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We present a simple criterion for solvability of lattice spin systems on the basis of graph theory and simplicial
homology. The lattice systems satisfy algebras with graphical representations. It is shown that the null spaces
of adjacency matrices of the graphs provide conserved quantities of the systems. Furthermore, when the graphs
belong to a class of simplicial complexes, the Hamiltonians are found to be mapped to bilinear forms of Majorana
fermions, from which the full spectra of the systems are obtained. In the latter situation, we find a relation
between conserved quantities and the first homology group of the graph, and the relation enables us to interpret
the conserved quantities as flux excitations of the systems. The validity of our theory is confirmed in several
known solvable spin systems including the one-dimensional (1D) transverse-field Ising chain, the 2D Kitaev
honeycomb model, and the 3D diamond lattice model. We also present new solvable models on a 1D trijunction,
2D and 3D fractal lattices, and the 3D cubic lattice.
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I. INTRODUCTION

Exactly solvable models have played important roles in
the understanding of physics in strongly correlated systems.
In particular, exactly solvable lattice spin models have re-
vealed many important phenomena. For instance, solving the
2D Ising model exactly, Onsager [1] showed the presence of
ferromagnetic phase transition in spin systems for the first
time, which is one of the milestones in statistical physics.
Since Onsager’s work, other lattice spin models were solved
exactly, such as the Potts model, the hard-hexagon model,
and so on [2–4]. More recently, exactly solvable models also
have disclosed exotic quantum phases in strongly correlated
systems, such as spin liquid phases with non-Abelian anyon
excitations [5].

Quantum solvable lattice spin models are classified into
three types. The first one has a Hamiltonian of which
terms commute with each other, which includes the two-
dimensional (2D) Kitaev toric code [5,6], the X-cube model
[7,8], and so on. The second one has special symmetries
such as Lie groups or quantum groups. This type includes
the 1D Heisenberg model and the XXZ model [9]. Then,
the last one can be transformed into free-fermion systems.
For instance, both the 1D XY model [10–13] and the 1D
transverse-field Ising model [14–17] can be converted into
free-fermion systems by using the Jordan-Wigner transforma-
tion [18]. Another example is the Kitaev honeycomb lattice
model [5,6,19], which is transformed into a free-fermion sys-
tem by adapting a redundant representation of spins with
Majorana operators. In addition to these, there exist a number
of other models [20–34].

In this paper, we present a simple criterion for the third type
of solvability of lattice spin systems. Our criterion is based
on graph theory and simplicial homology. For a lattice spin

system with an algebra with a graphical representation, we
show that the null space of the adjacency matrix of the graph
provides conserved quantities of the system. Furthermore,
when the graph belongs to a class of simplicial complexes,
we reveal that the Hamiltonian is mapped to a bilinear form of
Majorana fermions, from which the full spectrum of the sys-
tem is obtained. We also find a relation between the conserved
quantities and the first homology group of the graph. Based
on the relation, we interpret the conserved quantities as flux
excitations. We apply our criterion for several known solvable
spin systems including the 1D transverse-field Ising chain, the
1D XY model, the 2D Kitaev honeycomb model, and the 3D
diamond lattice model. We also present new solvable models
on a 1D trijunction, 2D and 3D fractal lattices, and the 3D
cubic lattice.

The rest of this paper is organized as follows. In Sec. II, we
present the main results. We introduce lattice models which
satisfy a class of algebras. Representing the algebra in the
form of a graph, we present theorems that give the criterion of
solvability in terms of graph theory and simplicial homology.
In Sec. III, we illustrate our criterion by applying it to the 1D
transverse-field Ising model, the XY model, the Kitaev honey-
comb model, and so on. We also provide new solvable models
in Sec. IV. In Sec. V, we present proofs of the theorems in
Sec. II. Finally, we give a discussion in Sec. VI.

II. MAIN RESULTS

First, we present our main results in this paper, which are
summarized in three theorems. The proofs of these theorems
will be given in Sec. V.

In this paper, we consider a class of Hamiltonians H that
satisfy the following properties:
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(a) H has the form of H = ∑n
j=1 λ jh j with coefficients

λ j ∈ R and operators h j ( j = 1, . . . , n).
(b) The operators h j obey h2

j = 1, h†
j = h j , and h jhk =

ε jkhkh j with εi j = ±1.
The second property requires that hj’s commute or an-

ticommute with each other. The operators hj generate an
algebra A on C, which we call the bond algebra (BA)
[30,35,36]. To represent the BA A visually, we introduce a
graph G(A) as follows:

(a) Put n vertices in general position and place hi on the ith
vertex.

(b) When hi and h j anticommute (commute) with each
other, we draw (do not draw) a line between the vertices with
h j and hk .

The resulting graph compactly encodes the information of
the commutativity among h j’s. We refer to the graph G(A) as
a commutativity graph (CG) [37] of A. The CG G(A) has an
algebraic representation with an adjacency matrix M(A). The
adjacency matrix M(A) is a real symmetric n × n matrix of
which elements indicate whether pairs of vertices are adjacent
or not in G(A): The diagonal elements of M(A) are zero,
and the (i, j) component is chosen to be 1 (0) if the ith and
jth vertices in G(A) are connected (not connected) by a line.
The multiplication and the addition for M(A) are defined as
a matrix on the binary field F2, i.e., a matrix with entries
0 or 1, which satisfy 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and
1 + 1 = 0.

Using M(A), we present our first main result. A product
hj1 h j2 · · · h jk conserves if it commutes with any h j in H . We
find that such conserved quantities in A can be counted by
using the adjacency matrix M(A). More precisely, we have
Theorem 1:

Theorem 1. Let A be the BA of a Hamiltonian H =∑n
j=1 λ jh j , G(A) be the corresponding CG of A, and M(A)

be the adjacency matrix of G(A). Then, the dimension of
the kernel space of M(A) coincides with the total number of
conserved quantities in the form of h j1 · · · h jk .

Here, the kernel space (or null space) of M(A) is defined
by

kerM(A) = {v ∈ Fn
2 ; M(A)v = 0}. (1)

As is shown in Sec. V, we can construct the conserved quan-
tities from an element v of kerM(A): Let v(hj ) be the unit
vector on F2 having a nonzero element only in the jth compo-
nent,

v(h j ) = (0 · · · 0 1 0 · · · 0)T
. (2)

We can uniquely decompose v ∈ kerM(A) in the form of

v = v(hl1 ) + v(hl2 ) + · · · + v(hlm ). (3)

Then, hl1 hl2 · · · hlm is a conserved quantity of H .
The CG also enables us to characterize the BA geometri-

cally. For this purpose, we adapt the notion of the simplex: A
d-simplex is a d-dimensional polyhedron having the minimal
number of vertices, namely, d + 1 vertices. For instance, a
0-simplex is a vertex, a 1-simplex is a line, a 2-simplex is a
triangle, a 3-simplex is a tetrahedron, and so on. In partic-
ular, we consider a special set of simplices, which we call
point-connected simplices: Let us consider a set of simplices

FIG. 1. A single-point-connected simplicial complex. Two 3-
simplices (dark brown tetrahedrons), two 2-simplices (light brown
triangles), and three 1-simplices (black lines) are connected only by
vertices.

S = {s1, . . . , sm} and let V be a set consisting of all vertices
of sα ∈ S (α = 1, . . . , m). Then, we call S point connected
if S is connected and any pair of sα, sβ ∈ S (α �= β) having
a nonempty intersection shares only a single vertex v ∈ V
(namely, sα ∩ sβ = {v}). Furthermore, we call S single-point
connected if any vertex v ∈ V is shared by at most two dif-
ferent sα’s. Adding all faces of sα ∈ S (α = 1, . . . , m) into S,
we obtain a simplicial complex K (S), which we dub a single-
point-connected simplicial complex (SPSC). See Fig. 1. Now
we describe Theorem 2.

Theorem 2. Let A be the BA of a Hamiltonian H =∑n
j=1 λ jh j and G(A) be the corresponding CG of A. If G(A)

coincides with a SPSC K (S) with S = {s1, . . . , sm}, then H
is written by a bilinear form of m Majorana operators. In
particular, h j is recast into

h j = −iεαβϕαϕβ, εαβ = ±1, (4)

where ϕα are Majorana operators with the Hermiticity ϕ†
α =

ϕα and the anticommutation relation {ϕα, ϕβ} = 2δα,β .
Remarks are in order. (i) Without loss of generality, we can

assume that any vertex v of sα ∈ S is shared by another sβ ∈ S
(β �= α): If not, we can add v itself into S as a 0-simplex to
meet the assumption. (ii) Under this assumption, the Majorana
operator ϕα in Theorem 2 can be assigned to the simplex
sα ∈ S. Then, ϕα and ϕβ in Eq. (4) are given by those on the
simplices that share the vertex with hj . (iii) The sign factors
εαβ in Eq. (4) are determined as follows. First, we use a sign
ambiguity in Majorana operators: We can multiply ϕα by −1
without changing the (anti-)commutation relations between
them. Using this gauge transformation, we can change the
m − 1 relative signs between ϕα , which enables us to erase
m − 1 εαβ’s. There still, however, remain n − m + 1 εαβ’s.
The following theorem, Theorem 3, tells us that these remain-
ing sign factors are determined by conserved quantities.

Theorem 3. Let A be the BA obeying the same assumption
as in Theorem 2. Then, K (S) has independent n − m + 1
noncontractible loops as a simplicial complex on F2. Corre-
spondingly, there exist n − m + 1 conserved quantities that
determine the remaining n − m + 1 sign factors.

It should be noted here that for each noncontractible loop,
there remains a sign factor that cannot be removed by the
gauge transformation. To count the number of independent
noncontractible loops in K (S), we calculate the homology
group Hq(K (S)) of K (S). As we shall show in Sec. V, a
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TABLE I. Relations between the original model, the commutativity graph (CG), the single-point-connected simplicial complex (SPSC),
and the free-fermion representation.

Original model ⇔ CG M(A) ⊃ SPSC K (S) ⇔ Free-fermion representation

hj ⇔ vertex v ∈ sα ∩ sβ ⇔ −iεαβϕαϕβ

{hi, hj} = 0 ⇔ line
clique ⇔ sα ∈ K (S) ⇔ Majorana operator ϕα

[h, H ] = 0 ⇔ kerM(A) ⊃ H1(K (S)) ⇔ flux ε

straightforward calculation shows that Hq�2(K (S)) = 0 and
dimH1(K (S)) = n − m + 1 when K (S) is a SPSC. The latter
result implies that K (S) has n − m + 1 independent noncon-
tractible loops. We also find that each loop gives a conserved
quantity: If we take noncontractible loops that are as small
as possible, then the product of all hj’s on each loop gives a
conserved quantity. Furthermore, we find that the conserved
quantity reduces to the sign factor on the loop by rewriting it
in terms of Majorana fermions in Eq. (4).

Theorems 2 and 3 imply that H is solvable as a free
Majorana system: We can obtain the full spectrum of H just
by diagonalizing the free Majorana Hamiltonian.

We summarize the relation between the original spin
model, the CG, the SPSC, and the free-fermion representation
in Table I.

III. APPLICATIONS TO KNOWN SOLVABLE MODELS

In this section, we apply our theory to known solvable
models, which confirms the validity of our criterion. There are
also a lot of solvable lattice models by our method. For exam-
ple, we have checked our method in models in Refs. [17,19–
21,30–34].

A. Transverse-field Ising model and related models

First, we examine a class of spin models obeying the fol-
lowing BA with n = 2N :

h2
j = 1, {h j, h j+1} = 0,

[h j, hk] = 0 ( j �= k ± 1). (5)

In the periodic boundary condition h2N+1 = h1, the CG of
this algebra is a circle in Fig. 2. The corresponding adjacency
matrix is given by

M(A) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1
1 0 1 0

1 . . .
. . .

. . .
. . . 1

0 1 0 1
1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

For N � 2, the kernel space of M(A) has the dimension 2,
which is spanned by (1, 0, 1, 0, . . . )T and (0, 1, 0, 1, . . . )T .
Therefore, from Theorem 1, we have two conserved quanti-
ties;

c1 = h1h3 · · · h2N−1, c2 = h2h4 · · · h2N . (7)

Indeed, we can easily check that c1 and c2 commute with any
h j . We also find that the CG in Fig. 2 is a SPSC. Applying

Theorem 2, we can rewrite h j in the form of

h j = −iε jϕ j−1ϕ j, (8)

where ϕ j is a Majorana operator and ε j = ±1. Then, almost
all ε j’s can be erased by redefining ϕ j as ϕ j → ε−1

j ϕ j ( j =
1, . . . , 2N − 1), and after this, we obtain

hj = −iϕ j−1ϕ j ( j = 1, . . . , 2N − 1),

h2N = −iεϕ2N−1ϕ2N . (9)

The remaining ε in Eq. (9) is determined by c1c2,

ε = −c1c2. (10)

The sign factor (−1)Nε corresponds to the π flux through the
hole of the CG in Fig. 2 [38].

In the open boundary condition, the CG is a line, and M(A)
becomes

M(A) =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 · · ·
1 0 1 0 · · ·
0 1 0 1 · · ·
0 0 1 0 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠, (11)

of which the kernel is dimension 0 for n = 2N . Now no
conserved quantity is obtained, and thus ε = 1. In particular,
in this case, our method naturally reproduces the Jordan-
Wigner transformation [16]. We can transform M(A) into the

FIG. 2. The CG of Eq. (5). The periodic boundary condition
h2N+1 = h1 is imposed.
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following form:

QT M(A)Q =

⎛
⎜⎜⎜⎜⎝

0 1 1 1 · · ·
1 0 1 1 · · ·
1 1 0 1 · · ·
1 1 1 0 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠, (12)

where Q is given by

Q =
∏

p

P[p,p+1] =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 · · ·
0 1 1 1 · · ·
0 0 1 1 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠, (13)

where P[p,q] is an elementary matrix with the (i, j) compo-
nent P[p,q]

i j = δi j + δipδ jq. As we shall show in Sec. V, P[p,q]

induces a map

{. . . hp, . . . , hq, . . .} �→ {. . . hp, . . . , hphq, . . .}, (14)

and thus Q gives a new basis

e j = h1h2 · · · h j . (15)

The commutation relations in QT M(A)Q are eie j = −e jei for
all i �= j, those of the Clifford algebra. Introducing the initial
operator h0 that obeys h2

0 = −1, {h0, h1} = 0, and [h0, h j] = 0
( j �= 1) and defining ϕ j as

ϕ j = i j−1h0h1h2 · · · h j, (16)

we reproduce Eq. (9) with ε = 1. Equation (16) is an algebraic
generalization of the Jordan-Wigner transformation [16]. Ac-
tually, in the case of the transverse Ising chain below, by
taking the initial operator as h0 = iσ x

1 , Eq (16) reproduces the
original Jordan-Wigner transformation.

For simplicity, we only consider the periodic boundary
condition below.

1. Transverse-field Ising chain

The Hamiltonian of the transverse-field Ising chain is given
by

H = −J
N∑

j=1

σ x
j σ

x
j+1 − h

N∑
j=1

σ z
j , (17)

where J is the exchange constant and h is a transverse mag-
netic field. From Eq. (17), the generator of the BA reads

h2 j−1 = σ z
j , h2 j = σ x

j σ
x
j+1, (18)

which satisfies Eq. (5). The conserved quantities in Eq. (7) are
given by

c1 =
N∏

j=1

σ z
j , c2 = 1, (19)

and thus the sign factor in Eq. (10) is

ε = −
N∏

j=1

σ z
j . (20)

From Eq. (9), the Hamiltonian is recast into

H = h
N∑

j=1

iϕ2 j−2ϕ2 j−1 + J
N−1∑
j=1

iϕ2 j−1ϕ2 j

+Jiεϕ2N−1ϕ2N , (21)

which reproduces the result in Ref. [16].

2. Orbital compass chain

Another model obeying Eq. (5) is the orbital compass chain
[30,39],

H = −Jx

N∑
j=1

σ x
2 j−1σ

x
2 j − Jy

N∑
j=1

σ
y
2 jσ

y
2 j+1, (22)

where Eq. (5) is obtained by the following identification:

h2 j−1 = σ x
2 j−1σ

x
2 j, h2 j = σ

y
2 jσ

y
2 j+1. (23)

The conserved quantities c1 and c2 in Eq. (7) become

c1 =
2N∏
j=1

σ x
j , c2 =

2N∏
j=1

σ
y
j , (24)

and thus ε in Eq. (10) is

ε = (−1)N+1
2N∏
j=1

σ z
j . (25)

In terms of Majorana operators, H in Eq. (22) is given by

H = Jx

N∑
j=1

iϕ2 j−2ϕ2 j−1 + Jy

N−1∑
j=1

iϕ2 j−1ϕ2 j

+ Jyiεϕ2N−1ϕ2N , (26)

which coincides with Eq. (21) if we identify Jx and Jy with
h and J . Therefore there is a one-to-one correspondence be-
tween the spectrum of the orbital compass chain and that of
the transverse-field Ising chain.

On the other hand, there exist additional degeneracies in
the orbital compass chain. First, c2 in Eq. (24) can be ±1,
which gives twofold degeneracy of each state. Moreover, we
also have additional 2N -fold degeneracy. This originates from
the mismatch between the original spin degrees of freedom
and the transformed Majorana degrees of freedom: The origi-
nal spin space is 22N dimensional, while the space of Majorana
fermions is 2N dimensional. Correspondingly, there are addi-
tional conserved quantities d j ( j = 1, . . . , 2N) which cannot
be written by h j ,

d2 j−1 = σ
y
2 j−1σ

y
2 j, d2 j = σ x

2 jσ
x
2 j+1. (27)

They satisfy the same BA as h j ;

d†
j = d j, d2

j = 1, {d j, d j+1} = 0,

[d j, dk] = 0 ( j �= k ± 1), (28)

and thus these operators are equivalent to 2N Majorana
fermions. As a result, they generate additional 2N -fold degen-
eracy.
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FIG. 3. The CG of Eq. (29).

B. XY model and related models

Let h j , h′
j , and g j ( j = 1, . . . , 2N) be Hermitian operators

obeying

h2
j = (h′

j )
2 = g2

j = 1, {h j, h j+1} = {h′
j, h′

j+1} = 0,

{h j, g j} = {h′
j, g j} = {h j+1, g j} = {h′

j+1, g j} = 0, (29)

where the other relations are commutative and the periodic
boundary condition is assumed,

hi+2N = hi, h′
i+2N = h′

i, gi+2N = gi. (30)

This algebra defines a class of models with the CG in Fig. 3.
The dimension of the kernel space of the adjacency matrix is
2N + 2, and we have 2N + 2 conserved quantities:

ch = h1 · · · h2N , ch′ = h′
1 · · · h′

2N , cg = g1 · · · g2N ,

c j = g j−1h′
jg jh j ( j = 1, . . . , 2N ), (31)

which satisfy

chch′c1 · · · c2N = 1. (32)

Since the CG in Fig. 3 is a SPSC, the operators in Eq. (29) can
be written by Majorana operators. Using the sign ambiguity
(gauge degrees of freedom) of Majorana operators, we have

h j = −iϕ j−1ϕ j, h′
j = −iϕ′

j−1ϕ
′
j,

g j = −iε jϕ jϕ
′
j ( j = 1, . . . , 2N − 1),

h2N = −iεϕ2N−1ϕ2N , h′
2N = −iε′ϕ′

2N−1ϕ
′
2N ,

g2N = −iϕ2Nϕ′
2N , (33)

where ϕi and ϕ′
i are Majorana operators. The sign factors ε j , ε,

and ε′ are determined by the conserved quantities in Eq. (31),

ε j =
j∏

k=1

ck, ε = (−1)N ch, ε′ = (−1)N ch′ . (34)

1. XY model

As a prime example of models with the CG in Fig. 3, we
consider the XY model,

H = −J
2N∑
i=1

{(1 + γ )σ x
i σ x

i+1 + (1 − γ )σ y
i σ

y
i+1} − h

2N∑
i=1

σ z
i ,

(35)

where J is the exchange constant, γ is the asymmetric
parameter, and h is a magnetic field. Actually, with the

identification

h2 j−1 = σ x
2 j−1σ

x
2 j, h2 j = σ

y
2 jσ

y
2 j+1,

h′
2 j−1 = σ

y
2 j−1σ

y
2 j, h′

2 j = σ x
2 jσ

x
2 j+1,

g j = σ z
j+1, (36)

we reproduce the BA in Eq. (29). In this model, the conserved
quantities obey

c1 = · · · = c2N = 1, ch = c′
h = −cg = −

2N∏
j=1

σ z
j , (37)

and thus we have

ε j = 1, ε = ε′ = (−1)N+1
2N∏
j=1

σ z
j . (38)

Therefore Eq. (33) leads to

H = iJ
N∑

j=1

{
(1 + γ )(ϕ2 j−2ϕ2 j−1 + ϕ′

2 j−1ϕ
′
2 j )

}

+ iJ
N∑

j=1

{
(1 − γ )(ϕ2 j−1ϕ2 j + ϕ′

2 j−2ϕ
′
2 j−1)

}

+ ih
2N∑
j=1

ϕ jϕ
′
j

− iJ (1 − ε){(1 + γ )ϕ2N−1ϕ2N + (1 − γ )ϕ′
2N−1ϕ

′
2N }.

(39)

Equation (39) reproduces the known fermion representation
of the XY model: Introducing the fermion operators aj as

ϕ2 j−1 = u2 j−1(a2 j−1 + a†
2 j−1),

ϕ′
2 j−1 = iu2 j−1(a2 j−1 − a†

2 j−1),

ϕ2 j = −iu2 j (a2 j − a†
2 j ),

ϕ′
2 j = u2 j (a2 j + a†

2 j ), (40)

with u j = (−1) j( j−1)/2, we obtain

H = − 2J
2N−1∑

j=1

[(a†
j a j+1 + a†

j+1a j ) + γ (a†
j a

†
j+1 + a j+1a j )]

− 2h
2N∑
j=1

(
a†

j a j − 1

2

)

+ 2Jcg[(a†
j a j+1 + a†

j+1a j ) + γ (a†
j a

†
j+1 + a j+1a j )],

(41)

which is the same fermion representation as in Ref. [12].
We note that Ref. [35] discussed a bond-algebraic map in

the XY model to show the self-duality, but our bond algebra in
Eq. (29) is different from that in Ref. [35] and contains more
generators.
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2. Ladder model

The second example is the ladder model [40],

H = − Jt

N∑
j=1

(
σ x

2 j−1σ
x
2 j + σ

y
2 jσ

y
2 j+1

)

− Jb

N∑
j=1

(
τ x

2 j−1τ
x
2 j + τ

y
2 jτ

y
2 j+1

)

− J⊥
2N∑
j=1

(
σ z

j τ
z
j

)
, (42)

where Jt (Jb) is the intraexchange constant between top
(bottom) spin chains and J⊥ is the interexchange constant
between top and bottom chains. This model gives

h2 j−1 = σ x
2 j−1σ

x
2 j, h2 j = σ

y
2 jσ

y
2 j+1,

h′
2 j−1 = τ x

2 j−1τ
x
2 j, h′

2 j = τ
y
2 jτ

y
2 j+1,

g j = σ z
j τ

z
j , (43)

which satisfy Eq. (29). In this model, we have

ch = −
2N∏
j=1

σ z
j , ch′ = −

2N∏
j=1

τ z
j , cg = chch′ ,

c2 j−1 = −σ
y
2 j−1σ

y
2 jτ

y
2 j−1τ

y
2 j,

c2 j = −σ x
2 jσ

x
2 j+1τ

x
2 jτ

x
2 j+1, (44)

which lead to

ε2 j−1 = −σ
y
1 τ

y
1

(
2 j−1∏
k=2

σ z
k τ z

k

)
σ

y
2 jτ

y
2 j,

ε2 j = −σ
y
1 τ

y
1

(
2 j∏

k=2

σ z
k τ z

k

)
σ x

2 j+1τ
x
2 j+1,

ε′ = (−1)N+1
2N∏
j=1

σ z
j , ε = (−1)N+1

2N∏
j=1

τ z
j , (45)

where
∏1

k=2 σ z
k τ z

k ≡ 1. The Hamiltonian is equivalent to

H = iJt

2N−1∑
j=1

ϕ j−1ϕ j + iJtεϕ2N−1ϕ2N

+ iJb

2N−1∑
j=1

ϕ′
j−1ϕ

′
j + iJbε

′ϕ′
2N−1ϕ

′
2N

+ iJ⊥
2N−1∑

j=1

ε jϕ jϕ
′
j + iJ⊥ϕ2Nϕ′

2N . (46)

3. Double spin–Majorana coupled model

The third example is the double spin–Majorana coupled
model,

H = − ig
2N∑
j=1

(
γ jσ

x
j γ j+1 + γ ′

jτ
x
j γ

′
j+1

)

− J
2N∑
j=1

σ z
j σ

z
j+1τ

z
j τ

z
j+1, (47)

where g and J are real parameters and γ j’s are Majorana
operators. The BA of this model reads

h j = iγ jσ
x
j γ j+1, h′

j = iγ ′
jτ

x
j γ

′
j+1,

g j = σ z
j σ

z
j+1τ

z
j τ

z
j+1, (48)

which reproduces Eq. (29), and we obtain

ch = (−1)N
2N∏
j=1

σ x
j , ch′ = (−1)N

2N∏
j=1

τ x
j , cg = 1,

c j = −σ z
j−1τ

z
j−1σ

x
j τ

x
j σ

z
j+1τ

z
j+1γ jγ

′
jγ j+1γ

′
j+1. (49)

Therefore

ε1 = −σ z
2Nτ z

2Nσ x
1 τ x

1 σ z
2τ z

2γ1γ
′
1γ2γ

′
2,

ε j = −σ z
2Nτ z

2Nσ
y
1 τ

y
1

(
j−1∏
k=2

σ z
k τ z

k

)

×σ
y
j τ

y
j σ

z
j+1τ

z
j+1γ1γ

′
1γ j+1γ

′
j+1 ( j = 2, . . . , 2N − 1),

ε =
2N∏
j=1

σ z
j , ε′ =

2N∏
j=1

τ z
j , (50)

where
∏1

k=2 σ z
k τ z

k ≡ 1. The Hamiltonian is recast into

H = ig
2N−1∑

j=1

(ϕ j−1ϕ j + ϕ′
j−1ϕ

′
j )

+ ig(εϕ2N−1ϕ2N + ε′ϕ′
2N−1ϕ

′
2N )

+ iJ
2N−1∑

j=1

ε jϕ jϕ
′
j + iJϕ2Nϕ′

2N . (51)

In a manner similar to the orbital compass chain in
Sec. III A, this model hosts additional degeneracies origi-
nating from the mismatch between the original degrees of
freedom and the transformed Majorana ones: It is found
that the operators d j and d ′

j ( j = 1, . . . , 2N) commute with
h j, h′

j, g j ,

d j = σ z
j−1γ jσ

z
j , d ′

j = τ z
j−1γ

′
jτ

z
j , (52)

which satisfies

{d j, dk} = {d ′
j, d ′

k} = 2δ j,k, {d j, d ′
k} = 0. (53)

Thus each state of this model has 22N -fold degeneracy.

C. Kitaev honeycomb lattice model

The Kitaev honeycomb lattice is described by the following
Hamiltonian with the nearest-neighbor spin couplings:

H = − Jx

∑
x links

σ x
j σ

x
k − Jy

∑
y links

σ
y
j σ

y
k

− Jz

∑
z links

σ z
j σ

z
k , (54)

where the orientation of the x, y, and z links is indicated in
Fig. 4. Each term of Eq. (54) anticommutes or commutes with
each of the others, and thus it defines the BA. The CG of this
model is the kagome lattice in Fig. 5. The kagome lattice is

245118-6



GEOMETRIC CRITERION FOR SOLVABILITY OF … PHYSICAL REVIEW B 102, 245118 (2020)

FIG. 4. x, y, and z links in honeycomb lattice.

dual to the original honeycomb lattice, and each vertex in the
kagome lattice corresponds to a link in the honeycomb lattice.
We assign an operator

h j,k = σ
μ( j,k)
j σ

μ( j,k)
k (55)

in the BA to each vertex of the kagome lattice, where
μ( j, k) = x, y, z is the spin orientation at the corresponding
( j, k) link in the honeycomb lattice. The conserved quantities
are

cp =
∏

( j,k)∈∂ p

h j,k, cz =
∏

( j,k):zlink

h j,k, (56)

where p is a hexagon in Fig. 5.
Regarding triangles in Fig. 5 as 2-simplices, the CG can

be identified with a SPSC. Therefore we can apply Theorems
2 and 3 to the Kitaev honeycomb lattice model. The operator
h j,k is converted into a Majorana-bilinear form

h j,k = −iε jkϕ jϕk, (57)

so the Hamiltonian is equivalent to

H =
∑
〈 j,k〉

iJμ( j,k)ε jkϕ jϕk, (58)

where ε jk’s are determined by the conserved quantities in
Eq. (56). This result reproduces that in Ref. [6] and is consis-

FIG. 5. The CG of the Kitaev honeycomb lattice model.

FIG. 6. Diamond lattice. The number at the link indicates the
orientation μ of the gamma matrix in the diamond lattice model.

tent with the bond-algebraic mapping in Ref. [30], although
our derivation is much simpler than these approaches.

D. Diamond lattice model

The diamond lattice is a three-dimensional analog of the
honeycomb lattice [41,42]. We can generalize the Kitaev hon-
eycomb lattice model in three dimensions. The Hamiltonian
is given by

H = −
∑
〈 j,k〉

Jjk
[
α

μ( j,k)
j α

μ( j,k)
k + ζ

μ( j,k)
j ζ

μ( j,k)
k

]
, (59)

where α
μ
j and ζ

μ
j (μ = 1, 2, 3, 4) are two sets of Dirac matri-

ces,

αa
j = σ a

j ⊗ τ x
j , α4

j = σ 0
j ⊗ τ z

j ,

ζ a
j = −σ a

j ⊗ τ z
j , ζ 4

j = σ 0
j ⊗ τ x

j , (60)

where a = 1, 2, 3, j is the site index and μ( j, k) = 1, 2, 3, 4
indicates the orientation of the gamma matrix at the ( j, k) link,
as illustrated in Fig. 6. We assign the operators hj,k and h′

j,k
as

h j,k = α
μ( j,k)
j α

μ( j,k)
k , h′

j,k = ζ
μ( j,k)
j ζ

μ( j,k)
k , (61)

which satisfy

[h j,k, h′
l,m] = 0. (62)

The CGs of hj,k and h′
j,k are two identical pyrochlore lat-

tices in Fig. 7. By regarding tetrahedrons as 3-simplices, the
pyrochlore lattice is identified with a SPSC. From straightfor-
ward calculation, we also find that the conserved quantities in
the two CGs are the same. Therefore we can transform hj,k’s
and h′

j,k’s into Majorana-bilinear forms,

h j,k = −iε j,kϕ jϕk, h′
j,k = −iε j,kϕ

′
jϕ

′
k . (63)

Consequently, the Hamiltonian is converted into

H = i
∑
〈 j,k〉

Jjkε j,k (ϕ jϕk + ϕ′
jϕ

′
k ), (64)
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FIG. 7. The CG of the diamond lattice model with χ = α, ζ .

which reproduces that in Ref. [41].

IV. NEW SOLVABLE MODELS

So far, we have applied our method to known solvable
models. Our approach also provides a powerful method to
construct new solvable models in a variety of lattices. In this
section, we present such new solvable models.

A. Trijunction model

We first consider the transverse-field Ising chains with the
trijunction [43–47]. The Hamiltonian is given by

H = −
3∑

a=1

(
Ja

N−1∑
j=1

σ z
a, jσ

z
a, j+1 + ha

N∑
j=2

σ x
a, j

)

− t12σ
x
1,1σ

z
2,1 − t23σ

x
2,1σ

z
3,1 − t31σ

x
3,1σ

z
1,1, (65)

where Ja and ha are the exchange constant and a magnetic
field of the ath chain and tab are the coupling between the
ath and bth chains. The CG of this model is Fig. 8, where
ha, j ( j = 1, . . . , 2N − 1) is defined by

ha,1 = σ x
a,1σ

z
a+1,1,

ha,2l = σ z
a,lσ

z
a,l+1, ha,2l+1 = σ x

a,l+1. (66)

FIG. 8. The CG of the trijunction model.

FIG. 9. Hanoi graph. x, y, and z on each site denote the spin
orientation of the exchange interaction.

From the adjacency matrix of the CG, we find a conserved
quantity

c = −i
3∏

a=1

N∏
j=1

ha,2 j−1

=
(

3∏
a=1

σ
y
a,1

)(
3∏

a=1

N∏
j=2

σ x
a, j

)
. (67)

The CG in Fig. 8 can be identified with a SPSC consisting
of lines and a triangle. Therefore, applying Theorem 2 to this
model, we have

ha,1 = −iϕa,1ϕ,

ha, j = −iϕa, j−1ϕa, j ( j = 2, . . . , N ). (68)

By using this, the Hamiltonian is recast into the bilinear form
of Majorana operators,

H = i
3∑

a=1

(
Ja

N∑
j=1

ϕa,2 j−1ϕa,2 j + iha

N∑
j=1

ϕa,2 jϕa,2 j+1

)

+ (t12ϕ1,1 + t23ϕ2,1 + t31ϕ3,1)ϕ. (69)

This model hosts implicit conserved quantities that are not
obtained by h j ,

ca = σ z
a−1,1

N∏
j=1

σ x
a, j (a = 1, 2, 3), (70)

which satisfy

[ca, hb, j] = 0, {ca, cb} = 2δa,b, ic1c2c3 = c. (71)

These operators induce additional twofold degeneracy.
By the same method, we can construct an n-junction model

whose junction is an (n − 1)-simplex. We can also design
treelike models by junctions.

B. Hanoi graph model

We can construct solvable models in 2D and 3D fractal
lattices. Let us consider the Hanoi graph in Fig. 9 and place
a spin operator on each site of the Hanoi graph. Then, we
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FIG. 10. Sierpiński gasket.

consider the Hamiltonian

H = − J1σ
z
1

− J12σ
x
1 σ z

2 − J13σ
y
1 σ z

3

− J23σ
y
2 σ x

3 − J24σ
x
2 σ z

4 − J35σ
y
3 σ z

5

− · · · , (72)

where σ
μ
i is the μth Pauli matrix at the ith site in Fig. 9 and Ji j

is the exchange constant. The spin orientation of the exchange
interaction is determined as illustrated in Fig. 9: In the case of
the (1,2) link, for instance, we take σ x and σ z from site 1 and
site 2, respectively.

The CG of this model is the Sierpiński gasket in Fig. 10,
where the operators at vertices are given by

h1 = σ z
1 ,

h1,2 = σ x
1 σ z

2 , h1,3 = σ
y
1 σ z

3 ,

h2,3 = σ
y
2 σ x

3 , h2,4 = σ x
2 σ z

4 , h3,5 = σ
y
3 σ z

5 ,

· · · . (73)

Since the Sierpiński gasket is a SPSC generated by 2-
simplices, the Hamiltonian (72) can be transformed into a
Majorana-bilinear form. Note that the Sierpiński gasket is dual
to the Hanoi graph.

This model has 3D generalization. Instead of the Hanoi
graph, we use the dual lattice of the Sierpiński tetrahedron
in Fig. 11. Placing a spin-4 generator at each site, we can
construct the Hamiltonian of which the CG is the Sierpiński

FIG. 11. Sierpiński tetrahedron.

FIG. 12. Octahedron.

tetrahedron. In the same way as the Hanoi graph, this model
can be transformed into a Majorana-bilinear form.

C. Octahedron model

The dimension of simplices in a SPSC can be higher than
the space dimension. To illustrate this, we consider a spin
model in the cubic lattice. We place an SO(6) spin [i.e., a
spin-6 generator] on each site of the cubic lattice and consider
the nearest-neighbor interaction

H = −1

2

∑
j

3∑
μ=1

Jμγ
μ

j γ
μ+3
j+eμ

− g
∑

j

γ 7
j , (74)

where Jμ is the exchange constant, γ
μ

j is the SO(6) gamma
matrix at the site j, and eμ is the unit vector in the μth
direction. We assign operators

hμ

j = γ
μ

j γ
μ+3
j+eμ

, h′
j = γ 7

j . (75)

The conserved quantities are

cμ,ν

j = hν
j h

μ

j+eν
hν

j+eμ
hμ

j . (76)

The CG of this model is vertex-sharing octahedra with central
vertex, shown in Fig. 12. It is a SPSC since an octahedron with
central vertex is a 6-simplex. Thus we can transform these
operators into

hμ

j = −iεμ

j ϕ jϕ j+eμ
, h′

j = −iϕ jϕ
′
j (77)

and conserved quantities into

cμ,ν

j = εν
j ε

μ

j+eν
εν

j+eμ
ε

μ

j . (78)

Therefore the Hamiltonian is recast into

H = i

2

∑
j

3∑
μ=1

Jμε
μ

j ϕ jϕ j+eμ
+ ig

∑
j

ϕ jϕ
′
j . (79)

In the following discussion, we take g = 0 for simplicity. In
this case, iϕ′

jϕ
′
j+eμ

conserves, which induces additional 2N/2-
fold degeneracy with the number of vertices N . From Lieb’s
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theorem [48], the ground state is realized when

cμ,ν

j = −1. (80)

To accomplish this condition, we set

ε
μ

j =
⎧⎨
⎩

(−1) j2+ j3 (μ = 1)
(−1) j3 (μ = 2)
1 (μ = 3).

(81)

In this case, the Hamiltonian becomes

H = i

2

∑
j

[J1(−1) j2+ j3ϕ jϕ j+e1

+J2(−1) j3ϕ jϕ j+e2

+J3ϕ jϕ j+e3 ]. (82)

To this equation, we perform the Fourier transformation,

ϕ j =
√

2

(2π )3

∫ π

−π

d3 pe−ip· jap, (83)

where

a†
p = a−p, {ap, aq} = δ(p + q). (84)

Then we have

H =
∫ π

0
d3 pA†

pHpAp, (85)

where

Ap =

⎛
⎜⎝

ap

ap−πe2

ap−πe3

ap−πe2−πe3

⎞
⎟⎠, (86)

Hp = 2

⎛
⎜⎝

J3 sin p3 0 J2 sin p2 J1 sin p1

0 J3 sin p3 J1 sin p1 −J2 sin p2

J2 sin p2 J1 sin p1 −J3 sin p3 0
J1 sin p1 −J2 sin p2 0 −J3 sin p3

⎞
⎟⎠.

(87)

By diagonalizing Hp, the quasiparticle spectrum εp is ob-
tained as

εp = 2
√

J2
1 sin2 p1 + J2

2 sin2 p2 + J2
3 sin2 p3, (88)

where the negative-energy states are occupied in the ground
state.

V. PROOFS

Now we prove our main results, Theorems 1–3, given in
Sec. II. To prove Theorem 1, we examine the basic properties
of the CG. Let us consider a transformation of the operators

{. . . hp, . . . , hq, . . .} �→ {. . . hp, . . . , hphq, . . .}. (89)

Corresponding to this transformation, the CG is modified as
follows:

(i) Draw new lines from hphq to all the hk’s that satisfy
hphk = −hkhp.

(ii) If there exist two lines from hphq to hk , these lines
should be eliminated, and there remains no line between hphq

and hk .

Here, rule (ii) corresponds to the fact that when hp and hq

anticommutate with hk , then the product hphq commutes with
hk .

We represent modifications (i) and (ii) in terms of the
adjacency matrix on F2: Let M(A) be the adjacency matrix
of the CG G(A), i.e.,

M(A)i j =
{

0 (hih j = h jhi )
1 (hih j = −h jhi ).

(90)

M(A) is symmetric, and its diagonal elements are all 0. The
multiplication of hp to hq corresponds to the row and column
additions of M(A); that is, the qth row is replaced by the sum
of the qth and pth rows, and the qth column is replaced by
the sum of the qth and pth columns. The row and column
additions are given by

M(A) �→ P[p,q]T M(A)P[p,q], (91)

where P[p,q] is an elementary matrix with the (i, j) component
P[p,q]

i j = δi j + δipδ jq. Here, the rule 1 + 1 = 0 in the matrix
corresponds to rule (ii) above.

We can also represent Eq. (89) using the same elementary
matrix P[p,q]: Let v(h j ) be the unit vector on F2 having a
nonzero element only in the jth component,

v(h j ) = (0 · · · 0 1 0 · · · 0)T
. (92)

Then, we have

P[p,q]v(h j ) =
{
v(hp) + v(hq) for j = q
v(hj ) for j �= q,

(93)

which reproduces Eq. (89) by regarding the addition v(hp) +
v(hq) as the product hphq.

Now consider the following operations on the CG: If there
are vertices hi and h j that are connected to each other with
a line, then multiply hi to all the vertices hk that satisfy
hkh j = −h jhk and multiply h j to all the vertices hk that satisfy
hkhi = −hihk . Then there remains no line beginning from hi

and h j , except a line between hi and h j . As a result, we obtain
a graph consisting only of hi and h j , and a graph with other
vertices. Repeating the same procedure for the latter graph, we
inductively obtain graphs composed of only pairs and those
with isolated vertices.

This modification leads to Theorem 1: After the modifica-
tion of the CG, M(A) is block diagonalized with r/2 number
of blocks with the form (0 1

1 0) and n − r number of blocks
with 0 [49] (r is even). Here, r/2 is the number of the pairs and
n − r is the number of the isolated vertices in the above. Since
r coincides with rank M(A), the number of the pairs is unique.
When h belongs to the kernel of M(A), it is evident that h
commutes with all the hi’s, and hence [H, h] = 0. Conversely,
assume that h = hj1 h j2 · · · h jk satisfies [H, h] = 0. Then, we
find hhi = εihih, εi = +1 or −1, for all hi. If h is a constant, h
generates an isolated vertex and belongs to the kernel. Other-
wise, from the condition [H, h] = 0 and the independence of
hj’s, it is easy to derive that h commutes with all h1,..., hn, and
hence h belongs to the kernel of M(A). Therefore Theorem 1
holds.

By noting that the (0 1
1 0) block and the 0 block correspond

to the Clifford algebras Cl2 and Cl1, respectively, the above
modification process also implies the following proposition:
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Proposition 1. Let A(X ) be the BA generated from
the set of independent operators X and M(A(X )) be
its adjacency matrix. Then, we find A(X ) � (Cl2)r/2 ⊗
(Cl1)n−r , and A(X ) � A(X ′) if and only if rankM(A(X )) =
rankM(A(X ′)).

In particular, when A gives the complete graph with n
vertices, i.e., a graph in which all vertices are connected to
each other, and when we separate a pair of operators in a
manner similar to the above, it is easy to convince ourselves
that the remaining graph with n − 2 vertices becomes again
a complete graph. Iterating this procedure, we finally obtain
n/2 pairs when n is even and obtain (n − 1)/2 pairs and an
isolated vertex when n is odd. The inverse of this modifi-
cation is always possible. Since the complete graph with n
vertices represents the Clifford algebra with n operators Cln,
the rank of the adjacency matrix of the Clifford algebra with
n operators is n when n is even and n − 1 when n is odd.
This corresponds to the known fact that Cl2n � Cl⊗n

2 and
Cl2n+1 � Cl⊗n

2 ⊗ Cl1. Therefore Proposition 1 implies that a
BA A with n operators coincides with the Clifford algebra if
rankM(A) = n [rankM(A) = n − 1] for even (odd) n.

Theorem 2 follows from the fact that hj in Eq. (4) repro-
duces the BA of the CG that coincides with a SPSC: Let
K (S) with S = {s1, . . . , sm} be the SPSC for the BA, and
assign a Majorana operator ϕα on each simplex sα ∈ S. As we
mentioned in remark (i) in Sec. II, without loss of generality,
we can assume that any vertex v of sα ∈ S is shared by another
sβ ∈ S (β �= α). Moreover, only these simplices share v since
S is single-point connected. Under this assumption, we con-
sider h0

j ≡ −iεαβϕαϕβ for the vertex v j with h j , where ϕα and
ϕβ are located on the simplices that share v j . Then, we find
that {h0

i , h0
j } = 0 ([h0

i , h0
j ] = 0) if vi and v j are (not) vertices

of the same simplex. These relations reproduce the BA of the
SPSC, and thus we can identify h0

j with h j .
Finally, we prove Theorem 3. For preparation, we first

show the following lemma:
Lemma 1. Let K (S) with S = {s1, . . . , sm} be a SPSC. Then

we have

Cq(K (S)) = Cq(K (s1)) ⊕ · · · ⊕ Cq(K (sm)) (q � 1), (94)

where Cq is the q-chain on F2 and ⊕ is the direct sum [i.e.,
Cq(K (sα )) ∩ Cq(K (sβ )) = {0} for α �= β]. We also have

Hq(K (S)) = 0 (q � 2). (95)

The proof is as follows: Since K (S) consists of all faces of
s1, . . . , sm, we have

Cq(K (S)) = Cq(K (s1)) + · · · + Cq(K (sm)) (q � 1). (96)

Furthermore, it holds that Cq(K (sα )) ∩ Cq(K (sβ )) = {0} for
α �= β and q � 1 since K (S) is a SPSC. Thus Eq. (94) holds.
Equation (95) immediately follows from Eq. (94): Since the
boundary operator ∂ maps a q-chain to (q − 1)-chain as

∂ : Cq(K (sα )) → Cq−1(K (sα )), (97)

we obtain

Hq(K (S)) = Hq(K (s1)) ⊕ · · · ⊕ Hq(K (sm)) (q � 2), (98)

which turns to be zero because Hq(K (sα )) = 0 (q � 1).

Now we can show that K (S) has n − m + 1 independent
noncontractible loops. Let hj ( j = 1, . . . , n) be the generators
of a BA and S = {s1, . . . , sm} be a set of simplices of which
K (S) is a SPSC of the BA. Consider the Euler characteristic
of χ (K (S)),

χ (K (S)) =
dimK (S)∑

q=0

(−1)q[the number of q-faces in K (S)],

(99)

where a q-face is a q-simplex included in K (S) [namely, a
0-face is a vertex of K (S), a 1-face is a hinge of K (S), and so
on]. In terms of homology groups, χ (K (S)) is also written as
[50]

χ (K (S)) =
dimK (S)∑

q=0

(−1)qdimHq(K (S)). (100)

Since K (S) is connected, we have

dimH0(K (S)) = 1, (101)

and from Lemma 1, it holds that

dimHq�2(K (S)) = 0. (102)

Thus dimH1(K (S)) is evaluated as

dimH1(K (S))

= 1 − χ (K (S))

= 1 −
dimK (S)∑

q=0

(−1)q[the number of q-faces in K (S)].

(103)

We compare this with the Euler characteristic of K (sα ) defined
by

χ (K (sα )) =
dimsα∑
q=0

(−1)q(the number of q-faces in sα ). (104)

As sα is a simplex, we have

χ (K (sα )) = 1, (105)

and thus, summing both sides of Eq. (104) for all sα ∈ S, we
obtain

m =
m∑

α=1

dimsα∑
q=0

(−1)q(the number of q-faces in sα ). (106)

On the other hand, as K (S) is a SPSC, we have

dimK (S)∑
q=0

(−1)q[the number of q-faces in K (S)]

=
m∑

α=1

dimsα∑
q=0

(−1)q(the number of q-faces in sα ) − n.

(107)
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Combining Eqs. (106) and (107) with Eq. (103), we get

dimH1(K (S)) = n − m + 1, (108)

which implies that there exist n − m + 1 noncontractible
loops in K (S).

The n − m + 1 noncontractible loops give n − m + 1 con-
served quantities: For each noncontractible loop, we may
consider a product of hj on all vertices of the loop. Obviously,
such a product will reduce to a constant if we rewrite it in
terms of Majorana fermions of Theorem 2. Thus this product
is conserved, and Theorem 3 holds.

VI. DISCUSSION

In this paper, we present a simple criterion for solvability of
lattice spin systems on the basis of graph theory and simplicial
homology. When the lattice systems obey a class of algebras
with the graphical representations, the spin systems can be
converted into free Majorana fermion systems. We illustrate
the validity of our criterion in a variety of spin systems.

Our method may reveal interesting aspects of lattice spin
systems. After the conversion to Majorana-bilinear forms, the
lattice spin systems exhibit particle-hole symmetry, in a man-

ner similar to superconductors, because of the self-conjugate
property of Majorana fermions. Hence they can be a kind
of topological superconductor [51], although the origin of
particle-hole symmetry is completely different. The Kitaev
honeycomb lattice, for instance, exhibits a 2D non-Abelian
topological phase analog to chiral superconductors, in the
presence of time-reversal breaking perturbation [5]. Our ap-
proach provides a systematic way to explore other interesting
topological superconducting phases in spin systems: 3D non-
Abelian topological phase [52,53], gapless topological phases
[54–57], and topological crystalline superconductors [58,59].
Searching such interesting phases is left for future work.

Note added. Recently, we became aware of a related work
(Ref. [60]).
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