate given the |t4〉|e0〉 electron configuration and only
one of the |t〉 orbitals are fully filled. This is confirmed by
the Sugano-Tanabe diagram [51,52] presented in Fig. 1(c) that
was calculated using the electrostatic matrices and character
tables supplied in Ref. [50] in the strong crystal-field basis
with the assumption that the ratio of the Racah parameters
C
B ∼ 4.6. In the strong crystal-field limit (10Dq > B), the
ground state is a 3T1g orbital triplet, itself stemming from the
3H (L = 5, S = 1) free-ion state (10Dq → 0).

2. Spin-orbit coupling, ĤSO

Corresponding to the relativistic interaction between the
spin and orbital degrees of freedom, spin-orbit coupling is
given by

ĤSO = λL̂ ˆ·S, (13)

where λ is the spin-orbit coupling constant and is expected
to increase with atomic number as ∼Z2 [53]. The inclusion
of spin-orbit coupling in the magnetic Hamiltonian yields a
nonzero [Ŝz, Ĥ ] and, as a result, the expectation value of Ŝz is
not conserved. This lack of conservation is in stark contrast to
an exclusively Heisenberg magnetic Hamiltonian and enables
the possibility of an amplitude, or longitudinal zz-mode to
exist [54]. In the case of Ca2RuO4, |λ| ∼ 0.1 eV is an order of
magnitude smaller than 10Dq [35,55,56], and thus spin-orbit
coupling can be considered as a perturbation to the crystal-
field states defined by ĤCEF in the {|t〉, |e〉} basis.

The treatment of this particular perturbation can be sim-
plified by noting that the magnetic fluctuations of interest
originate exclusively from the 3T1g crystal-field ground state
presented in Fig. 1(c), already being accessible with neutron
incident energies Ei � |λ| incident on a sample at 5 K. This
exclusivity in the determination of the magnetic properties
of Ca2RuO4 allows one to confine the current discussion to
the triply degenerate crystal-field ground state. Requiring a
projection from the original {|t〉, |e〉} basis onto the smaller
|l = 1, ml〉 basis that defines the subspace spanned by the 3T1g

orbital triplet, the spin-orbit Hamiltonian [Eq. (13)] can be
rewritten as

ĤSO = α′λl̂ ˆ·S, (14)

consisting of new orbital angular momentum operators that
act on the new |l = 1, ml〉 basis, accompanied by a scalar
projection factor α′. In contrast to magnets located in the
weak-intermediate-field regime, the determination of the
scalar α′ for Ca2RuO4 is not particularly straightforward. In
the case of the weak crystal-field limit, the projection is be-
tween bases with good quantum numbers L (mL) or l (ml ), and
S (mS). Possessing fixed orbital and spin angular momentum
values, the projection is amenable to methods based on the
matrix representation of the angular momentum operators,
significantly simplifying the process for determining α′ as
was done for CoO [37]. For magnetic ions located in the
strong crystal-field regime such as is the case for Ca2RuO4,
the value of L (mL) was addressed by Griffith [57] using the
T -P equivalence relation

L̂(t ) = −L̂(p).

Valid in the 
 
 λ regime where minimal mixing between
t and e states occur, the projection of the L = 2 t onto the
L = 1 p states greatly simplifies the process of calculating α′
directly using representation theory. In the case of the orbital
triplet ground state of the d4 configuration, Griffith [57] and
Moffitt [58] determined a value of − 1

2 for α′ in the pure L-S
Russell-Saunders coupling scheme.

Having projected L̂ onto a fictitious operator l̂, the basis
of the new spin-orbit Hamiltonian ĤSO [Eq. (14)] is now
comprised of the nine |l = 1, ml ; S = 1, mS〉 states. Based
on both the Landé interval rule and the addition theorem,
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ĤSO yields three unique effective total angular momentum
ĵ = l̂ + Ŝ manifolds, corresponding to jeff = 0, 1, and 2, with
energy eigenvalues:

E =
(

α′λ
2

)
[ j( j + 1) − S(S + 1) − l (l + 1)]. (15)

By employing both the projection constant α′ = − 1
2 pre-

viously determined by Griffith, and the reported value of
75 meV for |λ| [35], the diagonalization of ĤSO,

diag(ĤSO)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−75 0 0 0 0 0 0 0 0
0 −37.5 0 0 0 0 0 0 0
0 0 −37.5 0 0 0 0 0 0
0 0 0 −37.5 0 0 0 0 0
0 0 0 0 37.5 0 0 0 0
0 0 0 0 0 37.5 0 0 0
0 0 0 0 0 0 37.5 0 0
0 0 0 0 0 0 0 37.5 0
0 0 0 0 0 0 0 0 37.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

confirms a singlet ground state, separated from triplet
and pentet excited manifolds by 
(singlet → triplet) =
37.5 meV ≡ α′λ, and 
(singlet → pentet) = 112.5 meV ≡
3α′λ [Fig. 1(b)], in agreement with Eq. (15). Confirmation
of the assignment of jeff = 0, 1, and 2 to the singlet, triplet,
and pentet manifolds, respectively, is accomplished by the
projection of the components of the effective total angular
momentum operator ĵ = l̂ + Ŝ onto the subspaces that are
spanned by the three individual manifolds defined by ĤSO.
Such a projection corresponds to a rotation of the individual
angular momentum operators from the original |l, ml , S, mS〉
basis to a basis |φSO〉, consisting of the individual eigenvectors
of ĤSO. In the matter of a generic angular momentum operator
Ô, this particular rotation is achieved by

Ô|φSO〉 = C−1Ô|l,ml 〉C, (16)

corresponding to the matrix multiplication of Ô by a trans-
formation matrix C (and its inverse) which consists of the
individual eigenvectors φSO that are arranged in order of in-
creasing energy. In the case of z-component ĵz, the rotation
given by Eq. (16) yields

C−1 ĵzC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 −2 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

corresponding to a matrix whose top 1 × 1, middle 3 × 3, and
bottom 5 × 5 block matrices are identical to the Ĵz operator in
| jeff = 0, mj,eff〉, | jeff = 1, mj,eff〉, and | jeff = 2, mj,eff〉 bases,
respectively. By performing the same projection for the ĵx and
ĵy operators, it can be shown that these block matrices satisfy
the canonical commutation relations of angular momentum
ĵ = iĵ × ĵ, thus confirming that these block matrices do indeed
correspond to valid angular momentum operators.

3. The distortion Hamiltonian, Ĥdis

Employing single-crystal neutron diffraction, Braden et al.
[14] identified that d4 Ca2RuO4 exhibits a strong cooperative
Jahn-Teller distortion away from an ideal octahedral envi-
ronment. Over the next two decades, a plethora of extensive
studies would establish that the distortion accompanies orbital
ordering, corresponding to the driving mechanism for the
metal-to-insulator transition at T MI = 357 K [59–62] and the
presence of the Higgs mode [63].

To account for such a distortion in our model of the single-
ion eigenstates, deviations of the crystalline electric field away
from ideal local octahedral coordination are considered. By
noting that the triplet-doublet gap 
 induced by a crystalline
electric field in close proximity to the orbital cross-over value
10Dq/B ∼ 2.7 [Fig. 1(b)] is identical (in magnitude) to the
splitting observed near the free-ion limit, it is a valid assump-
tion that in the case of Ca2RuO4, the undistorted crystalline
electric field ĤCEF can be written in terms of Stevens operators
Ô0

4 and Ô4
4 as

ĤCEF = B0
4

(
Ô0

4 + 5Ô4
4

)
.

The Stevens parameter Bm
l prefactor is a numerical coeffi-

cient given by [64,65]

Bm
l = −|e|pm

l γ m
l 〈rl〉�l , (17)

where �l corresponds to projection constants accompanying
the conversion from Cartesian coordinates to angular momen-
tum operators via the Wigner-Eckart theorem, and is com-
monly denoted as α and β for l = 2 and l = 4, respectively.
〈rl〉 denotes the expectation values of the radial wave func-
tion and corresponds to 3.319a2

0 and 20.22a4
0 for l = 2 and

l = 4, respectively [66,67]. pm
l are the scalar coefficients of

the corresponding Tesseral functions Zm
l . In the point-charge

approximation, where the charge density ρ(r) ∝ δ(r), the
Tesseral functions are incoroporated into the γ m

l term given by

γ m
l = 1

2l + 1

∑
i

qiZm
l (xi, yi, zi )

ε0rl+1
i

,

where qi denotes the ith charge.
As a first approximation, we have considered the simplest

case of a uniaxial distortion along z. Given the definition
above of the crystalline electric field in terms of the Stevens
operator equivalents, an equivalent expression for a tetragonal
distortion is given by [68]

Ĥdis = B0
2Ô0

2 = �

(
l̂2
z − 2

3

)
,

and parametrized by �, whose sign and magnitude are deter-
mined by B0

2.
To obtain an estimate for the energy scales and the signs of

the Stevens coefficients to guide the analysis below, we have
considered the simplest case for a point-charge model. Cor-
responding to a single electron in a d orbital (L = 2), where
α = − 2

21 and β = + 2
63 [64], Eq. (17) for a single distorted

octahedra about a magnetic Ru4+ (Table I ) in the point-charge
limit produces Stevens parameters B0

4 = +1.32 meV > 0 and
B0

2 = +0.52 meV > 0, consistent with what is expected for
the ground-state orbital triplet configuration 3T1g of Ru4+.
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TABLE I. Atomic coordinates of ions constituting a single
distorted octahedron about a central magnetic Ru4+ used in the deter-
mination of the Stevens parameters for Ca2RuO4 in the point-charge
limit.

Ion x y z

Ru4+ 0 0.5 0.5
O2−(1) 0.3058 0.7004 0.5225
O2−(2) 0.1942 0.2004 0.5225
O2−(3) −0.3058 0.2996 0.4775
O2−(4) −0.1942 0.7996 0.4775
O2−(5) −0.0611 0.5152 0.6667
O2−(6) 0.0611 0.4848 0.3333

Consisting of one fully filled and two partially filled |t〉 or-
bitals, the electronic configuration of Ru4+ is analogous to
that of d2 V3+ placed in a weak octahedral crystalline electric
field, where the signs for B0

4 and B0
2 are both positive [66].

However, it should be noted that due to a sign difference in
the spin-orbit coupling constant, the single-ion ground state
of V 3+ corresponds to jeff = 2 [69].

4. The molecular field Hamiltonian, ĤMF

Corresponding to the final perturbative term to ĤCEF in the
single-ion Hamiltonian, ĤMF [Eq. (4)] addresses the effect
of the mean molecular field stemming from the assumption
of long-range magnetic order by the Ru4+ moments below
T N = 110 K. In the simplest case where a single dominant
Ru4+−O2−−Ru4+ superexchange pathway with an isotropic
magnetic exchange constant J1 between z1 nearest neighbors
is considered, ĤMF [Eq. (4)] reduces to

ĤMF =
∑

i

HMF(i)Ŝz = 2z1J1〈Ŝz〉Ŝz.

As illustrated in Fig. 1(b), ĤMF corresponds to a Zeeman-
like term that removes time-reversal symmetry, splitting
originally degenerate jeff levels. In the case where |J| →
|λ| (or equivalently |HMF|/|α′λ| → 1), the corresponding in-
crease in splitting induced by ĤMF results in the significant
entanglement between individual jeff levels [70,71]. The pres-
ence of such a strong admixture renders the modeling of these
systems difficult using psuedobosonic (Holstein-Primakoff)
approaches that are based on conventional linear spin-wave
theory, ultimately making it necessary to employ alternative
methods such as the multilevel spin-orbit exciton model dis-
cussed here.

B. J(Q): Parameters and approximations

Having already discussed the single-ion Hamiltonian and
its role in determining both the eigenstates basis and the
single site susceptibility g(ω), the discussion now shifts to

addressing the coupling of these individual sites. By enabling
the coupling of gαβ (ω), the Fourier transform of the exchange
interaction J (Q) uniquely specifies the Q dependence of the
response function G(Q, ω). Being itself parametrized by both
Ji j and di j , corresponding to the magnetic exchange constant
and displacement vector between moments located at sites i
and j, respectively, an analytical expression for J (Q) requires
detailed knowledge of both the nuclear and magnetic struc-
tures of the system under investigation.

In the case of Ca2RuO4 [14,73], its orthorhombic Pbca
unit cell (a = 5.4074 Å, b = 5.5150 Å, c = 11.90520 Å) is
a result of the reduction of symmetry of a I4/mmm unit
cell through a combination of the rotation and tilting of the
compressed [RuO6]8− octahedra about the c axis and (a, b)
plane, respectively. Corresponding to the ideal K2NiF4 struc-
ture (Fig. 1), a structure type commonly observed among the
cuprates and other high Tc superconductors, the derivation of
the Ca2RuO4 Pbca unit cell from I4/mmm suggests that the
spin-orbit exciton model may utilize certain approximations
commonly employed with these superconductors [74].

The large interplane distance illustrated in Fig. 1(a), com-
bined with a Néel state consisting of magnetic moments that
lie almost exclusively in the (a, b) plane, suggests the restric-
tion of the spin-orbit exciton model in the case of Ca2RuO4 to
a single layer in the (a, b) basal plane defined by a pseudote-
tragonal unit cell (a � b 	= c) that is illustrated in Fig. 2. Such
quasi-two dimensionality (Jc ≈ 0) has been experimentally
validated with reported inelastic spectra (Fig. 3) exhibiting
an XY -like dispersion with a maximum at (H, K ) = (0, 0)
[31,32,34].

As illustrated in Fig. 2(d) and summarized in Table II, a 2d
collinear antiferromagnet such as Ca2RuO4 can be reduced to
two unique site indices corresponding to sublattices consisting
of moments that are aligned antiparallel and parallel relative
to a reference moment. By exclusively considering the antifer-
romagnetically ordered Ru4+ moments contained in the first
two coordination shells within the (a, b) basal plane that are
coupled with isotropic magnetic exchange constants J1 and
J2, Eq. (10) yields two unique expressions for the Fourier
transform of the exchange constants,

Jd (Q) = 2J1(cos(π (H + K )) + cos(π (H − K ))) (18)

and

Js(Q) = 2J2(cos(2π (H )) + cos(2π (K ))), (19)

for Ji,i+k (Q) in Eq. (12), where labels d and s denote different
i 	= i + k and the same i = i + k site indices, respectively.

C. Model: Numerical details

In the case of the 2d collinear antiferromagnet Ca2RuO4,
the restriction of the site indices i, j to two unique values
reduces Eq. (12) to a series of four coupled linear equations
given by

G+−
11 (Q, E ) = g+−

1 (E ) + g+−
1 (E )Js(Q)G+−

11 (Q, E ) + g+−
1 (E )Jd (Q)G+−

21 (Q, E ),

G+−
21 (Q, E ) = g+−

2 (E )Js(Q)G+−
21 (Q, E ) + g+−

2 (E )Jd (Q)G+−
11 (Q, E ),

G+−
12 (Q, E ) = g+−

1 (E )Js(Q)G+−
12 (Q, E ) + g+−

1 (E )Jd (Q)G+−
22 (Q, E ),
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FIG. 2. Nonprimitive pseudotetragonal (red) and primitive square (black) (a) direct and (b) reciprocal space unit cells of Ca2RuO4 viewed
in the (a, b) and (H, K ) planes, respectively. The antiferromagnetic unit cell in the (a, b) basal plane coincides with the nonprimitive
pseudotetragonal unit cell. (c) High symmetry directions between high symmetry points of the antiferromagnetic reciprocal unit cell (red)
that has been symmetrized with respect to the square lattice (black).

G+−
22 (Q, E ) = g+−

2 (E ) + g+−
2 (E )Js(Q)G+−

22 (Q, E ) + g+−
2 (E )Jd (Q)G+−

12 (Q, E ),

and

Gzz
11(Q, E ) = gzz

1 (E ) + 2gzz
1 (E )Js(Q)Gzz

11(Q, E ) + 2gzz
1 (E )Jd (Q)Gzz

21(Q, E ),

Gzz
21(Q, E ) = 2gzz

2 (E )Js(Q)Gzz
21(Q, E ) + 2gzz

2 (E )Jd (Q)Gzz
11(Q, E ),

Gzz
12(Q, E ) = 2gzz

1 (E )Js(Q)Gzz
12(Q, E ) + 2gzz

1 (E )Jd (Q)Gzz
22(Q, E ),

Gzz
22(Q, E ) = gzz

2 (E ) + 2gzz
2 (E )Js(Q)Gzz

22(Q, E ) + 2gzz
2 (E )Jd (Q)Gzz

12(Q, E ),

where h̄ has been set to 1, and thus ω being relabeled as E = h̄ω. We note here that we have assumed the different single-ion
levels are coupled with the same J (Q). We make this assumption for simplicity and test this below against data in the next
section. Solving these four coupled equations yields

G+−(Q, E ) ≡
∑

i j

G+−
i j (Q, E ) = g+−

1 (E ) + g+−
2 (E ) + 2g+−

1 (E )g+−
2 (E )[Jd (Q) − Js(Q)]

[1 − g+−
1 (E )Js(Q)] · [1 − g+−

2 (E )Js(Q)] − g+−
1 (E )g+−

2 (E )[Jd (Q)]2
,

Gzz(Q, E ) ≡
∑

i j

Gzz
i j (Q, E ) = gzz

1 (E ) + gzz
2 (E ) + 4gzz

1 (E )gzz
2 (E )[Jd (Q) − Js(Q)]

[1 − 2gzz
1 (E )Js(Q)] · [1 − 2gzz

2 (E )Js(Q)] − 4gzz
1 (E )gzz

2 (E )[Jd (Q)]2
,

(20)

where G−+(Q, E ) has the same form as G+−(Q, E ) with
indices + ←→ −. Here, the energy E was redefined as
E + iδ, where δ is a positive infinitesimal to ensure analyticity
of gαβ [Eq. (9)]. Its value was set to 50% of the experimental
elastic resolution width (HWHM) on the ARCS time-of-flight
neutron spectrometer (SNS, ORNL) set to the experimental
parameters employed by Jain et al. [32].

In the T → 0 K limit where the Bose factor n(E ) � 1, the
fluctuation-dissipation theorem (Eq. 1) is reduced to

S(Q, E ) ∝ −�G(Q, E ),

where the magnetic dynamic structure factor is directly pro-
portional to the imaginary component of the total response
function G(Q, E ). Since the dynamic structure factor is di-
rectly proportional to the magnetic neutron cross section d2σ

d�dE
in the T → 0 K limit, plus the addition of the square of the
magnetic form factor, an expression for the unnormalized raw
inelastic neutron scattering intensity is given by

I (Q, E ) � −A f 2(Q)�G(Q, E ), (21)

where the magnetic form factor has been approximated by the
isotropic magnetic form factor f (Q) and the prefactor A is

a scalar corresponding to a combination of conversion and
scale constants. The combination of the definition of G(Q, E )
[Eq. (12)] with its individual components Gαβ (Q, E ) [Eq. 20]
reduces the inelastic neutron scattering intensity given in
Eq. (21) to a closed-form analytic expression describing the
coupling of gαβ (E ) by J (Q). Since gαβ (E ) [Eq. 9] is function
of λ, HMF, �, while J (Q) [Eq. (10)] is a function of J1, and
J2, the analytic expression for the scattering intensity, for a
fixed Q and E , is itself a closed-form function of five distinct
parameters, making both parametrization and the subsequent
optimization readily amenable to numerical calculation meth-
ods [42].

The determination of optimal parameter values for λ, HMF,
�, J1, and J2 was accomplished numerically in MATLAB by
solving the least-squares minimization problem

∑
β=T,L

∑
Q

[E (λ, HMF, �, J1, J2)Q,β − Edata,Q,β ]2, (22)

where E (. . . )Q,β and Edata,Q,β denote the calculated and mea-
sured energy transfer possessing maximum intensity for a
fixed Q and branch β, respectively.
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FIG. 3. (a) Magnetic dynamic structure factor S(Q, E ) of Ca2RuO4 calculated in the T → 0 K limit using a mean-field multilevel spin-orbit
exciton model with refined parameters summarized in Table III. (b) Comparison of the dispersion relation for the longitudinal (L) and transverse
modes (T , T ′) calculated using a spin-orbit exciton model (red) and spin-wave theory by Jain et al. [32], employing a phenomenological
Hamiltonian (black). (c) Comparison of Q-integrated cuts of data measured at 5 K by Jain et al. [32] and calculated using the spin-orbit
exciton model for various Q ∈ [(0,0), (π, 0)] along [H, H ]. For the purposes of comparison, the energy transfer for the maximum of the
longitudinal mode that was previously calculated by spin-wave theory [32] and spin-orbit exciton model have been both labeled explicitly for
each Q-integrated cut.

The methods used for the determination of the initial val-
ues varied significantly from parameter to parameter. In the
case of α′λ and J1, the values of 37.5 meV and 1.88 meV
simply correspond to their respective values reported in liter-
ature [35,47,55,56,75–78]. An initial estimate for the mean
molecular field HMF was determined by first extracting the
value for

∑
i> j zi jJi j from the experimentally determined [8,9]

Curie-Weiss temperature θCW ∼ −90 K (−7.76 meV) via its

mean field definition

θCW = −2

3
S(S + 1)

∑
i> j

zi jJi j .

The insertion of the extracted value of 5.82 meV for∑
i> j zi jJi j into the definition of HMF [Eq. (5)] yields an

initial estimate of 11.6 meV for HMF. Furthermore, since

TABLE II. Displacement vectors dm,i j for each Ru4+ constituting the s and d sublattices within the first two coordination shells m of
Ca2RuO4. All vectors and their magnitudes were calculated using the VESTA visualization software package [72], employing the reported
unit cell parameters at T = 11 K [14]. Numbers in parentheses indicate errors.

m |dm,i j | (Å) Number of neighbors dm,i j in s sublattice (a) dm,i j in d sublattice (a)

1 3.8618(5) 4 ( 1
2

1
2 0)

( 1
2 − 1

2 0)

(− 1
2

1
2 0)

(− 1
2 − 1

2 0)
2 5.5150(11) 4 (1 0 0)

(−1 0 0)
(0 1 0)

(0 −1 0)
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TABLE III. Refined parameter values of the spin-orbit exciton
model for Ca2RuO4 obtained from a least-squares minimization
[Eq. (22)] performed throughout a 5d-hyperdimensional parameter
space whose individual axes were defined by a range of values
roughly centered about each parameter’s initial value. All values
are reported in meV and numbers in parentheses indicate calculated
errors.

Parameter Initial value Range Refined value

α′λ 37.5 [0,70] 39(4)
� 14.9 [0,25] 19(2)
J1 1.88 [0,5] 2.1(2)
J2 −0.425 [−2,2] −0.37(6)
HMF 11.6 [0,25] 0.1(1)

the spin-orbit exciton model considered here is restricted to
the first two coordination shells,

∑
i> j zi jJi j is reduced to

4J1 + 4J2. By combining the extracted value of 5.82 meV for

∑
i> j zi jJi j with the initial estimate of 1.88 meV for J1, the

value of −0.425 meV is obtained for an initial estimate of
J2. A negative value whose magnitude is significantly smaller
than J1, consistent with a system that assumes long-range
antiferromagnetic order in the mean-field limit. Finally, the
initial estimate of 14.9 meV for � was determined by the
scaling of the distortion parameter reported for KCoF3 [79] by
an empirical factor of 0.02/0.00197 = 10.15 corresponding
to the ratio of their respective tetragonal distortions δc/c,
while its positive sign corresponds to the restriction previously
established in the point-charge calculation that � > 0.

As is the case for all derivative-free methods, including the
simplex search method specifically employed by MATLAB, the
parameter values determined by the minimization algorithm
do not necessarily yield the global minimum or even a local
minimum. This is particularly true when the initial values are
too far removed from the true optimal values. As an attempt
to address such a concern, the least squares minimization
problem given by Eq. (22) was solved for various initial test
values for the five parameters. These test values define a

FIG. 4. (a) Individual αβ components of the magnetic dynamic structure factor S(Q, E ) along [H, 0] calculated using the spin-orbit exciton
model. (b)–(e) Illustration of the effects of spin-orbit coupling α′λ, tetragonal distortion �, next-nearest-neighbor magnetic exchange J2, and
the mean molecular field HMF parameters, respectively, on the total calculated magnetic dynamic structure factor. Unless otherwise stated, the
spin-orbit exciton model’s parameters were fixed to their refined values that are listed in Table III.
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FIG. 5. (a) Comparison of constant energy slices in the (H, K ) plane measured at 5 K by Jain et al. [32] and calculated using the spin-orbit
exciton model with corresponding (Q, E ) slices along the (b) [H ,0], (c) [H, 1

2 ], (d) [H, H ], and (e) [H, H -1] high-symmetry directions. For the
purposes of clarity, the origin in reciprocal space for each (Q, E ) slice has been stated explicitly.

hyperdimensional 10d , d = 5 parameter space, where each
axis corresponds to a linear distribution of 10 values over
a specified range that is roughly centered about the specific
parameter’s initial value. The set of optimized values for these
five parameters that yield the minimum of the 105 solutions
to the least-squares minimization problem was defined as
the parameters’ refined values. The initial values, distribu-
tion ranges in the five-dimensional parameter space, and the
final refined values of the five parameters are summarized in
Table III.

IV. CALCULATED RESULTS

Having established the underlying theoretical foundation
and the corresponding physical parameters that constitute our
model, we now present a direct comparison of the exper-
imental data reported by Jain et al. [32] to our calculated
parametrization based on the spin-orbit exciton approach.

As illustrated in Fig. 3(a), by employing the refined param-
eters in Table III that were obtained through a least-squares
minimization, the spin-orbit exciton model yields two distinct
modes (denoted as L and T ). We note that we will address the
T ′ mode present in Fig. 3 at the end of this section. Figure 4
(a) illustrates that the strongly dispersive low-energy T mode
corresponds to transverse fluctuations along the (a, c) plane
(αβ = +− and −+), while the longitudinal zz fluctuations
along the b axis uniquely constitute the second L mode located
at higher energy transfers. The dispersion relation for both
modes throughout the Brillouin zone presented in Fig. 3(b) are
in excellent agreement with their respective counterparts pre-

viously calculated by Jain et al. [32] applying linear spin-wave
theory to a phenomenological Hamiltonian in the � � λ limit.
As illustrated in Fig. 5, constant energy and (Q, E ) slices
along select high-symmetry directions identified the presence
of minor discrepancies between the calculated model and
experimental data that are predominately limited to a region in
the Brillouin zone between (π, 0) and ( π

2 , π
2 ) along [0,−K]

at energy transfers ∼35–40 meV. Such discrepancies were
previously noted by Jain et al. [32] and it is suspected that
in the case of the current model, this particular discrepancy
may stem from a complex further neighbor exchange that has
not been accounted for in our J (Q) [Eqs. (18) and (19)] which
has been restricted to employing isotropic magnetic exchange
constants that span only over the first two coordination shells
in the (H, K ) plane of the pseudotetragonal unit cell.

The influences of the spin-orbit exciton model’s individ-
ual parameters, each corresponding to physically measurable
quantities, on both the T and L modes are summarized in
Figs. 4(b)–4(e). By defining the splitting in energy between
different jeff manifolds of ĤSO [Fig. 1(b)], α′λ determines
the energy scale of interest. In the case of a fixed value for
α′λ, the magnetic exchange constants J1 and J2 both deter-
mine the modes’ dispersion relation and bandwidth, while
the value of the tetragonal distortion � dictates the gap in
energy between the T and L modes. In the case of �, a
positive value yields an L mode higher in energy relative to T ,
while a negative value simply reverses the order. Finally, for
fixed values of α′λ, �, J1, and J2, the magnitude and sign of
the mean molecular field HMF determines the separation and
relative order in energy, respectively, between the individual
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components (+− and −+) that constitute the transverse T
mode.

As summarized in Table III, the refined values for four
(out of the five) parameters: α′λ, �, J1, and J2 are in
good agreement with their initial values. While the re-
fined value of 39(4) meV for α′λ agrees within error
with the value previously deduced from Resonant inelastic
x-ray scattering (RIXS), the slight deviation of the re-
fined tetragonal distortion parameter � of 19(2) meV from
its initial value of 14.9 meV may be attributed to the
oversimplification of the reported [14] monoclinic distortion
into one that is bound uniaxially along c. In the case of the
magnetic exchange constants, J1 and J2, both the magnitude
and sign of their refined values agree with their respec-
tive initial values. With refined values J1 = 1.88 meV >

|J2 = −0.425| meV, mean-field theory suggests that Ca2RuO4

would assume antiferromagnetic long-range order at TN ∼
2
3 S(S + 1){4J1 + 4J2} = 108(2) K, all consistent with both
previously reported physical property and neutron-diffraction
measurements [6,8,9,14,80]. Intuitively, the presence of long-
range antiferromagnetic order in Ca2RuO4 at first appears
somewhat perplexing considering the presence of a jeff = 0
singlet ground state for ĤSO. An explanation for the apparent
contradiction is the presence of a tetragonal distortion that en-
ables coupling and admixture between higher lying spin-orbit
manifolds and the singlet ground state. Furthermore, with a
value for the tetragonal distortion parameter � = 19(2) meV
being smaller than the energy scales of interest defined by
α′λ, the spectrum would appear to originate from a system
consisting of a nondistorted jeff = 0. This seemingly nonmag-
netic singlet ground state would be consistent with the refined
value of HMF = 0 meV instead of the initial mean-field value
listed in Table III that was obtained from the Curie-Weiss
temperature θCW.

It was this presence of a jeff = 0 singlet ground state that
made Ca2RuO4 such an attractive candidate in the search
of a condensed-matter analog of the much-celebrated Higgs
mode [81]. As was previously determined in the original study
by Jain et al. [32], our spin-orbit exciton model produced
a longitudinally polarized L mode that remains well-defined
throughout the Brillouin zone [Figs. 3(a) and 3(b)]. Possess-
ing 33(5)% of the intensity of the corresponding transverse
mode at Q = (0, 0) [Fig. 3(c)], this L mode corresponds to
amplitude fluctuations of the magnetic moment of a system of
interacting spins that is located near a quantum critical point,
consistent with what one would expect for the Higgs mode.

The importance for the presence of the Higgs mode analog
in a condensed-matter system is that it provides a unique
platform in the study of the decay processes of a particle (and
its properties through inference) that has been postulated to
play a key role in the determination of masses in the Standard
model. According to earlier theoretical treatments, it has been
postulated that the Higgs mode decays into a pair of Goldstone
modes [82,83]. To pursue such a possibility, the kinematically
accessible phase space permitted for such a decay process
was calculated based on energy and momentum conservation
given by [84–86]

G(Q, E ) =
∑

Q1,Q2

δ(Q − Q1 − Q2)δ(E − EQ1 − EQ2 ),

FIG. 6. Comparison of the dispersion relation calculated using
the spin-orbit exciton model (red) and spin-wave theory [32] employ-
ing Ĥphen (black) with the kinematically permissable (Q, E ) region
for the two-magnon continuum. Envelope function surrounding mul-
timagnon points serves as a guide to the eye.

where EQ1,2 are the energies of transverse excitations at a given
momentum transfer Q. As illustrated in Fig. 6, the kinemati-
cally allowed region overlaps in both momentum and energy
with the antiferromagnetic wave vector (π, π ). The predicted
overlap naturally lends itself to the possibility of coupling
between the Higgs L mode and the multimagnon continuum.
Such coupling was required in the previous theoretical treat-
ment to address the broad scattering that was experimentally
observed at (π, π ), yet clearly absent at (0,0).

As illustrated in Fig. 7, the extension of the spin-orbit
exciton model to higher energy transfers (E � 0.1 eV) identi-
fied an additional transverse mode centered at E ∼ 116 meV.
Corresponding to dipolar forbidden jeff = 0 → jeff = 2 tran-
sitions, the minimally dispersive mode exhibits an intensity
three orders of magnitude lower than the corresponding T
mode at lower energy transfers. We note that while this mode
is dipolar forbidden in the case of a perfect octahedral field,
its corresponding transition is allowed in the case of Ca2RuO4

owing to the presence of a weak structural distortion. Such a
spin-orbital excitonic origin is consistent with previous theo-
retical approaches [35,87] addressing a minimally dispersive
mode of magnetic origin that was measured at approximately
the same energy transfer [Fig. 7(c)] with both RIXS and
Raman spectroscopy.

We now shift the discussion to address the additional trans-
verse T ′ mode present in Fig. 3. Despite all the success of
the spin-orbit exciton model to account for the experimental
data presented so far [Figs. 3(a), 3(b) and 5], constant-Q cuts
[Fig. 3(c)] revealed that the combined intensities of the L
and T modes alone could not account for all the scattering
intensity that was observed experimentally. Closer inspection
of the unpolarized and polarized inelastic spectra previously
measured on ARCS and PUMA [32], respectively, revealed
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FIG. 7. (a) Magnetic dynamic structure factor S(Q, E ) of
Ca2RuO4 calculated using the spin-orbit exciton model in the T →
0 K limit exhibits a high-energy mode (E ∼ 116 meV) associated
with the dipolar forbidden jeff = 0 → 2 transition. (b) Q-integrated
cuts at various high symmetry points throughout the Brillouin zone
reveal that the mode is minimally dispersive, (c) in close agreement
with a spin-orbital excitation previously measured with RIXS [35].

that the discrepancy in intensity was limited to transverse
fluctuations and were extended throughout the Brillouin zone
with energy transfers other than the T and L modes, includ-
ing the presence of additional weak scattering present at the
antiferromagnetic center (π, π ), confirming the need for an
additional transverse mode, termed T ′, that is absent in the
spin-orbit exciton model.

The particular mode is weak in intensity, where its pres-
ence at both low-energy and high-energy transfers in Fig. 5
was concealed by the dominant T and L modes, respectively.
Possessing both an identical energy bandwidth and clear sim-
ilarities to the dispersion relation exhibited by the T mode
throughout the entire Brillouin zone, the mode in question
is consistent with one that originates from backfolding onto
the first Brillouin zone, as originally proposed by Jain et al.
[32]. Figure 8 illustrates that backfolding yields a mode whose
dispersion along �(π,π ) → M(π,0) is replaced by �(0,0) →
M(π,0) (and vice versa), the dispersion along �(0,0) → �(π,π ) is
reversed, while the dispersion along M(π,0) → X( π

2 , π
2 ) is unaf-

fected. Such a mode is illustrated in Fig. 3(b), demonstrating
clear agreement with the dispersion relation reported in the
experimental data, supporting the attribution of the T ′ mode to
backfolding. By considering the scattering intensity of the T ′
mode as originating from a reciprocal unit cell that is identical
to that illustrated in Fig. 2, but whose nuclear zone center co-
incides with �(π,π ), the spin-orbit exciton model accounts for
a significant portion of the intensity deficiency first identified
in Fig. 3(c).

V. DISCUSSION AND CONCLUDING REMARKS

To summarize, by extending previous theoretical ap-
proaches [36,37], we have established the theoretical frame-
work for a spin-orbit exciton model that accounts for the
low-energy magnetic excitations in the layered perovskite
Ca2RuO4. In particular, the model successfully reproduces the
longitudinal Higgs excitation. This mode has been theoreti-
cally predicted near quantum critical points in bilayer magnets
[88] and has been experimentally identified in a plethora
of systems spanning condensed-matter physics including

FIG. 8. (a) Effective (second) Brillouin zone (b) backfolded onto the first Brillouin zone demonstrates that �(π,π ) → M(π,0) (blue) in the
second Brillouin zone is symmetrically equivalent to �(0,0) → M(π,0) (green) in the first Brillouin zone, �(0,0) → �(π,π ) (brown) is reversed,
while M(π,0) → X( π

2 , π
2 ) (gray) is unaffected. (c) New high-symmetry directions between high-symmetry points of the antiferromagnetic

reciprocal unit cell (red) that has been symmetrized with respect to the square lattice (black) and whose zone center is now at �(π,π ). Colors in
(b) and (c) illustrate the relationship between specific dispersion relations for T and T ′ modes.
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dimerized TlCuCl3 near a pressure-induced quantum critical
point [89,90] and in superconductors [91,92] including 2H-
NbSe2 [93].

In contrast to conventional pseudobosonic approaches that
employ the Holstein-Primakoff transformation [94], the spin-
orbit exciton approach presented here employs a minimalist
Hamiltonian [Eq. (3)], enabling not only the explicit but also
equal weighted incorporation of the individual contributions
to the crystalline electric field with magnetic superexchange.
As illustrated in Fig. 4, a clear advantage for such an approach
is that it facilitates the quantization of the influences for each
individual contribution. By understanding how each term in
the Hamiltonian influences the excitation spectrum, the spin-
orbit exciton model represents a tool that may be used to
identify possible candidates possessing the appropriate con-
ditions to host exotic excitations, such as the Higgs mode.

In the case of the longitudinally polarized Higgs mode, its
existence is precluded when no orbital degree of freedom is
present, such as is the case for S = 5

2 in an undistorted octa-
hedral weak ligand field. In this case, orthogonality ensures
that matrix elements of the form 〈|Ĵz|〉 are zero, and thus by
Eq. (9), ensuring gzz is zero as well. In the case of Ca2RuO4,
an orbital degree of freedom is introduced in the spin-orbit
exciton model by spin-orbit coupling ĤSO [Eq. (14)], enabling
mixing of the crystalline electric-field eigenstates. Such an
effect can be rationalized by noting that the inclusion of a
l̂ · Ŝ term in the total magnetic Hamiltonian Ĥ results in a
nonzero [Ŝz, Ĥ], and by the Heisenberg equation-of-motion,
〈Ŝz〉 is not conserved, providing the possibility of a longitu-
dinal mode to exist. Even in the case that the zz mode does
exist, its dispersion is not necessarily unique compared to its
transverse +− and −+ counterparts, as is the case for an
undistorted octahedral ligand field. As summarized in Fig. 4,
it is the introduction of a uniaxial distortion Ĥdis [Eq. (18)]
along z that results in the separation of the zz mode from
the transverse modes, with the sign of � determining the
relative order in energy. This term in the Hamiltonian also
controls the magnetic anisotropy which has been suggested
to be important for stabilizing the Higgs mode [95].

In addition to a structural distortion Ĥdis, another contri-
bution that has a particularly strong influence on the relative
separation between the longitudinal and transverse branches is
the molecular mean field. Having a disproportionately larger
influence on the transverse +− and −+ modes relative to
their longitudinal counterpart, the value and sign of ĤMF

[Eq. (4)] determines the relative separation of the two trans-
verse modes. An interesting result is that the least squares
optimization of the spin-orbit exciton model yielded a zero
molecular field HMF(i) for all sites i. This is consistent with
the single-ion prediction of a jeff = 0 ground state, but is not
consistent with the presence of an ordered magnetic moment
characterized by a magnetic Bragg peak in the neutron scatter-
ing response [14,16,32]. This discrepancy can be reconciled
by noting that the value of molecular field was determined
by fitting excitations with energies equal or greater than the
distortion energy, and thus, at the energy transfers of interest,
Ca2RuO4 could be approximated as a pure jeff = 0 magnet.
One possible origin for the presence of an elastic Bragg peak
in the neutron response despite a singlet ground state is the
reported [14] presence of a prominent distortion of the local

octahedral coordination environment. However, other theoret-
ical ideas have been proposed that may also be consistent
with our refinement of the molecular field, including Hund’s
coupling [96] and triplon condensation [97].

In the discussion presented so far, key inferences con-
cerning the properties of the magnetic excitation spectrum
of Ca2RuO4 have been limited to the separate distinct influ-
ences for each of the spin-orbit exciton model’s individual
parameters. By considering a combination of these parame-
ters, inferences with possibly large widespread applicability
may be addressed, with one such example being quantum
criticality. A quantum critical point has been predicted to exist
when the longitudinal response can be driven to zero energy
[98] or when the longitudinal and transverse modes become
degenerate [99]. In such a situation, the spectral weight in
the longitudinal channel would be expected to diverge. This
can also be seen by applying the multimagnon formalism dis-
cussed in the case of classical two-dimensional magnets [84].
As illustrated in Fig. 4, the degeneracy of the longitudinal and
transverse branches occurs in the absence of a distortion away
from an ideal octahedra arrangement, while the shift of the
zz mode to lower energy transfers can be accomplished by an
appropriate ratio of the exchange constants J1, J2 to the spin-
orbit coupling constant λ. Possible mechanisms to achieve
such conditions could involve strain or pressure, whose in-
fluence is not only restricted to the structural distortion of
local coordination octahedra [100] but extends to the magnetic
superexchange constants [101–103].

In conclusion, we have established the theoretical frame-
work for a spin-orbit exciton model where the use of a mini-
malist Hamiltonian enables for the direct and equal weighted
incorporation of the individual contributions to the crystalline
electric field with magnetic superexchange. Such an excitonic
approach was then used to model and understand the magnetic
excitations originating from the coupled spin and crystalline
electric fields of a canonical Van Vleck jeff = 0 ground state
in Ca2RuO4. The anomalous longitudinally polarized Higgs
mode [32], transverse spin-waves [31], and orbital excitations
[35] were successfully captured, and in good agreement with
previously reported neutron and inelastic x-ray spectroscopic
measurements. The framework established here illustrates
how a crystalline electric field-induced singlet ground state
can support coherent longitudinal excitations, and transverse
wavelike dynamics, while providing possible mechanisms for
accessing a nearby quantum critical point.
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