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Role of electron-electron collisions for magnetotransport at intermediate temperatures
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We discuss galvanomagnetic and thermomagnetic effects in disordered electronic systems focusing on inter-
mediate temperatures, for which electron-electron scattering and electron-impurity scattering occur at similar
rates, while phonon-related effects can be neglected. In particular, we explore how electric and thermal currents
driven either by an electric field or by a temperature gradient are affected by the interplay of momentum-
dependent electron-impurity scattering, electron-electron scattering, and the presence of a magnetic field. We
find that the electric resistance, the Seebeck coefficient and the Nernst coefficient are particularly sensitive to
the momentum dependence of the electron-impurity scattering rate at intermediate temperatures. A sufficiently
strong momentum dependence of the electron-impurity scattering rate can induce a sign change of the Seebeck
coefficient. This sign change can be suppressed by a perpendicular magnetic field. The temperature and magnetic
field dependence of the Seebeck coefficient can be used for measuring the magnitude of the electron-impurity and
electron-electron scattering rates. The Nernst coefficient vanishes for momentum-independent electron-impurity
scattering but displays a maximum at finite temperatures once the momentum dependence is accounted for. By
contrast, the Hall coefficient and the Righi-Leduc coefficient display only a weak dependence on the momentum
dependence of the electron-impurity scattering at intermediate temperatures.
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I. INTRODUCTION

Galvanomagnetic and thermomagnetic phenomena in met-
als and semiconductors have been discussed extensively in the
literature when electron-phonon and electron-impurity colli-
sions are the dominant scattering mechanisms [1–4]. Indeed,
elastic electron-impurity scattering events dominate at low
temperatures, when phonons freeze out and inelastic scatter-
ing of electrons off each other becomes ineffective due to the
Pauli-exclusion principle. At elevated temperatures, in turn,
electron-phonon scattering is responsible for the leading tem-
perature dependence of the transport coefficients. In between
these two transport regimes, the influence of electron-electron
collisions on the transport coefficients may become visible.
If the corresponding interval of temperatures is sufficiently
broad, then hydrodynamic behavior can be observed on its up-
per end, once electron-electron scattering occurs much more
frequently than electron-impurity scattering [5–17]. Here, we
are mainly interested in an intermediate temperature regime,
for which these two scattering processes occur at similar rates
[16,18,19].

Throughout the paper, we assume that Umklapp scatter-
ing is prohibited or ineffective. In this case, electron-electron
collisions conserve the total momentum but may still influ-
ence the electric conductivity indirectly via a redistribution
of occupation numbers in momentum space. This redistri-
bution reveals itself in the temperature dependence of the
electric conductivity σ , for example, if the electron-impurity

scattering is momentum dependent [4,20]. The effect is
well illustrated by the two differing results obtained for the
conductivity in the electron-impurity and electron-electron
scattering dominated transport regimes, where σ ∝ 〈τei,p〉 and
σ ∝ 〈1/τei,p〉−1, respectively [20]. Here, τei,p is the electron-
impurity scattering rate, and the angular bracket symbolizes a
(weighted) thermal average. The crossover between these two
limits has also been explored [20]. The combined influence
of electron-electron scattering and momentum-dependent
electron-impurity scattering on other transport coefficients in
the intermediate temperature regime is less understood. Re-
cently, we discussed the thermal and thermoelectric transport
coefficients in this context [19]. We found, in particular, that
the Seebeck coefficient can develop a nonmonotonic temper-
ature dependence accompanied by a sign change under the
influence of the two scattering processes. Here, we generalize
these studies to include a magnetic field. The inclusion of a
magnetic field also opens the way to discussing transverse
effects, characterized by the Hall, Nernst, and Righi-Leduc
coefficients. In order to achieve this goal, we restrict our-
selves to isotropic systems with a quadratic dispersion. We
base our considerations on a Boltzmann equation approach in
which both electron-impurity and electron-electron collision
integrals are treated in the relaxation time approximation.
This simple model allows us to find compact and transparent
expressions for the different coefficients and to highlight the
influence of the momentum dependence of τei,p.
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The Seebeck coefficient displays a particularly interesting
behavior at intermediate temperatures. We find that a weak
perpendicular magnetic field reduces the maximum in the
temperature dependence of this coefficient and stronger mag-
netic fields can even suppress the sign change, making this
coefficient a monotonically decreasing function of tempera-
ture. The obtained temperature and magnetic field dependence
of this coefficient closely resembles the behavior observed
for the Seebeck coefficient of Si:P on the metallic side of
the metal-insulator transition, Ref. [21]. We therefore devote
special attention to this coefficient. The Nernst coefficient is
also strongly affected by the momentum dependence of the
electron-impurity scattering rate. It vanishes in the absence of
this momentum dependence in our model and shows a char-
acteristic maximum determined by the competition between
elastic and inelastic scattering if it is present.

The paper is organized as follows. In Sec. II, we review
the phenomenological equations defining the galvanomag-
netic and thermomagnetic transport coefficients, as well as
the relevant Onsager relations. In Sec. III, we introduce the
Boltzmann equation and solve it to obtain the linearized
distribution function. In Sec. IV, we find the nine transport
coefficients which characterize electric, thermal, and thermo-
electric transport in three dimensions for an arbitrary magnetic
field direction and discuss the geometry of the transport pro-
cesses. Section V and the Supplemental Material [22] are
devoted to a discussion of the temperature and magnetic field
dependence of the transport coefficients, with particular em-
phasis on the role of the momentum dependence of τei,p. We
conclude in Sec. VI. Appendix contains some technical details
of the calculation.

II. PHENOMENOLOGICAL RELATIONS

The linear response relation between the electric and ther-
mal currents JE and JT , respectively, and the electric field
E or thermal gradient ∇T driving these currents can be
parametrized as [23]

(
JE

JT

)
=

(
σ̂ M̂
N̂ L̂

)(
E

∇T

)
. (1)

The components of the coefficient matrix are the conductivity
tensor σ̂ , the thermal flow tensor L̂, and the two cross effect
tensors N̂ and M̂.

For comparison with experiment, it is often convenient to
use the electric current as an independent variable instead of
the electric field. To achieve this, one may resolve the equation
for the electric current JE encoded in Eq. (1) for E, resulting in
E = σ̂−1JE − σ̂−1M̂∇T . After entering with this result into
the equation for JT , one finds a new pair of equations which
can also be expressed in a matrix form as

(
E
JT

)
=

(
ρ̂ −α̂

π̂ κ̂

)(
JE

−∇T

)
. (2)

Here, we introduced the resistivity tensor ρ̂, the thermoelec-
tric power tensor α̂, the Peltier coefficient tensor π̂ , and
the thermal conductivity tensor κ̂ . The relation between the
tensors used in Eq. (2) and those introduced in Eq. (1) is

as follows

ρ̂ = σ̂−1, α̂ = −ρ̂M̂, (3)

π̂ = N̂ ρ̂, κ̂ = N̂ ρ̂M̂ − L̂. (4)

The linear response relation in Eq. (1) is often formulated
with the help of α̂, π̂ , and κ̂ instead of M̂, N̂ , and L̂, via
the relations M̂ = −σ̂ α̂, N̂ = π̂ σ̂ , and L̂ = −(π̂ σ̂ α̂ + κ̂ ).

The components of the tensors σ̂ , M̂, N̂ , L̂ in Eq. (1)
and, respectively, ρ̂, α̂, π̂ , κ̂ in Eq. (2), are not all inde-
pendent. They obey the Onsager relations, which can be
obtained in the general framework of nonequilibrium statis-
tical mechanics [24–26]. When allowing for the presence of
an external magnetic field B, these relations read σ̂ (B) =
σ̂ T (−B), L̂(B) = L̂T (−B), and N̂ (B) = −TM̂T (−B). As a
direct consequence, one can obtain

ρ̂(B) = ρ̂T (−B), (5)

κ̂ (B) = κ̂T (−B), (6)

π̂ (B) = T α̂T (−B). (7)

In particular, in the absence of a magnetic field, σ̂ T = σ̂ , ρ̂T =
ρ̂, L̂T = L̂, and κ̂T = κ̂ are symmetric.

III. LINEARIZED BOLTZMANN EQUATION

We consider an electron system in two or three spatial
dimensions with a quadratic dispersion εp = p2/(2m). In the
presence of a magnetic field, and in linear response to an
electric field or a temperature gradient, the nonequilibrium
steady state is governed by the linearized Boltzmann equation,
which we present in the form [3](

−eE − ξp
∇T

T

)
· vp

∂nF (ξp)

∂ξp
− e(vp × B) · ∇pδ fp

= Iei{ f } + Iee{ f }. (8)

Here, the distribution function has been expanded as
f (r, p) ≈ nF (ξp) + δ fp, where nF (ξp) = [exp(βξp) + 1]−1 is
the Fermi-Dirac distribution with β = (kBT )−1, and ξp =
εp − μ, where μ is the chemical potential. The velocity vp
is related to the momentum p as vp = p/m. In the two-
dimensional (2d) case, only the magnetic field component
perpendicular to the plane is effective, while E and ∇T lie
in the plane. When writing the Boltzmann equation in the
form of Eq. (8), we assumed that spin-related effects are
not important in the parameter regime under consideration.
This requires, in particular, that the Zeeman splitting is much
smaller than the Fermi energy.

We describe the electron-impurity and electron-electron
collision integrals in the relaxation-time approximation (RTA)

Iei{ f } = − δ fp

τei,p
, (9)

Iee{ f } = − f (r, p) − n(cm)
F (p)

τee
. (10)

There is an important difference between these two collision
integrals. Impurities cause a relaxation of the electronic sys-
tem towards equilibrium in the laboratory frame characterized
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by the distribution function nF (ξp). Electron-electron colli-
sions conserve the total momentum of the colliding particles.
Therefore, the relaxation in this case is towards equilibrium in
the center of mass frame, characterized by the “drifting distri-
bution function” n(cm)

F (p). In contrast to the electron-impurity
scattering time τei,p, the electron-electron scattering time τee is
momentum independent in the RTA. This ensures consistency
with the conservation of momentum during electron-electron
collisions. For our purposes, we assume that τei,p depends on
|p| only.

Linearizing the drifting distribution function n(cm)
F (p) ≈

(1 − vcm · p∂ξp )nF (ξp) in Iee{ f }, where vcm is the center of
mass velocity, we recast Eq. (8) in the form(

−eẼ − ξp
∇T

T

)
· vp

∂nF (ξp)

∂ξp

= −δ fp

τ̃p
+ e(vp × B) · ∇pδ fp, (11)

with the effective electric field

Ẽ = E − mvcm

eτee
, (12)

and the total scattering rate

1

τ̃p
= 1

τei,p
+ 1

τee
. (13)

The inelastic scattering rate 1/τee contributes a temperature
dependence to 1/τ̃p that is not present when studying elas-
tic electron-impurity scattering alone. As far as the effective
electric field Ẽ is concerned, the distinction between E and
Ẽ becomes crucial whenever electrons acquire a finite center
of mass velocity as a result of the applied electric field or
temperature gradient. We see that with these definitions for the
effective field Ẽ and total scattering rate 1/τ̃p, the linearized
Boltzmann equation in the form (11) is formally equivalent to
the equation governing linear response in electronic systems
with only elastic scattering in the RTA. The solution of this
equation is well known [2]. The deviation from the equilib-
rium distribution function δ fp takes the form

δ fp = τ̃p

1 + (ωcτ̃p)2

∂nF (ξp)

∂ξp
vp·

×
[
{1 + ωcτ̃p(n̂B×) + (ωcτ̃p)2n̂B(n̂B·)}

(
eẼ + ξp

∇T

T

)]
,

(14)

where we defined the cyclotron frequency ωc = eB/m and
the unit vector n̂B = B/|B|. The product of ωc and a typical
scattering time, in our case τ̃p, frequently appears in stud-
ies of electronic transport under the influence of a magnetic
field. This product describes the competition between peri-
odic cyclotron motion and delocalizing scattering processes.
The Landau level quantization is not accounted for in the
Boltzmann equation (11). We will therefore assume that the
condition ωcτ̃p < 1 holds. Under this condition, the broaden-
ing of the Landau levels caused by the scattering of various
kinds is larger than the spacing between consecutive Landau
levels. An additional smoothening of the Landau levels results

from the motion along the magnetic field direction, if the
system is three dimensional.

It is worth noting that obtaining the solution provided by
Eq. (14) does not complete the problem of finding the trans-
port coefficients. The reason is that the effective electric field
Ẽ contains the center of mass velocity vcm, which itself de-
pends on the nonequilibrium part of the distribution function
δ fp. This dependence will be accounted for in the next section
when calculating the transport coefficients self-consistently.

IV. TRANSPORT COEFFICIENTS

This section is concerned with the transport coefficients
characterizing the electric and thermal currents flowing in
response to an electric field or temperature gradient in the
presence of a magnetic field B with arbitrary orientation.
To find these coefficients, we make use of Eq. (14) for the
nonequilibrium distribution function δ fp to calculate the elec-
tric and thermal currents

JE = −se
∫

p
vpδ fp, (15)

JT = s
∫

p
ξpvpδ fp, (16)

with the particle density N = s
∫

p nF (ξp) and the spin de-
generacy s = 2. Here, and in the following, we use the
notation

∫
p = ∫

dd p/(2π )d . The right-hand side of Eq. (14)
still depends on δ fp implicitly through the drift velocity vcm

contained in Ẽ. Indeed, the drift velocity is given as vcm =
s
∫

p pδ fp/(Nm). This does not pose a problem, however,
since we can eliminate vcm in favor of the electric current
JE = −N evcm. We can therefore find the currents JE and
JT as a function of E and ∇T . This leads directly to the
conductivity tensors for electric, thermal, and thermoelectric
transport, Eq. (1). However, here we will choose a different
representation that allows for a more straightforward compar-
ison with experimental measurements and write E and JT as
functions of JE and ∇T as in Eq. (2). Technical details of the
calculation are relegated to Appendix. The result can be con-
veniently formulated by introducing the following notation

ρ̂ = ρ⊥ + RH (B×) + (ρ‖ − ρ⊥)n̂B(n̂B·), (17)

α̂ = S⊥ + η(B×) + (S‖ − S⊥)n̂B(n̂B·), (18)

κ̂ = κ⊥ − κL(B×) + (κ‖ − κ⊥)n̂B(n̂B·). (19)

Furthermore, the Peltier coefficient tensor π̂ can be eliminated
in favor of α̂ by way of the relation π̂ = T α̂. The resulting
equations take the form

E = ρ⊥JE + S⊥∇T + B × (RH JE + η∇T )

+ (ρ‖ − ρ⊥)n̂B(n̂B · JE ) + (S‖ − S⊥)n̂B(n̂B · ∇T ),
(20)

JT = T S⊥JE − κ⊥∇T + B × (T ηJE + κ⊥L∇T )

+ T (S‖ − S⊥))n̂B(n̂B · JE ) − (κ‖ − κ⊥)n̂B(n̂B · ∇T ).
(21)

We see that linear response transport for our isotropic model
is determined by nine independent transport coefficients.
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Electric transport in the absence of a temperature gradi-
ent is characterized by three coefficients, the resistivity in a
perpendicular magnetic field ρ⊥, the resistivity in a parallel
magnetic field ρ‖, and the Hall coefficient RH ,

ρ⊥ = m

N e2

(
Y00

Y 2
00 + Y 2

01

− 1

τee

)
, (22)

RH = − m

N e2

1

B

Y01

Y 2
00 + Y 2

01

, (23)

ρ‖ = m

N e2

(
1

〈〈τ̃p〉〉 − 1

τee

)
. (24)

In order to formulate the results in a compact form, we intro-
duced the following matrix

Ymn =
〈〈
ξm

p (ωcτ̃p)nτ̃p

1 + (ωcτ̃p)2

〉〉
. (25)

Here, for any physical quantity Xp, the average 〈〈. . . 〉〉 is de-
fined as

〈〈Xp〉〉 = − 2s

dN

∫
p

Xp(ξp + μ)
∂nF (ξp)

∂ξp
. (26)

The weight (ξp + μ) appearing in the definition of the average
may also be expressed in terms of the square of the velocity,
v2

p = 2(ξp + μ)/m.
The inelastic scattering rate 1/τee enters the Eqs. (22)–(24)

in two distinct ways. First, it enters through the total scattering
rate 1/τ̃p, implicitly contained in the function Ymn. Secondly,
the expressions for ρ⊥ and ρ‖ contain 1/τee explicitly. This
dependence on 1/τee has its origin in the vcm dependence of
the drifting distribution function, a dependence that arises due
to the conservation of the total momentum during electron-
electron collisions. It is worth mentioning that all coefficients
ρ⊥, RH , and ρ‖ are even in B in agreement with the Onsager
relation Eq. (5).

Thermoelectric transport depends on the coefficients

S⊥ = − 1

eT

Y00Y10 + Y01Y11

Y 2
00 + Y 2

01

, (27)

η = − 1

eT

1

B

Y00Y11 − Y01Y10

Y 2
00 + Y 2

01

, (28)

S‖ = − 1

eT

〈〈ξpτ̃p〉〉
〈〈τ̃p〉〉 . (29)

Here, S⊥ (S‖) is the Seebeck coefficient, or thermoelectric
power, in perpendicular (parallel) magnetic field; η is the
Nernst coefficient. Note that S‖ does not depend on the mag-
netic field, S‖ = S⊥(B = 0).

In view of the Onsager relations, in combination with the
relation π̂ = T α̂, we expect α̂(B) = α̂T (−B), and therefore
the coefficients S⊥, S‖, and η must be even in B. This property
can indeed be checked from the explicit relations.

The following three coefficients determine thermal trans-
port

κ⊥ = N
mT

(
Y20 − Y00

(
Y 2

10 − Y 2
11

) + 2Y01Y10Y11

Y 2
00 + Y 2

01

)
, (30)

κ⊥L = − N
mT

1

B

(
Y21 − Y01

(
Y 2

11 − Y 2
10

) + 2Y00Y10Y11

Y 2
00 + Y 2

01

)
, (31)

κ‖ = N
mT

(〈〈
ξ 2

p τ̃p
〉〉 − 〈〈ξpτ̃p〉〉2

〈〈τ̃p〉〉
)

. (32)

In these equations, κ⊥ and κ‖ are the thermal conductivities
in perpendicular and parallel magnetic field, respectively; L is
the thermal Hall (or Righi-Leduc) coefficient. All coefficients
are even in B, in accordance with Eq. (6). Just as ρ‖ and S‖, κ‖
does not depend on B, κ‖ = κ⊥(B = 0).

In theoretical studies, it is often easier to find the com-
ponents of the generalized conductivity matrix connecting
currents and external perturbations in Eq. (1) than the compo-
nents of the matrix of Eq. (2), which is more directly related
to experimental observations. Let us therefore mention here,
for the example of the resistivity and conductivity tensors,
the relation between the coefficients used to parametrize the
matrix ρ̂ [compare Eq. (17)] and an analogous parametrization
of the matrix σ̂ . Defining the coefficients σ⊥, σ‖, and αH ,
through the following equation (for ∇T = 0)

JE = σ⊥E − αH B × E + (σ‖ − σ⊥)n̂B(n̂B · E), (33)

one finds the following relation between the components

σ⊥ = ρ⊥
ρ2

⊥ + ρ2
H

, σ‖ = 1

ρ‖
, αH = 1

B

ρH

ρ2
⊥ + ρ2

H

, (34)

where ρH = RH B is the Hall resistivity.
The linear response equations Eqs. (20) and (21) in com-

bination with the general expressions for the coefficients
Eqs. (22)–(24) and (27)–(32) are the main results of this
paper. They characterize electric, thermal, and thermoelec-
tric transport accounting for electron-electron scattering and
momentum-dependent electron-impurity scattering, for an
arbitrary orientation of the magnetic field. In two spatial di-
mensions, only the magnetic field component perpendicular
to the plane is effective. In this case, the coefficients ρ‖, S‖,
and κ‖ are not required for the characterization of transport,
and the second lines of both Eqs. (20) and (21) should be
discarded. Within the framework of the Boltzmann equation,
these stated results are exact. Below, we will discuss the
implications for different parameter regimes.

The main purpose of this paper is to discuss how elastic
and inelastic scattering times of similar magnitude influence
different transport coefficients. In principle, the formulas de-
rived on the basis of the Boltzmann equation below are also
applicable when either the elastic scattering time is much
shorter than the inelastic scattering time, or in the opposite
limit, which corresponds to the hydrodynamic regime. How-
ever, an important aspect relevant for the comparison with
hydrodynamics is that the role of elastic scattering can be
quite different for imperfections of different type. Here, we
implicitly assume that the size of the impurities is smaller
than both elastic and the inelastic mean free paths. This con-
trasts a typical hydrodynamic approach in which variations
of the potential are assumed to be smooth, as for example in
Ref. [7], or scattering on a boundary is considered as, e.g., in
Ref. [27]. In Ref. [7], charge and heat transport in the pres-
ence of large-scale inhomogeneities was studied. We, in turn,
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consider systems in which small-size impurities distributed
homogeneously in the bulk of the liquid are weak and dense.

A. Dependence on the magnetic field direction

Equations (20) and (21) are valid for an arbitrary direction
of the magnetic field. Choosing a setup with perpendicular and
parallel magnetic fields simplifies the equations and highlights
the physical significance of the coefficients. We choose the
direction of the electric current JE (the temperature gradient
∇T ) as a reference for the direction of the magnetic field when
∇T = 0 (when JE = 0). After discussing these two limiting
cases, we consider the general case of a tilted magnetic field.

1. Perpendicular and parallel magnetic fields

a. B ⊥ JE , ∇T = 0. Here, both the electric field and the
thermal current are confined to the plane spanned by JE and
B × JE ,

E = ρ⊥JE + RH B × JE , (35)

JT = T S⊥JE + T ηB × JE . (36)

Neither of these quantities has a component in the direction of
the magnetic field.

b. B ⊥ ∇T , JE = 0. In this case, the electric field and
thermal current both lie in the plane spanned by ∇T and
B × ∇T ,

E = S⊥∇T + ηB × ∇T, (37)

JT = −κ⊥∇T + κ⊥LB × ∇T . (38)

c. B ‖ JE , ∇T = 0. The magnetic field, the electric cur-
rent, the thermal current, and the electric field are all parallel
to each other, E = ρ‖JE , JT = T S‖JE .

d. B ‖ ∇T , JE = 0. Here, the magnetic field, the electric
field, the temperature gradient, and the thermal current are
parallel, E = S‖∇T , JT = −κ‖∇T .

2. Tilted magnetic field

An interesting observation can be made for the case of an
arbitrary magnetic field direction, see Fig. 1. For the purpose
of illustration we highlight the case of electric transport in
the absence of a temperature gradient, which is characterized
by the three coefficients ρ⊥, ρ‖, and RH . Alternative setups
involving the other transport coefficients can be discussed in
analogy. For the case under consideration, we have

E = ρ⊥JE + RH B × JE + (ρ‖ − ρ⊥)n̂B(n̂B · JE ). (39)

We see that for an arbitrary direction of the magnetic field, n̂B
can have a component in the direction of the electric current.
This observation motivates the following decomposition

n̂B = n̂‖
B + n̂⊥

B , (40)

n̂‖
B = n̂JE (n̂JE · n̂B), (41)

n̂⊥
B = n̂JE × (n̂B × n̂JE ), (42)

FIG. 1. This figure shows the different vectors that are important
for the discussion of electric transport for the general tilted magnetic
field case in three dimensions, when B is neither perpendicular nor
parallel to JE . In this case, an electric field component parallel to
n̂⊥

B ∝ JE × (B × JE ) arises, i.e., the electric field has a component
pointing out of the plane spanned by B and JE × B, unlike for
the perpendicular magnetic field case. This component along n̂⊥

B is
nonvanishing only for ρ‖ 	= ρ⊥, as can be seen from Eq. (43).

where n̂‖
B is parallel to the electric current and n̂⊥

B is perpen-
dicular. This allows us to bring Eq. (39) into the form

E = [ρ⊥ + (n̂‖
B)2(ρ‖ − ρ⊥)]JE + RH B × JE

+ (ρ‖ − ρ⊥)(n̂‖
B · JE )n̂⊥

B , (43)

with three mutually orthogonal vectors JE , B × JE , and n̂⊥
B .

This is illustrated in Fig. 1. The last term is relevant only
if JE and B are neither parallel nor perpendicular, i.e., for
general tilted magnetic fields. Then, the electric field develops
a component perpendicular to both JE and B × JE , which is
proportional to ρ‖ − ρ⊥.

B. Constant elastic scattering rate

If we eliminate the momentum dependence of τei, τ̃p → τ̃ ,
then we find

ρ⊥ = ρ‖ = ρ0, RH = RH0, (44)

S⊥ = S‖ = S0, η = 0, (45)

κ⊥ = κ0, κ‖ = κ0(1 + (ωcτ̃ )2), L = L0, (46)

where

ρ0 = m

N e2τei
, RH0 = − 1

N e
, S0 = − 1

eT
〈〈ξp〉〉,

κ0 = N
mT

τ̃

1 + (ωcτ̃ )2

(〈〈
ξ 2

p

〉〉 − 〈〈ξp〉〉2), L0 = −eτ̃

m
. (47)

At low temperatures T � εF , the two moments of ξp entering
the expressions for κ0 and S0 are 〈〈ξ 2

p 〉〉 = π2T 2/3 and 〈〈ξp〉〉 =
π2T 2/2εF .

A few remarks are in order here. For a constant scattering
time τei, the coefficients ρ0, RH0, S0, and η do not depend on
τee. In this limit, the Fermi sphere is shifted as a whole under
the influence of the electric field. As a consequence, inelas-
tic scattering becomes ineffective for the conductivity tensor
σ̂ , cross effect tensor N̂ , and the Onsager related M̂. This
argument does not hold for the components of the thermal
conductivity tensor due to the additional factor ξp associated
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with the temperature gradient in Eq. (14). Furthermore, for the
thermal conductivity, a difference between parallel ‖ and per-
pendicular ⊥ components remains in the limit of constant τei,
i.e., κ‖ 	= κ⊥. This leads to a nontrivial angular dependence as
can be seen from the thermal analog of Eq. (43). Finally, κ⊥
is the only coefficient that depends on B for a constant elastic
scattering rate.

V. DISCUSSION

The temperature dependence of the transport coefficients
originates from two sources. First, from the thermal smear-
ing encoded in the averages 〈〈. . . 〉〉 defined in Eq. (26),
and secondly from the temperature dependence of the in-
elastic scattering rate. The latter is a phenomenological
parameter and needs to be fixed externally. For a momentum-
independent elastic scattering rate, the results for the transport
coefficients simplify considerably, see Sec. IV B. As we will
discuss below, it is often the momentum dependence of the
elastic scattering rate that induces interesting dependences of
the coefficients on temperature and magnetic field. For the
sake of the discussion, we therefore single out the momentum-
dependent part of the elastic scattering rate

1/τei,p = 1/τei + δ�p. (48)

The entire dependence of the transport coefficients on δ�p is
encoded in the averages Ymn, as can be seen from Eqs. (22)–
(32). The momentum dependence of the elastic scattering rate
enters these averages in the form of the combination 1/τ̃p =
1/τ̃ + δ�p. When changing the temperature, two competing
trends influence Ymn. Typically, 1/τee increases with increas-
ing temperature. Then, the momentum dependence of δ�p
becomes less important in comparison to the total scattering
rate and so does its influence on Ymn and the transport coeffi-
cients. On the other hand, a larger range of momenta is probed
in Ymn as the temperature increases due to the weighting factor
∂nF (ξp)/∂ξp entering the averages [compare Eq. (26)]. This
effect enhances the influence of δ�p when the temperature
grows.

Figures 2–5 illustrate the temperature and magnetic field
dependence of the transport coefficients ρ⊥, S, η, ρ‖ =
ρ⊥(B = 0), and S‖ = S⊥(B = 0). In addition, Figs. S1–S3
display RH , κ⊥, κ‖ = κ⊥(B = 0), and L [22]. Knowledge
of these coefficients is sufficient for the characterization of
transport in a magnetic field of arbitrary direction. In all
figures, we apply the same notation. Solid lines illustrate
results for a momentum-dependent elastic scattering rate.
Solid black, red, and blue lines are computed for ωcτei =
0, 0.4, 0.8, respectively. Dashed lines are calculated for a
momentum-independent scattering rate. As we have already
mentioned, the thermal conductivity κ⊥ is the only coefficient
that depends on the magnetic field even for a constant elastic
scattering rate. For the purpose of our illustrations, we as-
sume that the electron-electron scattering rate has a quadratic
dependence on temperature, as in a Fermi liquid at low tem-
peratures, with 1/τee = 3.44 × T 2/εF . We also assume that
disorder is weak and set 1/(εF τei ) = 0.01. For the illustrations
of the results, we choose the parametrization

τeiδ�p = w1ξp/εF + w2(ξp/εF )2 (49)

FIG. 2. The resistances ρ⊥, Eq. (22), and ρ‖ = ρ⊥(B = 0),
Eq. (24), normalized to the Drude result ρ0, Eq. (47), as a
function of temperature T . Solid lines illustrate results for a
momentum-dependent elastic scattering rate, parameterized accord-
ing to Eqs. (48) and (49) with 1/(εF τei ) = 0.01, w1 = 2.3, and w2 =
1.4. The inelastic scattering rate is chosen as 1/τee = 3.44 × T 2/εF .
The dimensionality is d = 3. Solid black, red, and blue lines are
computed for B = 0, ωcτei = 0.4, and ωcτei = 0.8, respectively. The
dashed line is calculated for a momentum-independent scattering rate
and coincides with ρ0. A detailed discussion of the results is provided
in Sec. V A.

with w1 = 2.3 and w2 = 1.4, and set the dimensionality to
d = 3. For the interpretation of the results, it will be instruc-
tive to expand the expressions for the transport coefficients in
powers of the momentum-dependent part of the elastic scatter-
ing rate δ�p. Next, we will discuss the characteristics of the
transport coefficients ρ⊥, ρ‖, S⊥, S‖, and η. A discussion of the
coefficients RH , κ⊥, κ‖, and L is provided in the Supplemental
Material [22].

A. Resistivity ρ⊥

For a constant elastic scattering rate, the resistivity ρ⊥
depends neither on temperature nor on the magnetic field. The
inelastic scattering time τee drops out in this case and only the
elastic scattering time τei enters the expression for ρ⊥,

ρ⊥ → ρ0 = m

N e2τei
, τei = const. (50)

A temperature dependence arises for ρ⊥ when the elastic
scattering rate becomes momentum dependent, δ�p 	= 0. For
B = 0, this case has first been discussed by Keyes [20],

ρ⊥ → m

N e2

(
1

〈〈τ̃p〉〉 − 1

τee

)
, B = 0, (51)

with notable limits ρ⊥ → m/N e2 × 〈〈τ−1
ei,p〉〉 for τee → 0 and

ρ⊥ → m/N e2 × 〈〈τei,p〉〉−1 for τee → ∞.
In this paper, we focus on the low-temperature regime,

T � εF , while the relation between 1/τei and 1/τee remains
arbitrary. Figure 2 shows ρ⊥ for different temperatures and
magnetic fields. The zeroth-order term ρ0, with respect to the
momentum-dependent part of the elastic scattering rate δ�p,
has already been discussed and is displayed in Eq. (50). The
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FIG. 3. The Seebeck coefficient S⊥, Eq. (27), as a function of
temperature T , and for different magnetic fields. Parameters as listed
in the caption of Fig. 2. In particular, the black solid line stands for
S⊥(B = 0) = S‖. A discussion is provided in Sec. V B.

first-order term reads

δρ
(1)
⊥ = m

N e2
〈〈δ�p〉〉. (52)

This term gives rise to a leading quadratic temperature de-
pendence for the form of δ�p used here, which is clearly
visible in Fig. 2. Further, we note that δρ

(1)
⊥ does not depend

on the magnetic field, which explains the weak magnetic field
dependence observed in Fig. 2.

B. Seebeck coefficient S⊥

For a momentum-independent elastic scattering rate, the
Seebeck coefficient S⊥ depends neither on the magnetic field
nor on any scattering mechanism,

S⊥ → S0 = − 1

eT
〈〈ξp〉〉, τei = const. (53)

S⊥ remains temperature dependent in this case; for example,
S⊥ ∝ T at low temperatures T � εF . It is worth noting that
S0 is finite only due to particle-hole asymmetry, for which
there are two sources in the model under consideration. The
first one is the ξp dependence of v2

p ∝ ξp + μ, which enters
the definition of the average, Eq. (26). The second source of
particle-hole asymmetry is the ξp dependence of the density
of states in three dimensions which becomes explicit upon
changing the integration variable from p to ξp in Eq. (26). For
a vanishing magnetic field, but general τei,p, one obtains

S⊥ → − 1

eT

〈〈ξpτ̃p〉〉
〈〈τ̃p〉〉 , B = 0, (54)

with limiting cases S⊥ = −〈〈ξpτei,p〉〉/(eT 〈〈τei,p〉〉) for τee 
τei,p and S⊥ = −〈〈ξp〉〉/eT for τee � τei,p. The key features of
this expression have already been discussed in Ref. [19].

In order to explore the combined effect of the magnetic
field and the momentum dependence of τei,p on the Seebeck
coefficient, we expand Eq. (27) up to linear order in δ�p. The
first order correction in δ�p reads as

δS(1)
⊥ = 1

eT

〈〈ξpδ�p〉〉 − 〈〈ξp〉〉〈〈δ�p〉〉
τ−1

ei + τ−1
ee

1

1 + (ωcτ̃ )2
. (55)

Unlike for the resistance ρ⊥, δ�p induces a sensitivity of
S⊥ to electron-electron collisions, disorder, and the magnetic
field already at linear order in the expansion. For the further

FIG. 4. The Seebeck coefficient S⊥, Eq. (27), as a function of
temperature T and for different magnetic fields. In comparison to
Fig. 3, the parameters are: 1/εF τei = 0.05, w1 = 2.35, w2 = 1.4,
1/τee = 9.1 × T 2/εF . Black, red, blue, and gray curves stand for
ωcτei = 0, 0.75, 1.5, and 3, respectively. A discussion is provided
in Sec. V B.

discussion, it is convenient to write the expression for δS(1)
⊥ as

the product of two factors

δS(1)
⊥ = δS(1)

⊥ (B = 0)[1 + (ωcτ̃ )2]−1. (56)

The first factor, δS(1)
⊥ (B = 0), stands for the correction to the

Seebeck coefficient in the absence of a magnetic field. The
second factor encodes the entire magnetic field dependence.
As discussed in Ref. [19], the correction δS(1)

⊥ can give rise
to a nonmonotonic temperature dependence of the Seebeck
coefficient S⊥ for B = 0. Let us briefly recall the argument.
At low temperatures, T � εF , and for B = 0, the correction
to the Seebeck coefficient (in d = 2, 3 dimensions) becomes

δS(1)
⊥ (B = 0)

S0
= −

2
d w1 + 16

15w2
(

πT
εF

)2

1 + τei/τee
. (57)

The leading temperature dependence, i.e., the w1 term in the
low-temperature expansion, originates from the term 〈〈ξpδ�p〉〉
in Eq. (55).

An important observation is that δS(1)
⊥ is not necessarily

smaller than S0. This is because both depend on particle-hole
asymmetry. For S0, this dependence reveals itself through the
average 〈〈ξp〉〉, which is finite due to a nonconstant density
of states and/or a nonconstant velocity, as discussed above.
δS(1)

⊥ , on the other hand, is finite due to the momentum depen-
dence of the elastic scattering rate. In three dimensions, for
example, the origin of this momentum dependence may also
be the density of states, just as for S0. The natural behavior
in this case is w1 > 0 and as a consequence δS(1)

⊥ and S0 have
opposite signs at low temperatures. The expected temperature
dependence of S⊥ is as follows: S⊥ vanishes for T → 0. At
low but finite temperatures, S⊥ may be positive if δS(1) dom-
inates. For higher temperatures τee becomes shorter, resulting
in a suppression of δS(1). As a consequence, S⊥ displays a
maximum and subsequently changes sign to become negative
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at higher temperatures, just as the now dominant S0. The
temperature scale at which the maximum of S⊥ occurs can be
estimated by equating τee and τei. In the presence of the mag-
netic field, δS(1)

⊥ is suppressed by the factor [1 + (ωcτ̃ )2)]−1

[compare Eq. (56)]. The suppression becomes stronger for
higher magnetic fields. As a consequence, a sign change of
S⊥ now requires the more stringent condition w1 > 2/d ×
[1 + (ωcτei )2]. The influence of the magnetic field is most
pronounced at low temperatures. Indeed, if τee decreases with
increasing temperature, which is the natural behavior, so does
the product ωcτ̃ .

The temperature and magnetic field dependence of S⊥ as
obtained from Eq. (27) is illustrated in Fig. 3. We see that
in accordance with our discussion (i) for B = 0 the Seebeck
coefficient displays a nonmonotonic temperature dependence
with a maximum at finite temperatures and a sign change,
(ii) a sufficiently large magnetic field suppresses the maxi-
mum, (iii) the influence of the magnetic field decreases with
increasing temperature, and (iv) δS(1)

⊥ /S0 decreases with in-
creasing temperature. One may, thus, conclude that measuring
temperature dependence of the Seebeck coefficient at various
magnetic fields provides an effective tool for determining
the magnitude of the electron-impurity and electron-electron
scattering rates.

Reference [21] reported a measurement of the Seebeck
coefficient in Si:P near the 3d metal-insulator transition. This
experiment was performed at very low temperatures <1 K
in order to minimize the influence of phonons. Due to the
closeness to the metal-insulator transition, electron-electron
interactions are expected to be strong. On the metallic side
of the transition, the Seebeck coefficient displays a nonmono-
tonic temperature dependence qualitatively similar to the one
discussed above. Moreover, a suppression of the maximum
is observed at finite magnetic fields, eventually leading to an
almost linear temperature dependence at the highest magnetic
fields in the experiment. The authors of Ref. [21] interpret the
observed behavior in terms of the Kondo effect (Ref. [28])
that may arise close to the metal-insulator transition due to
the formation of magnetic moments. Motivated by the ex-
perimental observations, we display the Seebeck coefficient
as calculated from Eq. (27) once more in Fig. 4. Compared
to Fig. 3, both the electron-impurity and electron-electron
scattering rates are increased (in relation to the Fermi energy)
in Fig. 4, and higher values of ωcτei are included. (Note that
in the latter case the Landau level quantization may become
relevant before thermal smearing smooths out quantization
effects with increasing temperature.) We see that the main
features of the experiment are well reproduced. Unfortunately,
a direct comparison to the experiment is difficult due to the
uncertainty in the relevant energy scales. We can conclude,
however, that Eq. (27) provides a good phenomenological
description of the observed behavior.

C. Nernst coefficient η

The Nernst coefficient η can be discussed along similar
lines as S⊥. An obvious difference is that the Nernst co-
efficient vanishes for arbitrary magnetic fields when τei is
constant. A finite Nernst coefficient is obtained, however,
when the momentum dependence of τei,p is accounted for. At

FIG. 5. The Nernst coefficient η, Eq. (28), normalized to η• =
τei/m, as a function of temperature T , and for different magnetic
fields. Parameters as listed in the caption of Fig. 2. A discussion is
provided in Sec. V C.

first order in δ�p one finds

δη(1) = 1

eT B

ωcτ̃
2

1 + ω2
c τ̃

2
(〈〈ξpδ�p〉〉 − 〈〈ξp〉〉〈〈δ�p〉〉). (58)

We have already encountered the combination of averages in
round brackets in the expression for S(1)

⊥ given in Eq. (55).
At low temperatures, the leading contribution comes from the
first term, 〈〈ξpδ�p〉〉 ∝ w1T 2, which implies that the Nernst
coefficient is proportional to T . For B → 0 the only other
source of temperature dependence comes from the factor τ̃ 2.
This factor is approximately constant at low T when τee  τei,
and decreases at higher temperatures, when τee � τei and
τ̃ 2 ∼ τ 2

ee. Consequently, the Nernst coefficient is positive and
goes through a maximum at finite T . A rough estimate for the
temperature scale at which the maximum occurs is obtained
from the condition τei = τee. The magnetic field dependence
of δη(1) is governed by the factor [1 + ω2

c τ̃
2]−1, which equals

[1 + ω2
cτ

2
ei]

−1 for T → 0, and then successively approaches 1,
when τ̃ 2 diminishes with increasing temperature. Therefore,
the magnetic field dependence is most pronounced at low tem-
peratures and becomes weak for τee � τei. All the described
features are visible in Fig. 5, which is obtained directly from
the exact result in Eq. (28).

VI. CONCLUSION

In this paper, we studied the combined effect of electron-
electron and electron-impurity scattering on charge and heat
transport in metallic systems at intermediate temperatures.
We employed a simple kinetic equation approach, in which
both collision integrals are treated in the relaxation time ap-
proximation, and studied the linear response of the system.
We found expressions for all relevant transport coefficients
in the presence of a magnetic field of arbitrary direction and
analyzed the influence of the momentum dependence of the
electron-impurity scattering time in detail. The results are
applicable for two- and three-dimensional systems.

Despite its simplicity, the model used in this paper captures
a key element of the kinetics of disordered electronic systems:
the competition between the relaxation of the distribution
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TABLE I. The transport coefficients studied in this paper. The
coefficients are defined through Eqs. (20) and (21) and calculated
on the basis of the Boltzmann equation displayed in Eqs. (8)-(10).
The table gives the equations in which the results for the coefficients
are stated and the figures in which their temperature and magnetic
field dependence is illustrated. The coefficients ρ‖ = ρ⊥(B = 0),
S‖ = S⊥(B = 0), and κ‖ = κ⊥(B = 0) are described by the black
solid lines in these figures.

Resistivity ρ⊥ Eq. (22), Fig. 2
ρ‖ Eq. (24), Fig. 2

Hall coefficient RH Eq. (23), Fig. S1
Seebeck coefficient S⊥ Eq. (27), Figs. 3, 4

S‖ Eq. (29), Figs. 3, 4
Nernst coefficient η Eq. (28), Fig. 5
Thermal conductivity κ⊥ Eq. (30), Fig. S2

κ‖ Eq. (32), Fig. S2
Righi-Leduc coefficient L Eq. (31), Fig. S3

function towards equilibrium in the laboratory frame caused
by electron-impurity scattering and the relaxation towards
the drifting distribution function resulting from the electron-
electron interaction. This drift enters the linearized kinetic
equation through the center of mass velocity vcm. It is straight-
forward to follow the effect of a finite center of mass velocity
on the transport coefficients in this approach, because vcm

is accompanied by an explicit factor of the electron-electron
scattering rate 1/τee, as can be seen from Eq. (12). Out of the
three independent tensors ρ̂, α̂, and κ̂ , only ρ̂ is affected by the
finite drift velocity, while the others depend on τee only via the
total scattering rate 1/τ̃p. It should be emphasized, however,
that the situation is quite different when the conductivity ten-
sor σ̂ , thermal flow tensor L̂, and cross effect tensors N̂ and
M̂ are used for characterizing the transport processes. These
are all affected by the drift.

Table I provides a guide to the results obtained for the
different transport coefficients in this paper and the figures
that serve as illustrations. It is worth stressing several pecu-
liarities. Only the thermal conductivities κ⊥,‖ and the thermal
Hall (Righi-Leduc) coefficient L depend on 1/τee even for
a constant elastic scattering rate, in contrast to the electrical
resistances ρ⊥/‖, the Hall coefficient RH , the Seebeck coeffi-
cients S⊥/‖, and the Nernst coefficient η. The Hall coefficient
RH displays a very weak dependence on both the electron-
electron scattering rate and the momentum dependent part of
the electron-impurity scattering rate �p, as long as the latter
is weak compared to 1/τei. The coefficients ρ⊥,‖, S⊥/‖, and
η only depend on 1/τee if 1/τei,p is momentum dependent.
For S⊥,‖, we argued that the correction originating from a
finite δ�p can be of the same order as the result obtained for
δ�p = 0. In the case of η, a finite δ�p is even more impactful,
since η = 0 for δ�p = 0.

For all coefficients, the competition between τei,p and τee

plays an important role for the temperature dependence. The
magnetic field enters in combination with the total scattering
time as ωcτ̃p. This product can contribute to the temperature
dependence in two ways: first, directly through the tem-
perature dependence of τee, and second more indirectly via
the momentum dependence of τei,p which induces a further

sensitivity of the transport coefficients to the occupation
of states in momentum space. The temperature dependence
of the transport coefficients becomes particularly intriguing
when the energy scales 1/τei, 1/τee, and ωc are of the same
order. We analyzed the temperature and magnetic field depen-
dence of the Seebeck coefficient in this case, which shows
a striking qualitative similarity with experimental results on
the Seebeck coefficient of Si:P on the metallic side of the 3d
metal-insulator transition. A detailed analysis of the experi-
mental results, however, is beyond the scope of this work. We
hope that the results obtained within the simple model system
studied here can serve as a guide for experimental studies of
the electron kinetics at not too low temperatures.
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APPENDIX: DERIVATION OF THE TRANSPORT
COEFFICIENTS

Inserting the expression for δ f stated in Eq. (14) into
the defining relations for the electric and thermal currents,
Eqs. (15) and (16), we find the following set of equations

M0E = m

N e2

(
1 − 1

τee
M0

)
JE − 1

eT
M1∇T, (A1)

JT = − N
mT

M2∇T − N e

m
M1

(
E + m

N e2τee
JE

)
. (A2)

Here, we defined the three matrices

Mi = Yi0 + Yi1(n̂B×) + Yi2n̂B(n̂B·), i ∈ {0, 1, 2}, (A3)

where the matrix Ymn is defined in Eq. (25).
In order to find E and JT as functions of JE and ∇T ,

Eq. (A1) can be solved for E and may be used to eliminate
the electric field from the second equation in favor of JE and
∇T . These steps result in the two equations,

E = m

N e2τee

(
τeeM

−1
0 − 1

)
JE − 1

eT
M−1

0 M1∇T, (A4)

JT = −1

e
M1M

−1
0 JE − N

mT
[M2 − M1M

−1
0 M1]∇T . (A5)

By comparison with Eq. (2), we find

ρ̂ = m

N e2τee

(
τeeM

−1
0 − 1

)
, (A6)

α̂ = − 1

eT
M−1

0 M1, (A7)

π̂ = −1

e
M1M

−1
0 , (A8)

κ̂ = N
mT

[
M2 − M1M

−1
0 M1

]
. (A9)
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In order to find explicit expressions for these tensors, we need
to know the inverse of the matrix M0,

M−1
0 = Y00 − Y01(n̂B×)

Y 2
00 + Y 2

01

+
(
Y 2

01 − Y00Y02
)
n̂B(n̂B·)(

Y 2
00 + Y 2

01

)
(Y00 + Y02)

. (A10)

It is easily checked that the two matrices M−1
0 and M1 com-

mute, so that π̂ = T α̂. The relations stated above enable us to
find the transport coefficients given in Eqs. (22)–(24), (27)–
(32). Let us note that the expression for ρ‖ was obtained using
the relation Ym0 + Ym2 = 〈〈ξm

p τ̃p〉〉 for m = 0. In particular, the
combination Ym0 + Ym2 is magnetic field independent and so
is ρ‖ = ρ⊥(B = 0).
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