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Role of electron-electron collisions for magnetotransport at intermediate temperatures
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We discuss galvanomagnetic and thermomagnetic effects in disordered electronic systems focusing on inter-
mediate temperatures, for which electron-electron scattering and electron-impurity scattering occur at similar
rates, while phonon-related effects can be neglected. In particular, we explore how electric and thermal currents
driven either by an electric field or by a temperature gradient are affected by the interplay of momentum-
dependent electron-impurity scattering, electron-electron scattering, and the presence of a magnetic field. We
find that the electric resistance, the Seebeck coefficient and the Nernst coefficient are particularly sensitive to
the momentum dependence of the electron-impurity scattering rate at intermediate temperatures. A sufficiently
strong momentum dependence of the electron-impurity scattering rate can induce a sign change of the Seebeck
coefficient. This sign change can be suppressed by a perpendicular magnetic field. The temperature and magnetic
field dependence of the Seebeck coefficient can be used for measuring the magnitude of the electron-impurity and
electron-electron scattering rates. The Nernst coefficient vanishes for momentum-independent electron-impurity
scattering but displays a maximum at finite temperatures once the momentum dependence is accounted for. By
contrast, the Hall coefficient and the Righi-Leduc coefficient display only a weak dependence on the momentum

dependence of the electron-impurity scattering at intermediate temperatures.
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I. INTRODUCTION

Galvanomagnetic and thermomagnetic phenomena in met-
als and semiconductors have been discussed extensively in the
literature when electron-phonon and electron-impurity colli-
sions are the dominant scattering mechanisms [1—4]. Indeed,
elastic electron-impurity scattering events dominate at low
temperatures, when phonons freeze out and inelastic scatter-
ing of electrons off each other becomes ineffective due to the
Pauli-exclusion principle. At elevated temperatures, in turn,
electron-phonon scattering is responsible for the leading tem-
perature dependence of the transport coefficients. In between
these two transport regimes, the influence of electron-electron
collisions on the transport coefficients may become visible.
If the corresponding interval of temperatures is sufficiently
broad, then hydrodynamic behavior can be observed on its up-
per end, once electron-electron scattering occurs much more
frequently than electron-impurity scattering [5—17]. Here, we
are mainly interested in an intermediate temperature regime,
for which these two scattering processes occur at similar rates
[16,18,19].

Throughout the paper, we assume that Umklapp scatter-
ing is prohibited or ineffective. In this case, electron-electron
collisions conserve the total momentum but may still influ-
ence the electric conductivity indirectly via a redistribution
of occupation numbers in momentum space. This redistri-
bution reveals itself in the temperature dependence of the
electric conductivity o, for example, if the electron-impurity
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scattering is momentum dependent [4,20]. The effect is
well illustrated by the two differing results obtained for the
conductivity in the electron-impurity and electron-electron
scattering dominated transport regimes, where o « (z,; ) and
o x(l/ rei,p)’l, respectively [20]. Here, 7, is the electron-
impurity scattering rate, and the angular bracket symbolizes a
(weighted) thermal average. The crossover between these two
limits has also been explored [20]. The combined influence
of electron-electron scattering and momentum-dependent
electron-impurity scattering on other transport coefficients in
the intermediate temperature regime is less understood. Re-
cently, we discussed the thermal and thermoelectric transport
coefficients in this context [19]. We found, in particular, that
the Seebeck coefficient can develop a nonmonotonic temper-
ature dependence accompanied by a sign change under the
influence of the two scattering processes. Here, we generalize
these studies to include a magnetic field. The inclusion of a
magnetic field also opens the way to discussing transverse
effects, characterized by the Hall, Nernst, and Righi-Leduc
coefficients. In order to achieve this goal, we restrict our-
selves to isotropic systems with a quadratic dispersion. We
base our considerations on a Boltzmann equation approach in
which both electron-impurity and electron-electron collision
integrals are treated in the relaxation time approximation.
This simple model allows us to find compact and transparent
expressions for the different coefficients and to highlight the
influence of the momentum dependence of 7; p.
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The Seebeck coefficient displays a particularly interesting
behavior at intermediate temperatures. We find that a weak
perpendicular magnetic field reduces the maximum in the
temperature dependence of this coefficient and stronger mag-
netic fields can even suppress the sign change, making this
coefficient a monotonically decreasing function of tempera-
ture. The obtained temperature and magnetic field dependence
of this coefficient closely resembles the behavior observed
for the Seebeck coefficient of Si:P on the metallic side of
the metal-insulator transition, Ref. [21]. We therefore devote
special attention to this coefficient. The Nernst coefficient is
also strongly affected by the momentum dependence of the
electron-impurity scattering rate. It vanishes in the absence of
this momentum dependence in our model and shows a char-
acteristic maximum determined by the competition between
elastic and inelastic scattering if it is present.

The paper is organized as follows. In Sec. II, we review
the phenomenological equations defining the galvanomag-
netic and thermomagnetic transport coefficients, as well as
the relevant Onsager relations. In Sec. III, we introduce the
Boltzmann equation and solve it to obtain the linearized
distribution function. In Sec. IV, we find the nine transport
coefficients which characterize electric, thermal, and thermo-
electric transport in three dimensions for an arbitrary magnetic
field direction and discuss the geometry of the transport pro-
cesses. Section V and the Supplemental Material [22] are
devoted to a discussion of the temperature and magnetic field
dependence of the transport coefficients, with particular em-
phasis on the role of the momentum dependence of 7, ,. We
conclude in Sec. VI. Appendix contains some technical details
of the calculation.

II. PHENOMENOLOGICAL RELATIONS

The linear response relation between the electric and ther-
mal currents Jg and Jr, respectively, and the electric field
E or thermal gradient VT driving these currents can be
parametrized as [23]

(ﬁ) B </(\Tf j\;) (VET)' e

The components of the coefficient matrix are the conductivity
tensor &, the thermal flow tensor ﬁ, and the two cross effect
tensors NV and M.

For comparison with experiment, it is often convenient to
use the electric current as an independent variable instead of
the electric field. To achieve this, one may resolve the equation
for the electric current Jg encoded in Eq. (1) for E, resulting in
E = 6'J; — 6 ' MVT. After entering with this result into
the equation for J7, one finds a new pair of equations which
can also be expressed in a matrix form as

E\ (p» -a\(]
H-C D) e

Here, we introduced the resistivity tensor p, the thermoelec-
tric power tensor &, the Peltier coefficient tensor 7, and
the thermal conductivity tensor k. The relation between the
tensors used in Eq. (2) and those introduced in Eq. (1) is

as follows
p=6"" a=-pM, 3)
A=Np, k=NpM-—~L. 4)

The linear response relation in Eq. (1) is often formulated
with the help of @, 7, and & instead of M, N, and £, via
the relations M = —6&, N = #6, and £ = —(f6a + k).

The components of the tensors 6, M, N, £ in Eq. (1)
and, respectively, p, &, &, k£ in Eq. (2), are not all inde-
pendent. They obey the Onsager relations, which can be
obtained in the general framework of nonequilibrium statis-
tical mechanics [24-26]. When allowing for the presence of
an external magnetic field B, these relations read 6(B) =
67(-B), £L(B) = LT (—B), and N(B) = —T M7 (—B). As a
direct consequence, one can obtain

pB) = p’(-B), (%)
#(B)=kT(-B), (6)
#(B) = Ta’ (-B). 7

A A

In particular, in the absence of a magnetic field, 6T =6,p
p, LT = £, and kT = & are symmetric.

III. LINEARIZED BOLTZMANN EQUATION

We consider an electron system in two or three spatial
dimensions with a quadratic dispersion €, = p?/(2m). In the
presence of a magnetic field, and in linear response to an
electric field or a temperature gradient, the nonequilibrium
steady state is governed by the linearized Boltzmann equation,
which we present in the form [3]

—e(vy xB)-Vyéfy

0&p
Here, the distribution function has been expanded as
f,p) ~ np(&p) + 8 fp, where np (&) = [exp(B&,) + 117

the Fermi-Dirac distribution with g = (kgT)~', and &, =
€p — 1, where u is the chemical potential. The velocity vy
is related to the momentum p as v, = p/m. In the two-
dimensional (2d) case, only the magnetic field component
perpendicular to the plane is effective, while E and VT lie
in the plane. When writing the Boltzmann equation in the
form of Eq. (8), we assumed that spin-related effects are
not important in the parameter regime under consideration.
This requires, in particular, that the Zeeman splitting is much
smaller than the Fermi energy.

We describe the electron-impurity and electron-electron
collision integrals in the relaxation-time approximation (RTA)

1)
Lilf} = —Tf" ,
ei,p

(cm)
Ly = -LER =1 (@) (10)

ee

&)

There is an important difference between these two collision
integrals. Impurities cause a relaxation of the electronic sys-
tem towards equilibrium in the laboratory frame characterized
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by the distribution function nr(&,). Electron-electron colli-
sions conserve the total momentum of the colliding particles.
Therefore, the relaxation in this case is towards equilibrium in
the center of mass frame, characterized by the “drifting distri-
bution function” nfvcm)(p). In contrast to the electron-impurity
scattering time 7;,p, the electron-electron scattering time 7., is
momentum independent in the RTA. This ensures consistency
with the conservation of momentum during electron-electron
collisions. For our purposes, we assume that 7,; , depends on
Ip| only.

Linearizing the drifting distribution function nfﬁm)(p) ~
(I — ver - POg, )np (§p) in L{f}, where vy, is the center of
mass velocity, we recast Eq. (8) in the form

0&p
= oy, x B)- V55, (11

Tp

with the effective electric field

& MUcm

E=E - , (12)
eTee
and the total scattering rate
1 1 1
— = + —. (13)
Tp Tei,p Tee

The inelastic scattering rate 1/7., contributes a temperature
dependence to 1/%, that is not present when studying elas-
tic electron-impurity scattering alone. As far as the effective
electric field E is concerned, the distinction between E and
E becomes crucial whenever electrons acquire a finite center
of mass velocity as a result of the applied electric field or
temperature gradient. We see that with these definitions for the
effective field E and total scattering rate 1/ %p, the linearized
Boltzmann equation in the form (11) is formally equivalent to
the equation governing linear response in electronic systems
with only elastic scattering in the RTA. The solution of this
equation is well known [2]. The deviation from the equilib-
rium distribution function § f;, takes the form

R
Tt (i) 0E P
P P

3fp

A o - vT
X [{1 + o Tp(figx) + (0. Tp) nB("B')}(eE+EPT>:|’
(14)

where we defined the cyclotron frequency w, = eB/m and
the unit vector 7ig = B/|B|. The product of w. and a typical
scattering time, in our case %,, frequently appears in stud-
ies of electronic transport under the influence of a magnetic
field. This product describes the competition between peri-
odic cyclotron motion and delocalizing scattering processes.
The Landau level quantization is not accounted for in the
Boltzmann equation (11). We will therefore assume that the
condition w.%, < 1 holds. Under this condition, the broaden-
ing of the Landau levels caused by the scattering of various
kinds is larger than the spacing between consecutive Landau
levels. An additional smoothening of the Landau levels results

from the motion along the magnetic field direction, if the
system is three dimensional.

It is worth noting that obtaining the solution provided by
Eq. (14) does not complete the problem of finding the trans-
port coefficients. The reason is that the effective electric field
E contains the center of mass velocity vy, which itself de-
pends on the nonequilibrium part of the distribution function
3 fp- This dependence will be accounted for in the next section
when calculating the transport coefficients self-consistently.

IV. TRANSPORT COEFFICIENTS

This section is concerned with the transport coefficients
characterizing the electric and thermal currents flowing in
response to an electric field or temperature gradient in the
presence of a magnetic field B with arbitrary orientation.
To find these coefficients, we make use of Eq. (14) for the
nonequilibrium distribution function § f, to calculate the elec-
tric and thermal currents

Je = —se/ Vpd fp, (15)
P
Jr = S/Epvpfsfp» (16)
P

with the particle density N = s fp nr(&p) and the spin de-
generacy s = 2. Here, and in the following, we use the
notation [ » = [d?p/(2n)?. The right-hand side of Eq. (14)
still depends on 6 f, implicitly through the drift velocity vep,
contained in E. Indeed, the drift velocity is given as v, =
s fp p3fp/(Nm). This does not pose a problem, however,
since we can eliminate v., in favor of the electric current
Jg = —Nev,,. We can therefore find the currents Jz and
Jr as a function of E and VT. This leads directly to the
conductivity tensors for electric, thermal, and thermoelectric
transport, Eq. (1). However, here we will choose a different
representation that allows for a more straightforward compar-
ison with experimental measurements and write E and J; as
functions of Jr and VT as in Eq. (2). Technical details of the
calculation are relegated to Appendix. The result can be con-
veniently formulated by introducing the following notation

0 =p1L+RgBx)+ (o) — pL)iB(AB"), (17)
& =S, +nBx)+ (S —Spng(AB), (18)
kR =K —kLBx)+ (K — k1 )ng(fp:). (19)

Furthermore, the Peltier coefficient tensor 77 can be eliminated
in favor of & by way of the relation 7 = T'&. The resulting
equations take the form

E=pJ; +S.VT +B x (RyJg +nVT)

+ (o) — pL)ig(fg - Je) + (S — S )ag(Ag - VT),
(20)

JT = TSLJE — KLVT +B X (TT)JE +KL£VT)

+ TSy — S ) - Jg) — (ky — k1 )ig(ig - VT).
@2n

We see that linear response transport for our isotropic model
is determined by nine independent transport coefficients.
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Electric transport in the absence of a temperature gradi-
ent is characterized by three coefficients, the resistivity in a
perpendicular magnetic field p, the resistivity in a parallel
magnetic field pj, and the Hall coefficient Ry,

m Y()() 1
Mmoo ), 2
PL /\/e2<Y020+Y021 f) 22)
Ry =L To (23)
T T NEBYE +Y23
m 1 1
=M ), 24
i Ne2<<<%p>> ree> 9

In order to formulate the results in a compact form, we intro-
duced the following matrix

. %‘l;"(wcfp)”fp
Yon = (—1 (@5 ) (25)

Here, for any physical quantity X, the average (...)) is de-
fined as
2s onp(&p)
Xo) = ——— [ Xp(&p + . 26
(Xp)) d/\//p p(&p + 1) %, (26)
The weight (¢, + ) appearing in the definition of the average
may also be expressed in terms of the square of the velocity,
vy = 2(& + w)/m.

The inelastic scattering rate 1/7,. enters the Egs. (22)-(24)
in two distinct ways. First, it enters through the total scattering
rate 1/%,, implicitly contained in the function Y,,,. Secondly,
the expressions for p, and pj contain 1/z,., explicitly. This
dependence on 1/7,, has its origin in the v, dependence of
the drifting distribution function, a dependence that arises due
to the conservation of the total momentum during electron-
electron collisions. It is worth mentioning that all coefficients
pL, Ry, and pj are even in B in agreement with the Onsager
relation Eq. (5).

Thermoelectric transport depends on the coefficients

1 Yoo¥io + Yo 11y

S, = , 27
T T R+ @7
I 1 YooY11 — Yo1Yi10

n=———-———— (28)

eTB Y2 +12

I {&pTp)
S = —— —2Bl (29)
' e ()

Here, S| (S)) is the Seebeck coefficient, or thermoelectric
power, in perpendicular (parallel) magnetic field; n is the
Nernst coefficient. Note that S does not depend on the mag-
netic field, Sy = S (B = 0).

In view of the Onsager relations, in combination with the
relation # = T&, we expect @(B) = &” (—B), and therefore
the coefficients S, Sj, and n must be even in B. This property
can indeed be checked from the explicit relations.

The following three coefficients determine thermal trans-
port

N Yoo(Y3 — Y2) + 2Yo Y10,
(Yzo— o0 (Yih —Y3) 01Y10 11>, 30)

kL =—2 2 2
mT YOO + YO]

N1 Yor (Y2 — Y3) + 2¥aoYioY
K L=—""——(Yy— 01( 11 210) : 00410111 G
mT B Y50 + Y5

N (2= (&%)’
! zﬁ(ﬁf"»_ ) ) G2

In these equations, «, and « are the thermal conductivities
in perpendicular and parallel magnetic field, respectively; L is
the thermal Hall (or Righi-Leduc) coefficient. All coefficients
are even in B, in accordance with Eq. (6). Just as p; and Sy, k|
does not depend on B, kj =« (B = 0).

In theoretical studies, it is often easier to find the com-
ponents of the generalized conductivity matrix connecting
currents and external perturbations in Eq. (1) than the compo-
nents of the matrix of Eq. (2), which is more directly related
to experimental observations. Let us therefore mention here,
for the example of the resistivity and conductivity tensors,
the relation between the coefficients used to parametrize the
matrix p [compare Eq. (17)] and an analogous parametrization
of the matrix 6. Defining the coefficients o, oy, and oy,
through the following equation (for VI' = 0)

Je=01E—ayB xE+ (o) — o )ip(p - E), (33)
one finds the following relation between the components

oL 1 1 pu

=———, oj=—, ag=——5——, (34)
o t+en T p B pl +pf,

oL

where py = Ry B is the Hall resistivity.

The linear response equations Eqs. (20) and (21) in com-
bination with the general expressions for the coefficients
Egs. (22)—-(24) and (27)-(32) are the main results of this
paper. They characterize electric, thermal, and thermoelec-
tric transport accounting for electron-electron scattering and
momentum-dependent electron-impurity scattering, for an
arbitrary orientation of the magnetic field. In two spatial di-
mensions, only the magnetic field component perpendicular
to the plane is effective. In this case, the coefficients py, S,
and « are not required for the characterization of transport,
and the second lines of both Egs. (20) and (21) should be
discarded. Within the framework of the Boltzmann equation,
these stated results are exact. Below, we will discuss the
implications for different parameter regimes.

The main purpose of this paper is to discuss how elastic
and inelastic scattering times of similar magnitude influence
different transport coefficients. In principle, the formulas de-
rived on the basis of the Boltzmann equation below are also
applicable when either the elastic scattering time is much
shorter than the inelastic scattering time, or in the opposite
limit, which corresponds to the hydrodynamic regime. How-
ever, an important aspect relevant for the comparison with
hydrodynamics is that the role of elastic scattering can be
quite different for imperfections of different type. Here, we
implicitly assume that the size of the impurities is smaller
than both elastic and the inelastic mean free paths. This con-
trasts a typical hydrodynamic approach in which variations
of the potential are assumed to be smooth, as for example in
Ref. [7], or scattering on a boundary is considered as, e.g., in
Ref. [27]. In Ref. [7], charge and heat transport in the pres-
ence of large-scale inhomogeneities was studied. We, in turn,
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consider systems in which small-size impurities distributed
homogeneously in the bulk of the liquid are weak and dense.

A. Dependence on the magnetic field direction

Equations (20) and (21) are valid for an arbitrary direction
of the magnetic field. Choosing a setup with perpendicular and
parallel magnetic fields simplifies the equations and highlights
the physical significance of the coefficients. We choose the
direction of the electric current Jz (the temperature gradient
VT) as areference for the direction of the magnetic field when
VT =0 (when Jg = 0). After discussing these two limiting
cases, we consider the general case of a tilted magnetic field.

1. Perpendicular and parallel magnetic fields

a. B 1L Jz, VT = 0. Here, both the electric field and the
thermal current are confined to the plane spanned by Jr and
B x JE,

E = p,Jg +RyB x Jg, (35)

Neither of these quantities has a component in the direction of
the magnetic field.

b. B L VT, Jg =0. In this case, the electric field and
thermal current both lie in the plane spanned by VT and
B x VT,

E=S,VT + B x VT, 37
Jr = -k, VT +x, LB x VT. (38)

c. B || Jg, VT = 0. The magnetic field, the electric cur-
rent, the thermal current, and the electric field are all parallel
to each other, E = o Jg, Jr =TS JE.

d. B || VT, Jg = 0. Here, the magnetic field, the electric
field, the temperature gradient, and the thermal current are
parallel, E= SHVT, JT = —K“VT.

2. Tilted magnetic field

An interesting observation can be made for the case of an
arbitrary magnetic field direction, see Fig. 1. For the purpose
of illustration we highlight the case of electric transport in
the absence of a temperature gradient, which is characterized
by the three coefficients p,, pj, and Ry. Alternative setups
involving the other transport coefficients can be discussed in
analogy. For the case under consideration, we have

E=p.Je +RyB x Je + (p) — pL)itg(ip - Je).  (39)

We see that for an arbitrary direction of the magnetic field, 7ig
can have a component in the direction of the electric current.
This observation motivates the following decomposition

fig = Al + Ay, (40)
iy = fy, (Ay, - ), 1)
g = fy, x (A x fiy,), (42)

.]EXB

FIG. 1. This figure shows the different vectors that are important
for the discussion of electric transport for the general tilted magnetic
field case in three dimensions, when B is neither perpendicular nor
parallel to Jg. In this case, an electric field component parallel to
fig o< Jg x (B x Jg) arises, i.e., the electric field has a component
pointing out of the plane spanned by B and Jg x B, unlike for
the perpendicular magnetic field case. This component along #ij is
nonvanishing only for p; # p,, as can be seen from Eq. (43).

where ﬁ& is parallel to the electric current and fiy is perpen-
dicular. This allows us to bring Eq. (39) into the form

E = [p. + (ip)* (o) — p.)JE + RuB x Ji
+ (o) — pL )Y - Je )i, (43)

with three mutually orthogonal vectors Jg, B x Jg, and ﬁﬁ.
This is illustrated in Fig. 1. The last term is relevant only
if J; and B are neither parallel nor perpendicular, i.e., for
general tilted magnetic fields. Then, the electric field develops
a component perpendicular to both Jg and B x Jg, which is
proportional to pj — p; .

B. Constant elastic scattering rate

If we eliminate the momentum dependence of t;, T — %,
then we find

pL=p; = po, Ry = Rpo, (44)

SJ_ :SH :S(), n :O, (45)

KL =ko, &y =rko(l+ (w.E)), L ==L, (46)

where
_oom R — 1 S0 — 1
po—m, HO = 0——5«%}»,
N 7 et
Ko = ﬁm(«ég» — (&), Lo= o (47)

At low temperatures T < €f, the two moments of &, entering
the expressions for ko and o are (7)) = 7>T?/3 and (&) =
72T? [ 2¢r.

A few remarks are in order here. For a constant scattering
time t,;, the coefficients py, Ryo, So, and n do not depend on
T,e. In this limit, the Fermi sphere is shifted as a whole under
the influence of the electric field. As a consequence, inelas-
tic scattering becomes ineffective for the conductivity tensor
&, cross effect tensor N , and the Onsager related M. This
argument does not hold for the components of the thermal
conductivity tensor due to the additional factor &, associated
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with the temperature gradient in Eq. (14). Furthermore, for the
thermal conductivity, a difference between parallel || and per-
pendicular 1 components remains in the limit of constant t,;,
i.e., k| # k1. This leads to a nontrivial angular dependence as
can be seen from the thermal analog of Eq. (43). Finally, « |
is the only coefficient that depends on B for a constant elastic
scattering rate.

V. DISCUSSION

The temperature dependence of the transport coefficients
originates from two sources. First, from the thermal smear-
ing encoded in the averages ((...)) defined in Eq. (26),
and secondly from the temperature dependence of the in-
elastic scattering rate. The latter is a phenomenological
parameter and needs to be fixed externally. For a momentum-
independent elastic scattering rate, the results for the transport
coefficients simplify considerably, see Sec. IV B. As we will
discuss below, it is often the momentum dependence of the
elastic scattering rate that induces interesting dependences of
the coefficients on temperature and magnetic field. For the
sake of the discussion, we therefore single out the momentum-
dependent part of the elastic scattering rate

1/Teip = 1/7ei + 81p. (48)

The entire dependence of the transport coefficients on 8I'y is
encoded in the averages Y,,,, as can be seen from Egs. (22)—
(32). The momentum dependence of the elastic scattering rate
enters these averages in the form of the combination 1/%, =
1/% + 8I'y. When changing the temperature, two competing
trends influence Y,,,. Typically, 1/7.. increases with increas-
ing temperature. Then, the momentum dependence of 6Ty
becomes less important in comparison to the total scattering
rate and so does its influence on Y, and the transport coeffi-
cients. On the other hand, a larger range of momenta is probed
in Y,,,, as the temperature increases due to the weighting factor
onr(&p)/0&p entering the averages [compare Eq. (26)]. This
effect enhances the influence of 8I', when the temperature
Srows.

Figures 2-5 illustrate the temperature and magnetic field
dependence of the transport coefficients p;, S, n, o =
p1(B=0), and § =S5,(B =0). In addition, Figs. S1-S3
display Ry, «1, k) =k, (B=0), and £ [22]. Knowledge
of these coefficients is sufficient for the characterization of
transport in a magnetic field of arbitrary direction. In all
figures, we apply the same notation. Solid lines illustrate
results for a momentum-dependent elastic scattering rate.
Solid black, red, and blue lines are computed for w,.t,; =
0, 0.4, 0.8, respectively. Dashed lines are calculated for a
momentum-independent scattering rate. As we have already
mentioned, the thermal conductivity « is the only coefficient
that depends on the magnetic field even for a constant elastic
scattering rate. For the purpose of our illustrations, we as-
sume that the electron-electron scattering rate has a quadratic
dependence on temperature, as in a Fermi liquid at low tem-
peratures, with 1/7,, = 3.44 x T?/er. We also assume that
disorder is weak and set 1/(er1.;) = 0.01. For the illustrations
of the results, we choose the parametrization

18Ty = wip/er + wa(&p/er )’ (49)

pL
1.12} po
1.10¢

1.08f
1.06}
1.04f
1.02f
1,00 == oo

0.00 0.02 0.04 0.06 0.08 0.10
T/er

FIG. 2. The resistances p,, Eq. (22), and py = p,(B=0),
Eq. (24), normalized to the Drude result p,, Eq. (47), as a
function of temperature 7. Solid lines illustrate results for a
momentum-dependent elastic scattering rate, parameterized accord-
ing to Eqs. (48) and (49) with 1/(ert,;) = 0.01, w; = 2.3, and w, =
1.4. The inelastic scattering rate is chosen as 1/1,, = 3.44 x T?/ep.
The dimensionality is d = 3. Solid black, red, and blue lines are
computed for B = 0, w.t,; = 0.4, and w.7,; = 0.8, respectively. The
dashed line is calculated for a momentum-independent scattering rate
and coincides with py. A detailed discussion of the results is provided
in Sec. V A.

with w; = 2.3 and w, = 1.4, and set the dimensionality to
d = 3. For the interpretation of the results, it will be instruc-
tive to expand the expressions for the transport coefficients in
powers of the momentum-dependent part of the elastic scatter-
ing rate 5I'y. Next, we will discuss the characteristics of the
transport coefficients p , oy, S1, ), and n. A discussion of the
coefficients Ry, k1 , k), and L is provided in the Supplemental
Material [22].

A. Resistivity p;

For a constant elastic scattering rate, the resistivity p
depends neither on temperature nor on the magnetic field. The
inelastic scattering time ., drops out in this case and only the
elastic scattering time t,; enters the expression for p ,

m
— = ———, 1, = const. 50
PL £0 Nezl'gi ei ( )

A temperature dependence arises for p; when the elastic
scattering rate becomes momentum dependent, I, # 0. For
B = 0, this case has first been discussed by Keyes [20],

—>i<L—i> B=0 (51)
PPoNe\@)  w) T

with notable limits p, — m/Ne? x ((t(;i)
o1 — m/Ne* x (Tip) " for 7., — 0.
In this paper, we focus on the low-temperature regime,
T < €p, while the relation between 1/7,; and 1/7., remains
arbitrary. Figure 2 shows p, for different temperatures and
magnetic fields. The zeroth-order term pg, with respect to the
momentum-dependent part of the elastic scattering rate 5I',

has already been discussed and is displayed in Eq. (50). The

) for 7., — 0 and
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FIG. 3. The Seebeck coefficient S, Eq. (27), as a function of
temperature 7', and for different magnetic fields. Parameters as listed
in the caption of Fig. 2. In particular, the black solid line stands for
S (B =0)=S,. A discussion is provided in Sec. V B.

first-order term reads

m
= 72 (Tp)- (52)

This term gives rise to a leading quadratic temperature de-
pendence for the form of 6I", used here, which is clearly
visible in Fig. 2. Further, we note that § pil) does not depend
on the magnetic field, which explains the weak magnetic field

dependence observed in Fig. 2.

B. Seebeck coefficient S|
For a momentum-independent elastic scattering rate, the
Seebeck coefficient S, depends neither on the magnetic field
nor on any scattering mechanism,

Sl—>So=

{(&p))

—ﬁ T,; = const. (53)
S| remains temperature dependent in this case; for example,
S o« T at low temperatures T < €p. It is worth noting that
So is finite only due to particle-hole asymmetry, for which
there are two sources in the model under consideration. The
first one is the &, dependence of vg o &p + u, which enters
the definition of the average, Eq. (26). The second source of
particle-hole asymmetry is the &, dependence of the density
of states in three dimensions which becomes explicit upon
changing the integration variable from p to &, in Eq. (26). For
a vanishing magnetic field, but general 7,; ;,, one obtains

S, — 6 «g"fp», B=0, (54)

el (%)
with limiting cases S| = —{(&pTei,p)) /(€T {(Teip))) for 7., >
Teip and S| = —({(&p))/eT for 1., K Te;p. The key features of
this expression have already been discussed in Ref. [19].

In order to explore the combined effect of the magnetic
field and the momentum dependence of 7,;, on the Seebeck
coefficient, we expand Eq. (27) up to linear order in 6I'p. The
first order correction in 6I'p, reads as

1 (5p8Tp) — (Ep) (8T p)) 1
eT rejl + ;! 1+ (w,T)?

55 = (55)
Unlike for the resistance p,, 8I'p induces a sensitivity of
S, to electron-electron collisions, disorder, and the magnetic
field already at linear order in the expansion. For the further

GSJ_

T/GF
06 0.68 I

0.10

FIG. 4. The Seebeck coefficient S, Eq. (27), as a function of
temperature 7 and for different magnetic fields. In comparison to
Fig. 3, the parameters are: 1/ept,; = 0.05, w; =2.35, w, = 1.4,
1/Tee = 9.1 x T?/€p. Black, red, blue, and gray curves stand for
w.T,; =0, 0.75, 1.5, and 3, respectively. A discussion is provided
in Sec. VB.

discussion, it is convenient to write the expression for SSS_” as
the product of two factors

550 = 65V(B = 0)[1 + (w.7)*]". (56)

The first factor, (SS(ll)(B = 0), stands for the correction to the
Seebeck coefficient in the absence of a magnetic field. The
second factor encodes the entire magnetic field dependence.
As discussed in Ref. [19], the correction 855_1) can give rise
to a nonmonotonic temperature dependence of the Seebeck
coefficient S, for B = 0. Let us briefly recall the argument.
At low temperatures, 7 < €f, and for B = 0, the correction
to the Seebeck coefficient (in d = 2, 3 dimensions) becomes

2 6 2
ssVB=0) _ qwi+iwa(E) 7
So I+ TEi/ree '

The leading temperature dependence, i.e., the w; term in the
low-temperature expansion, originates from the term {(£,61°,))
in Eq. (55).

An important observation is that SS(j) is not necessarily
smaller than Sy. This is because both depend on particle-hole
asymmetry. For Sy, this dependence reveals itself through the
average ((§p)), which is finite due to a nonconstant density
of states and/or a nonconstant velocity, as discussed above.
8511), on the other hand, is finite due to the momentum depen-
dence of the elastic scattering rate. In three dimensions, for
example, the origin of this momentum dependence may also
be the density of states, just as for Sp. The natural behavior
in this case is w; > 0 and as a consequence SSil) and Sy have
opposite signs at low temperatures. The expected temperature
dependence of S is as follows: S, vanishes for 7 — 0. At
low but finite temperatures, S; may be positive if S dom-
inates. For higher temperatures 7., becomes shorter, resulting
in a suppression of 8S"). As a consequence, S, displays a
maximum and subsequently changes sign to become negative
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at higher temperatures, just as the now dominant Sy. The
temperature scale at which the maximum of S; occurs can be
estimated by eclluating 7., and t,;. In the presence of the mag-
netic field, 85" is suppressed by the factor [1 + (w.%)*)]~"
[compare Eq. (56)]. The suppression becomes stronger for
higher magnetic fields. As a consequence, a sign change of
S| now requires the more stringent condition w; > 2/d x
[1+ (w.7.;)*]. The influence of the magnetic field is most
pronounced at low temperatures. Indeed, if 7., decreases with
increasing temperature, which is the natural behavior, so does
the product w, .

The temperature and magnetic field dependence of S, as
obtained from Eq. (27) is illustrated in Fig. 3. We see that
in accordance with our discussion (i) for B = 0 the Seebeck
coefficient displays a nonmonotonic temperature dependence
with a maximum at finite temperatures and a sign change,
(i1) a sufficiently large magnetic field suppresses the maxi-
mum, (iii) the influence of the magnetic field decreases with
increasing temperature, and (iv) SS(j) /So decreases with in-
creasing temperature. One may, thus, conclude that measuring
temperature dependence of the Seebeck coefficient at various
magnetic fields provides an effective tool for determining
the magnitude of the electron-impurity and electron-electron
scattering rates.

Reference [21] reported a measurement of the Seebeck
coefficient in Si:P near the 3d metal-insulator transition. This
experiment was performed at very low temperatures <1 K
in order to minimize the influence of phonons. Due to the
closeness to the metal-insulator transition, electron-electron
interactions are expected to be strong. On the metallic side
of the transition, the Seebeck coefficient displays a nonmono-
tonic temperature dependence qualitatively similar to the one
discussed above. Moreover, a suppression of the maximum
is observed at finite magnetic fields, eventually leading to an
almost linear temperature dependence at the highest magnetic
fields in the experiment. The authors of Ref. [21] interpret the
observed behavior in terms of the Kondo effect (Ref. [28])
that may arise close to the metal-insulator transition due to
the formation of magnetic moments. Motivated by the ex-
perimental observations, we display the Seebeck coefficient
as calculated from Eq. (27) once more in Fig. 4. Compared
to Fig. 3, both the electron-impurity and electron-electron
scattering rates are increased (in relation to the Fermi energy)
in Fig. 4, and higher values of w,t,; are included. (Note that
in the latter case the Landau level quantization may become
relevant before thermal smearing smooths out quantization
effects with increasing temperature.) We see that the main
features of the experiment are well reproduced. Unfortunately,
a direct comparison to the experiment is difficult due to the
uncertainty in the relevant energy scales. We can conclude,
however, that Eq. (27) provides a good phenomenological
description of the observed behavior.

C. Nernst coefficient »

The Nernst coefficient n can be discussed along similar
lines as S,. An obvious difference is that the Nernst co-
efficient vanishes for arbitrary magnetic fields when t,; is
constant. A finite Nernst coefficient is obtained, however,
when the momentum dependence of 7,; , is accounted for. At

0.14
0.12
0.10
0.08
0.06
0.04
0.02

| -l

0.10
T/er

FIG. 5. The Nernst coefficient n, Eq. (28), normalized to n, =
7,;/m, as a function of temperature 7', and for different magnetic
fields. Parameters as listed in the caption of Fig. 2. A discussion is
provided in Sec. V C.

0.02 0.04 0.06 0.08

first order in 8I"y, one finds
1 we T2

m_
eTB 1+ w272

dn ((&pdTp)) — (EpD (8T p)).  (58)
We have already encountered the combination of averages in
round brackets in the expression for S(ll) given in Eq. (55).
At low temperatures, the leading contribution comes from the
first term, (&p00p)) o w,T?, which implies that the Nernst
coefficient is proportional to 7. For B — 0 the only other
source of temperature dependence comes from the factor #2.
This factor is approximately constant at low 7 when 7., > 7,
and decreases at higher temperatures, when t,, < 7,; and
#2 ~ 2. Consequently, the Nernst coefficient is positive and
goes through a maximum at finite 7. A rough estimate for the
temperature scale at which the maximum occurs is obtained
from the condition 7,; = 7,.,. The magnetic field dependence
of 'V is governed by the factor [1 + w?#%]~!, which equals
[1+ w2t2]7! for T — 0, and then successively approaches 1,
when 72 diminishes with increasing temperature. Therefore,
the magnetic field dependence is most pronounced at low tem-
peratures and becomes weak for 7., < 7,;. All the described
features are visible in Fig. 5, which is obtained directly from
the exact result in Eq. (28).

VI. CONCLUSION

In this paper, we studied the combined effect of electron-
electron and electron-impurity scattering on charge and heat
transport in metallic systems at intermediate temperatures.
We employed a simple kinetic equation approach, in which
both collision integrals are treated in the relaxation time ap-
proximation, and studied the linear response of the system.
We found expressions for all relevant transport coefficients
in the presence of a magnetic field of arbitrary direction and
analyzed the influence of the momentum dependence of the
electron-impurity scattering time in detail. The results are
applicable for two- and three-dimensional systems.

Despite its simplicity, the model used in this paper captures
a key element of the kinetics of disordered electronic systems:
the competition between the relaxation of the distribution
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TABLE 1. The transport coefficients studied in this paper. The
coefficients are defined through Egs. (20) and (21) and calculated
on the basis of the Boltzmann equation displayed in Eqgs. (8)-(10).
The table gives the equations in which the results for the coefficients
are stated and the figures in which their temperature and magnetic
field dependence is illustrated. The coefficients py = p, (B = 0),
Sy =8.(B=0), and k =« (B =0) are described by the black
solid lines in these figures.

Resistivity oL Eq. (22), Fig. 2

ol Eq. (24), Fig. 2
Hall coefficient Ry Eq. (23), Fig. S1
Seebeck coefficient S Eq. (27), Figs. 3,4

M Eq. (29), Figs. 3,4
Nernst coefficient n Eq. (28), Fig. 5
Thermal conductivity K1 Eq. (30), Fig. S2

K Eq (32), Flg S2
Righi-Leduc coefficient L Eq. (31), Fig. S3

function towards equilibrium in the laboratory frame caused
by electron-impurity scattering and the relaxation towards
the drifting distribution function resulting from the electron-
electron interaction. This drift enters the linearized kinetic
equation through the center of mass velocity v,,. It is straight-
forward to follow the effect of a finite center of mass velocity
on the transport coefficients in this approach, because v,
is accompanied by an explicit factor of the electron-electron
scattering rate 1/7,,., as can be seen from Eq. (12). Out of the
three independent tensors p, &, and K, only p is affected by the
finite drift velocity, while the others depend on 7, only via the
total scattering rate 1/%,. It should be emphasized, however,
that the situation is quite different when the conductivity ten-
sor &, thermal flow tensor ﬁ, and cross effect tensors A and
M are used for characterizing the transport processes. These
are all affected by the drift.

Table I provides a guide to the results obtained for the
different transport coefficients in this paper and the figures
that serve as illustrations. It is worth stressing several pecu-
liarities. Only the thermal conductivities « | and the thermal
Hall (Righi-Leduc) coefficient £ depend on 1/7,, even for
a constant elastic scattering rate, in contrast to the electrical
resistances o /|, the Hall coefficient Ry, the Seebeck coeffi-
cients Sy, and the Nernst coefficient n. The Hall coefficient
Ry displays a very weak dependence on both the electron-
electron scattering rate and the momentum dependent part of
the electron-impurity scattering rate I'p, as long as the latter
is weak compared to 1/7,;. The coefficients p, j, S1, and
n only depend on 1/t if 1/7,p is momentum dependent.
For S|, we argued that the correction originating from a
finite 6I", can be of the same order as the result obtained for
8I'y = 0. In the case of n, a finite 6T, is even more impactful,
since n = 0 for 6T'p, = 0.

For all coefficients, the competition between t,; , and .,
plays an important role for the temperature dependence. The
magnetic field enters in combination with the total scattering
time as w.T,. This product can contribute to the temperature
dependence in two ways: first, directly through the tem-
perature dependence of t,., and second more indirectly via
the momentum dependence of 7,;, which induces a further

sensitivity of the transport coefficients to the occupation
of states in momentum space. The temperature dependence
of the transport coefficients becomes particularly intriguing
when the energy scales 1/t,;, 1/7., and w,. are of the same
order. We analyzed the temperature and magnetic field depen-
dence of the Seebeck coefficient in this case, which shows
a striking qualitative similarity with experimental results on
the Seebeck coefficient of Si:P on the metallic side of the 3d
metal-insulator transition. A detailed analysis of the experi-
mental results, however, is beyond the scope of this work. We
hope that the results obtained within the simple model system
studied here can serve as a guide for experimental studies of
the electron kinetics at not too low temperatures.
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APPENDIX: DERIVATION OF THE TRANSPORT
COEFFICIENTS

Inserting the expression for §f stated in Eq. (14) into
the defining relations for the electric and thermal currents,
Egs. (15) and (16), we find the following set of equations

m
MyE = —M — —M VT, Al
of =7 2( -~ 0>JE 1 (AD)
N Ne
Jr= =2 TMVT =SSN (B4 n i) (A2)
Here, we defined the three matrices
M; = Yio + Y1 (Apx) + Yphp(fig-), i € {0,1,2}, (A3)

where the matrix Y,,, is defined in Eq. (25).

In order to find E and Jr as functions of Jr and VT,
Eq. (A1) can be solved for E and may be used to eliminate
the electric field from the second equation in favor of Jgz and
VT. These steps result in the two equations,

m

1
E= m(%Mgl — 1) — EM51M1VT, (A4)
N .
Jr = ——M My Jg — —[M, — MMy M,]VT. (AS)
e 0 mT 0
By comparison with Eq. (2), we find
A m —1
P = Nezfee (TeeM() - 1)’ (A6)
1
4 = ——M;' My, A7
o o7 0 1 (A7)
1
A= —;MIM(;I, (A8)
. N
K=—[M2—M1MO M]] (A9)
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In order to find explicit expressions for these tensors, we need
to know the inverse of the matrix M,

(Y§ — YooYo2) A (2g-)
(Y3 + Y3) (Yoo + Yoo)

M1 — Yoo = Yor(Giex)
0o - Y2 +Y2
o0t o1

(A10)

It is easily checked that the two matrices My 'and M, com-
mute, so that ## = 7'&. The relations stated above enable us to
find the transport coefficients given in Egs. (22)—(24), (27)-
(32). Let us note that the expression for p; was obtained using
the relation Y0 + Yo = (§5'%p)) for m = 0. In particular, the
combination Y,y + Y,,» is magnetic field independent and so
is py = pL(B=0).
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