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This paper reports a unique behavior expected for the optical excitations in one-dimensional Mott insulators.
When the intersite Coulombic attraction does not work between two elementary charge excitations, i.e., a
doublon and a holon, the lowest optical excitations are described as an unbound pair of them, still having finite
mutual correlation due to the forbidden double occupancy on the same site. We find that, in such a situation,
the pairs obey a particle statistics that exceeds that of ordinary bosons. This feature appears most directly in the
enhancement factor of the matrix element for the pair photocreation. We discuss the possible mechanism for this
ultrabosonic behavior and also demonstrate that this behavior is maintained even if we include a small amount of
interiste Coulomibic interaction. Lastly, this enhancement factor almost coincides with that for ordinary bosons
when the degree of the intersite interaction exceeds a certain value that switches on the formation of a bound
doublon-holon pair.

DOI: 10.1103/PhysRevB.102.245114

I. INTRODUCTION

The physics of the optically excited states in one-
dimensional (1D) Mott insulators has attracted much attention
in recent decades [1,2]. One of the pioneering works is the rig-
orous proof [3] of spin-charge separation [4–10] in the limit of
strong on-site repulsion (U ) in the 1D Hubbard model. In this
theory, the entire Hilbert space is decoupled into the charge
sector and the spin sector, including not only the ground state
but also any excited state. Subsequent to this work, the low-
energy optical excitations have been extensively studied from
various viewpoints [11–29].

The lowest optical excitations are described as a pair con-
sisting of a doublon (D) and a holon (H), which are doubly
occupied and empty sites of electrons, respectively, in a back-
ground of singly occupied sites corresponding to the Mott
insulator. One of the striking features of this pair state is the al-
most degenerate parity-even and parity-odd states of a bound
pair, which is completely different from the properties of
ordinary excitons in band insulators [13–16]. Recently, further
exploration focusing on the spin-charge-separation has been
conducted for finite U/T values with T being the nearest-
neighbor electron hopping, indicating that this concept holds
sufficiently in strong and intermediate U/T regions [30].

However, little is known regarding higher excitations, ow-
ing to the complexity of the states, except, for example, a

recent study about the biexcitonlike state [31]. We think that
higher excitations will become more and more important
in the near future. First, the higher excitation beyond one
DH pair is important when discussing photoinduced states
[32–35], where the higher excitation is the final state of the
transition starting from the initial photoinduced state. In other
words, the higher excitation is directly related to the probe part
of the pump-probe experiments. Moreover, intense light exci-
tations inevitably access the higher excitations. The so-called
photoinduced phase transitions in such cases are already at-
tracting fields at present and will also continue to in the future.

In this situation, we focus on the multi-DH-pair states and
report on their unexpected properties, particularly the charac-
teristic enhancements of the transition matrix element from
an n-pair-state to an (n + 1)-pair state. To investigate those
states, we employ the charge model, which was successfully
applied to the (linear) optical conductivity [30]. We now apply
it to multi-DH-pair states, since it is shown immediately that
the charge model also reproduces the spectra associated with
multi-DH-pair states obtained by the Hubbard model. As a
result, we found that the ratio of the matrix element to that of
n = 0 is

√
3 and

√
6 for n = 1 and n = 2, respectively. Appar-

ently, these numbers exceed those for the ordinary bosons that
are

√
2 and

√
3, respectively. This tendency is most outstand-

ing in the absence of the intersite Coulombic repulsion (V ),
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while it is gradually suppressed with increasing V , toward the
case of a bound DH pair showing an ordinary boson behavior.

Particle statistics has been one of the hot issues in the field
of condensed matter. As is well known, so-called anyons are
defined as particles of neither bosons nor fermions [36,37].
The emerging novel properties have attracted much attention,
stimulating their search in various systems. Although our find-
ing about the DH pairs is not of the anyon in the meaning
that they do not show any fermionic nature, the present result
indicates that they can be interpreted as not ordinary bosons
but ultrabosons.

As the last remark in this section, this enhancement can be
observed as an antibleaching effect on the photoinduced opti-
cal conductivity, in contrast to the ordinary bleaching effect.
As is already mentioned, a strongly bound DH pair behaves
like an ordinary boson, which leads to conventional bleaching
effect in the photoinduced spectra. In contrast to this, a weakly
bound pair and an unbound pair as an ultraboson are expected
to show the enhancement for multiple excitations, which can
be observed as an antibleaching effect, using femtosecond
pump-probe experiments. Since the types of realized DH pairs
depend on the degree of V , the variety of the photoinduced
spectra will be observed after changing the materials system-
atically.

This paper is organized in the following way. The intro-
duction is given in Sec. I. The model and the method are
introduced in Sec. II. The third and fourth sections are ded-
icated to the results in the cases without and with the V term,
respectively. The conclusions and discussions are given in the
last section.

II. MODEL AND METHOD

To analyze the properties of DH pairs, we avoid the di-
rect investigation of the extended Hubbard model and instead
investigate the recently proposed charge model; both because
the latter model enables calculations in a larger system and be-
cause of the substantial system-size dependency of the results,
as will be shown later. The charge model is an effective model
that extracts the charge degrees of freedom of the extended
Hubbard model and successfully reproduces the optical con-
ductivity spectra, down to at least U/T ∼ 5 [30]. Here, T is
the nearest-neighbor electron hopping.

The charge model is converted into a more convenient
form as the previous definition only gives the matrix elements
without a particle description. The procedure, explained in
Appendix A, exactly converts the model into the following
hard-core boson model:

H = −T
∑

l

(d†
l+1dl + h.c.) − T

∑
l

(h†
l+1hl + H.c.)

−T̃
∑

l

(
(d†

l+1h†
l + h†

l+1d†
l ) + H.c.

)

+(U/2)
∑

l

(
n(d )

l + n(h)
l

)

+V
∑

l

n(d )
l n(d )

l+1 + V
∑

l

n(h)
l n(h)

l+1

−V
∑

l

n(d )
l n(h)

l+1 − V
∑

l

n(h)
l n(d )

l+1

+Uc

∑
l

(d†
l d†

l dldl + h†
l h†

l hlhl + d†
l dlh

†
l hl ), (1)

where dl and hl are the boson operators for a D and an H,
respectively, with n(d )

l = d†
l dl and n(h)

l = h†
l hl , T̃ is

√
2CsT

with Cs = 0.82 [30], and Uc is taken as infinity.
We also mention the concrete definitions of the spectra

treated here. First, the real part of the ordinary optical conduc-
tivity (one-photon optical conductivity) defined for the ground
state (|0〉), namely, at zero temperature, is

σ (ω) = γ

πω

∑
n>0

|〈n|Ĵ |0〉 |2
(ω − En + E0)2 + γ 2

, (2)

where En and |n〉 are the nth eigenenergy and the eigenstate,
respectively, E0 is the ground-state energy, and γ is the broad-
ening factor. The definition of Ĵ is given in Appendix A.
We neglect the Drude component because it is not relevant
in this paper. Next we define two-photon optical conduc-
tivity, σ (2)(ω), which is almost the same as σ (ω), although
the ground state is replaced by the one-photon excited state,
indexed as n0, and the summation with respect to n has no
restriction,

σ (2)(ω) = γ

π

∑
n

|〈n|Ĵ |n0〉 |2
ωnn0

1

(ω − ωnn0 )2 + γ 2
, (3)

where ωnn0 is En–En0 . In more detail, the one-photon excited
state |n0〉 is parity (P)-odd and charge-conjugation (CC)-odd
in the charge model, while the allowed final state in σ (2)(ω)
is P-even and CC-even. This spectrum is different from the
true optical conductivity, derived for the excited state using a
linear response theory [38], which is

σex(ω) = γ

π

∑
n

|〈n|Ĵ |n0〉 |2
ωnn0

{
1

(ω − ωnn0 )2 + γ 2

+ 1

(ω + ωnn0 )2 + γ 2

}
. (4)

Note that the second term of Eq. (4), a de-excitation term, is
negative for positive ω. For simplicity, we use the former ex-
pression predominantly in this paper. Regarding the numerical
calculations, we follow a standard method; the ground state
is determined by a Lanczos method [39] and the spectrum is
calculated by a continued fraction [40].

III. CASES IN THE ABSENCE OF V

A. Overall features based on full calculations

Figure 1 shows the optical conductivity at excited states
(red line), σ (2)(ω), for (U, V )/T = (10, 0) and a system size
(N) of 16. This spectrum, defined in Eq. (3), is calculated by
selecting the state corresponding to each peak of the ordinary
optical conductivity (green lines), σ (ω), as the initial state
(see the arrows). When the two spectra are compared for each
case, the peaks of σ (2)(ω) take the energies that almost cor-
respond to those of σ (ω) in lower excitations, indicating that
the two-DH-pair states are mostly a repetition of the initial
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FIG. 1. (a) One-photon optical conductivity, σ (ω), calculated by
the charge model with (U, V )/T = (10, 0) and N = 16. The broad-
ening factor γ is 0.02T . (b)–(h) Two-photon optical conductivity
(red curve), σ (2)(ω), with σ (ω) (green curve). In each spectrum of
σ (2)(ω), the initial state is the state that corresponds to each peak of
(a), as shown by the arrows. (i) Schematic for the two spectra.

pair. Furthermore, we see that an enhanced absorption peak
appears at nearly the same energy as that of the initial exci-
tation, except for the highest excitation, where the intensity
of σ (ω) itself is very small. We find almost the same features
also in the Hubbard model, as shown in Appendix B, and are
confident that they are features common to both models.

B. Analyses based on approximate eigenfunctions

To interpret the above features, we propose approximate
eigenfunctions for the excited states in the absence of V ,
which are considered useful to extract the physics behind
the numerical results. First, the eigenfunctions for parity-
odd one-DH-pair states are expressed as |k〉 = O†(k) |0〉,
with O†(k) ≡ 1/

√
2N

∑
li(d

†
l+ih

†
l − h†

l+id
†
l ) fk (i) and fk (i) =

(2/
√

N ) sin(πki/(N/2)). Note that l takes the integers from
1 to N , while i and k from 1 to (N − 2)/2. Regarding the
parity-even two-DH-pair states, we express them using the
same operator as |k, k′〉 = (1/Nk,k′ )PO†(k)O†(k′) |0〉, where
P is the projection that excludes more than one occupation of
the particles at the same site and Nk,k′ is the normalization
factor that gives 〈k, k′| k, k′〉 = 1. This assumption is based
on the approximate nature found in the preceding subsection;
the parity-even two-DH-pair states mostly as a repetition of
the parity-odd one-DH-pair states. In principle, the former

FIG. 2. (a) Matrix elements for N = 16. Upper and lower dashed
curves follow C sin(πk′/(N/2)), with C = π

√
2 and 2

√
2, respec-

tively. (b), (c) Fitting and extrapolations toward infinite N , with
k = N/4. (d) Effective spectrum S(ω) (blue), ωσ (ω) (green), and
their difference (red).

states include the repetition of the parity-even one-pair states;
however, such states are expected to arise from |k, k′〉, which
is directly generated from |k〉, via electron-electron scattering.
As can be determined from Fig. 1, this will not have a large
effect.

Figure 2 shows the numerical results based on these
approximate functions. In Fig. 2(a), the matrix element
〈k, k′| J̃ |k〉 for N = 16 is plotted as a function of k′ for var-
ious k’s. The definition of the current operator J̃ is given in
Appendix A. The enhancement at k′ = k for each curve over
the background of k′ �= k can be clearly seen. The one-photon
matrix element, 〈k′| J̃ |0〉, equal to 2

√
2 sin(πk′/(N/2)), is

plotted for comparison. The behaviors for other values of N ,
with k = N/4, are given in Appendix C. In Fig. 2(b), each
background (k′ �= k) is fitted to C∗ sin(πk′/(N/2)) and its
coefficient is plotted as a function of 1/N . Figure 2(c) shows
the enhancement plotted for k = N/4. In the limit of infinite
N , the ratios, α ≡ C∗/(2

√
2) and β ≡ 〈k, k| J̃ |k〉 / 〈k| J̃ |0〉,

are evaluated as 1.0013 and 1.7320, respectively. Although
analytical estimation is difficult at this stage, these values
suggest special numbers, namely, 1 and

√
3, respectively. In

addition to the case k = N/4, we repeated these calculations
for the case k = N/8 and the case in which the smallest k
is selected for each N , to determine that both the cases also
extrapolate to the same numbers, as described in Appendix C.

The following analysis attempts to understand the mean-
ings of the above results, particularly, β. The expression for β

is altered to

β = 〈k, k| J̃ |k〉 / 〈k| J̃ |0〉
= 1

Nk,k
〈0| OkOkP

∑
k′′

fk′′ (1)O†
k′′O

†
k |0〉 / fk (1) , (5)

utilizing that J̃ can be expressed as
√

2N
∑

k fk (1)O†
k . In this

expression, the summation with respect to k′′ is found to be
limited to k′′ = k for infinite N , as shown in Appendix D,
leading to the final expression β = Nk,k . We also calculate
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the normalization factor independently and find that

lim
N→∞

Nk,k′ = 1 for k �= k′

=
√

3 for k = k′, (6)

which is consistent with the estimation for β. A similar value
for pure bosons, namely, (1/N ) 〈0| BBB†B† |0〉, where N is
the norm of B†B† |0〉, is

√
2, indicating the unique property of

the present operator. In our interpretation, this unique prop-
erty originates from the variety in the formation of the two
DH/HD pairs. For example, the sequential excitation of the
DH and HD pairs leads most directly to DHHD, while they
also lead to DHDH when DH contains HD, or to HDHD
when vice versa. We emphasize that the particles in a pair
can be apart to each other. Such states are superimposed on
the directly formed DHDH(= DH + DH) or HDHD(= HD +
HD), which is a coherent buildup of the coefficient.

Based on the above results, an effective spectrum for the
two-pair part of ωσex(ω), S(ω), is defined as

S(ω) = γ

π

[ ∑
k1�k2

|〈k1, k2|J̃ |k0〉 |2
(ε(k1) + ε(k2) − ε(k0) − ω)2 + γ 2

− |〈k0|J̃ |0〉 |2
(ε(k0) − ω)2 + γ 2

]
, (7)

with ε(k) = U − 4T cos(πk/(N/2)), shown in Fig. 2(d) for
N = 200 and k0 = N/4. As can be seen, S(ω) is enhanced at
the band center despite the de-excitation term and the differ-
ence from ωσ (ω) [41] is positive at the same position, taking
the form of antibleaching [42].

C. Estimation of β using a minimum model and a full model

The discussion so far is based on the approximate eigen-
functions. We subsequently investigate the same property
using a minimum model and a full model. The minimum
model consists of subspaces of zero, one, and two DH pairs,
with the couplings between them, T̃ , set to zero. In principle,
the corresponding part of the current operator is also zero;
however, it is considered infinitesimally small and the ratio
is taken as

∑
μ2∈Sc

| 〈φ(2)
μ2

| Ĵ |φ(1)
μ1

〉 / 〈φ(1)
μ1

| Ĵ |g〉 |2, where |φ(1)
μ1

〉
and |φ(2)

μ1
〉 are the eigenfunctions of the one- and two-DH-

pair states, respectively, and the Sc is the appropriate space
of the degenerate final states. We first investigate the case
of the initial excitation at the band center (k = N/4) in the
absence of V . Here, the summation within the subspace Sc is
calculated for the states with energy 2U . This degeneracy does
not disappear, even if the couplings between the subspaces are
included. As shown in Fig. 3(a), the value equivalent to β2 is
extrapolated to 3, which is consistent with the result obtained
by the approximate eigenfunctions. Regarding the excitation
at k = N/8, we find separated peaks in addition to the main
peaks, in σ (2)(ω). Since there is no such degeneracy found
for the band-center states, the accurate estimation of β is not
easy due to the scattered intensities of the enhanced peak,
which seem to be overlapped by those from the neighboring
non-enhanced main peaks. In Appendix E, we show our pre-
liminary estimation, based on the integrated intensities in an

FIG. 3. Evaluation of β2 values using (a) the minimum model
and (b) the full model. The model parameters are (U,V )/T =
(10, 0) commonly.

interval, and find that the value of β2 is substantially greater
than 2.

The full model can be used to further check the results from
the approximate eigenfunctions. The peak separation problem
mentioned above is more serious in this case, and we find the
same problem even at the excitation at the band center. There-
fore, we try the same procedure for the minimum model with
k = N/8; i.e., define an interval and take the ratio of the two
integrated intensities of ωσ (ω) and ωσ (2)(ω). Using the actual
spectrum and the interval described in Appendix F, we obtain
the N dependence of the intensity ratio, i.e., β2, as shown in
Fig. 3(b). The resulting extrapolated value is ∼2.8. Although
the present largest size is limited as N = 20, the β2 values
much larger than two strongly suggest that antibleaching can
be observed, despite the presence of actual fluctuation.

IV. CASES WITH FINITE V

In the following, we show the results found for finite
V . First, we introduce arguments based on the approximate
eigenfunctions. Here, we propose two types of states. The first
type corresponds to the limiting case of strong DH binding,
where the states are defined as |ex〉 ≡ O†

ex |0〉 and |2ex〉 ≡
(1/Nex)PO†

exO†
ex |0〉 for one- and two-DH-pair states with

distance one, respectively, and O†
ex ≡ (1/

√
2N )

∑
l (d

†
l+1h†

l −
h†

l+1d†
l ). The projection operator, P, is already defined, and

Nex is the norm of |2ex〉. In this case, we easily find that
〈2ex| Ĵ |ex〉 = Nex 〈ex| J̃ |0〉 and Nex = √

2(N − 3)/N . Note
that the factor (N − 3) originates from the trivial fact that
a neighboring DH excludes three sites for an additional
neighboring pair. Note that we do not assume any interpair
correlation, neglecting the formation of biexcitons. This sim-
ple result indicates that the above ratio (β for excitons) is

√
2

for infinite N , analogous to that of an ordinary boson. Another
type of states are similar to those already used for V = 0;
however, fk (i) is replaced with the eigenfunctions determined
within the one-DH-pair space with V = 3T . Note that an
excitonlike DH bound state is formed for this parameter as it
exceeds the critical value of Vc = 2T . The resultant β2 values
are plotted (circles) with those of 2(N − 3)/N (solid line) in
Fig. 4(a). We clearly see that both the extrapolated values
converge to 2 with high accuracy, indicating that a finite radius
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FIG. 4. (a) Evaluation of β2 values using approximate functions
and the minimum model for (U , V )/T = (10, 3). The solid line is
based on the simplest type of exciton function, while the exciton
function is explicitly determined for circles. The squares show the
results of the minimum model. (b) The evaluation of β2, using
approximate eigenfunctions for various V/T values. The system size
is N = 60, 100, 200, and 400, and U/T is fixed at 10.

of a DH bound state is irrelevant for this number, in the limit
of infinite N .

To validate the above result, we also perform the evaluation
using the minimum model. The minimum model is prepared
in the same way as previously, except the V term takes V =
3T . Being common to the full fluctuation case, the enhanced
part of the spectrum is not a single peak and requires a careful
treatment. Most roughly speaking, the peaks separate into two
peaks, which are assigned to DHDH- and DDHH-type states.
In addition to these, we see scattered intensities originating
from each peak. Therefore, we utilize a procedure that collects
all the distributed intensities, as explained in Appendix G.

The resultant extrapolation from this procedure gives the
same value as those by the approximate functions, although
the behavior is not simple, as shown in Fig. 4(a) (squares).
This complexity is thought to be related to the above two
species (DHDH and DHHD). Specifically, when the size is
smaller than a certain number around 60 (1/N ∼ 0.016), the
two states are nondegenerate and only one of the two peaks
is considered in the estimation. When N is much larger than
this number, the nondegeneracy disappears effectively within
the resolution given by the present smallest γ , and combined
peaks give an accurate extrapolation.

Thus far, our discussion has been limited to a strongly
bound DH pair. Another interesting case is the opposite, in
which the DH pair is either not formed or loosely bound in the
presence of a weak V . To better understand this case, we again
apply the approximate functions by changing V over a wide
range. Figure 4(b) shows the behavior found for the cases with
the first excitation fixed at the lowest energy. Common to all
the system sizes, when we increase the V value, β2 gradually
decreases from three; the unusual value does not disappear
suddenly, even if the effect of V is included. Such tendency
continues as we approach Vc = 2T , i.e., the boundary of a
bound DH pair and an unbound DH pair, where β2 becomes
less than two. Finally, for V larger than Vc, β2 is fixed at ap-
proximately two, which is consistent with our previous result.

What is interesting is the β2 values at V are slightly smaller
than Vc. The N dependencies strongly suggest that this is a
discontinuous transition at V = Vc. The two quantities giving

FIG. 5. Case of excitations from a two-DH-pair state to a three-
DH-pair state. In (a), N is chosen as N = 16, 20,..., 44, and 48, from
left to right.

the ratio, β, are proportional to
√

N for V � Vc, while they
are of the order of one for V > Vc. We interpret that such
an essential difference gives the discontinuity. Furthermore,
when we closely check the form of the relevant function, f1(i),
in the region of V � Vc, it gradually changes from that for
V = 0 to that for V = Vc, which behave like sin(2π i/N ) and
cos(π i/N ), respectively, for large N [43]. This is nothing but
a change in the phase shift due to the increasing attraction
between D and H. We speculate that this alters the degree of
functional coherence as already mentioned, leading to differ-
ent actual values of β. Meanwhile, the present assumption for
the two-pair state neglects the repulsions between D and D
(H and H). A more careful analysis beyond the approximate
functions is required to give a quantitatively reliable result.
In this respect, a preliminary analysis based on the minimum
model reproduces a similar result. Namely, β values decrease
monotonically in increasing V and finally becomes smaller
than 2 near V = Vc, although completely converged results
have not been obtained yet.

V. CASES OF FURTHER EXCITATIONS

Finally, the expected results of further excitations be-
yond two DH pairs are of further interest. Here, we
restrict our analysis to three DH pairs; the states of
|k, k, k′〉 ≡ (1/Nk,k,k′ )PO†

k′O
†
kO†

k |0〉 in the form of approx-
imate functions, with k = N/4. Figure 5(a) shows the
associated matrix element, 〈k, k, k′| J̃ |k, k〉, as a function
of k′, for N = 16–48. As expected, the enhancement oc-
curs at the central position (k′ = N/4), and the degree of
enhancement is larger compared to the previous case. To
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accurately determine the degree of enhancement, we again
plot the behaviors in Figs. 5(b) and 3(c). The extrapolated
values toward infinite N are α′ = 1.00261 and β ′ = 2.44945.
Here, α′ is defined similarly to α; as the ratio of the back-
ground amplitude to the one-photon amplitude, 2

√
2. The

value for α′ is consistent with the previous value for α, which
shows that the effect of existing excitations is zero in the
limit of the infinite system size. The value for β ′, which is
defined as β ′ ≡ 〈k, k, k| J̃ |k, k〉 / 〈k| J̃ |0〉, is much larger than
that for β. Interestingly, this number is very close to

√
6

(=2.449489...), suggesting that the latter is the true number.
This number contrasts with the case of ordinary bosons hav-
ing the corresponding number of

√
3, and the origin of this

enhancement is again attributable to the variety of the DH
patterns.

VI. CONCLUSIONS AND DISCUSSIONS

To conclude, we have found unique types of enhancements
in the excitations of free or almost-free DH pair states. The
factors are idealistically estimated as

√
3 and

√
6, for the ex-

citations from one pair to two pairs and those from two pairs to
three pairs, respectively. These numbers exceed the respective
numbers for ordinary bosons,

√
2 and

√
3, from which we

name the former ultrabosonic behaviors. These behaviors are
suppressed to some degree in actual situations, while we find
that the behaviors persist qualitatively in the presence of a typ-
ical amount of fluctuation. We think that the physical meaning
of this behavior is worth deeper consideration. Below, we give
an interpretation from a different viewpoint, mainly based on
the results from the approximate eigenfunctions.

First, we discuss the case of two DH pairs. A simple hy-
pothetical case assumes four independent bosons, in which
one D(H) is converted to two D’s (H’s). In this case, the β2

value is estimated at (
√

2)2 = 4 and we consider this number
the maximum number. Meanwhile, the minimum number is
given by the two excitons or the two strongly bound DH pairs,
which is two as β2. The effective number of particles is two
in the latter case, being common to the ordinary boson picture
of excitons in band insulators [44–47]. The present result for
free or almost-free DH pairs as β2 = 3 is the midpoint of these
numbers, which suggests that the effective particle number is
intermediate. The same remark is also made on the three DH
pairs; the maximum (minimum) number is nine (three), while
the present result gives six, again being the midpoint. All
these results seem to indicate that the ultrabosonic behavior is
deeply related to the effective particle number elevated from
that for the exciton case up to the half that of the hypothetical
case.

In relation to experiments, we expect that the ultrabosonic
behaviors can be observed as a signature of antibleaching in
the photoinduced spectra. As already mentioned, the V value
should be small for this purpose, and the selection of the
materials will be critical.

On the basis of the above findings, we now have a special
interest in the possibility of realizing a condensate of free or
almost-free DH pair states. The enhanced factors for multiple
DH pairs have a possibility to drive such a condensate, par-
ticularly at low-energy excitations. Such ultrabosonic nature
of DH pairs is expected to further new possibilities in the

FIG. 6. Example of the number used in Eq. (A1). In this example,
(M = 3), τ is 0 + 1 + 3 = 4.

study of the nonequilibrium properties of strongly correlated
electron systems.
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APPENDIX A: MODEL TRANSFORMATION FROM THE
ORIGINAL MODEL TO THE HARD-CORE BOSON MODEL

A merit of the charge model introduced in Ref. [30] is its
extraction of the charge degrees of freedom; however, it has
a complicated definition of the Hamiltonian matrix elements.
To make the model useful by expressing it in a particle picture,
we transform it in the following way. First, we define the
factor as

S ≡ (−1)
∑M

i=1 pi (−1)τ (A1)

for each basis state in the charge model, and define a new basis
state as

|{p1, p2, ..., pM}, {q1, q2, ..., qM}〉new

≡ S |{p1, p2, ..., pM}, {q1, q2, ..., qM}〉 , (A2)

where τ is the summation of the number of H’s on the left
of each D, and {pi} and {qi} are the positions of D and H,
respectively (an example is illustrated in Fig. 6). Using this
transformation, we cancel complicated signs in the original
model, resulting in an equivalent model appearing in Eq. (1)
of the main text.

We also introduce the definition of the current operator in
the hard-core boson model as

Ĵ = iT
N∑

l=1

(d†
l+1dl − h.c.) − iT

N∑
l=1

(h†
l+1hl − H.c.)

+iT̃
N∑

l=1

((d†
l+1h†

l − h†
l+1d†

l ) − H.c.), (A3)

which is automatically derived from the current operator
defined in the charge model. Another form of the current
operator (J̃) contains only the part associated with the creation
of a DH-pair, namely,

J̃ = iT̃
N∑

l=1

(d†
l+1h†

l − h†
l+1d†

l ). (A4)
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FIG. 7. N = 16, U = 10T , V = 0, γ = 0.1T . Blue lines in (a)–
(h) are ωσ (ω) of the half-filled Hubbard model. Green lines in
(b)–(h) are ωσ (2)(ω) of the half-filled Hubbard model. Red lines are
ωσ (ω) in (a) and ωσ (2)(ω) in (b)–(h) of the charge model (Mmax =
8). Initial states of calculating ωσ (2)(ω) in (b)–(h) are corresponding
excited states at the peaks of ωσ (ω) in (a).

We use this definition for the matrix elements associated with
the approximate eigenstates.

APPENDIX B: COMPARISON OF THE OPTICAL SPECTRA
OF THE HUBBARD MODEL AND THE CHARGE MODEL

In our previous work [30], we found that the charge model
reproduces the one-photon optical conductivity satisfactorily.
In this paper, we have also checked the feasibility of the
charge model from the viewpoint of σ (2)(ω) via the com-
parison with that of the Hubbard model. In Figs. 7(b)–7(h),
we summarize the results for σ (2)(ω) for N = 16, in which
each peak of σ (ω) in Fig. 7(a) is assumed as the initial state.
For σ (ω), we again confirm that both the results, i.e., those
from the Hubbard model and the charge model, coincide with
each other satisfactorily. Regarding σ (2)(ω), we also find good
coincidences in Figs. 7(b)–7(h). Based on these results, we
can say that the charge model accurately describes the excited
states up to at least two-photon excitations.

APPENDIX C: DETAILS OF THE RESULTS USING THE
APPROXIMATE EIGENSTATES

Here we describe the results that are based on the ap-
proximate eigenstates but are not explained in detail in the
main text. Figure 8 shows the specific behaviors of the matrix
element for the excitation at k = N/4. The extrapolations in
Figs. 2(b) and 2(c) of the main text are made based on this
plot. We then discuss the cases in which the initial state is
set at other k modes. As shown in Fig. 2(a), the concerned
enhancement occurs at every k mode, for a value of N of
at least 16. Here, we focus on the following two cases and
discuss the details of their behaviors, including N dependency.
The first case is k = N/8. Figure 9(a) shows 〈k, k′| J̃ |k〉 for
N = 16–48, and the same quantities used for the case of
k = N/4 are evaluated and plotted in Figs. 9(b) and 9(c).
According to these figures, the α and β values for infinite N
are 0.999658 and 1.731617; close to 1 and

√
3, respectively. In

 0
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k’
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N=48

<
 k

, k
’ |

 J
 | 

k 
>

~

FIG. 8. Details of the extrapolation k = N/4. The lines are for
N = 16, 20, 24,..., 40, and 48, from left to right.

the second case, the excitation is set at the k = 1 mode. Note
that the wave number, π/(N/2), changes depending on N , in
contrast to the other two cases of k = N/4 and N/8, where
the wave numbers are fixed at π/2 and π/4, respectively.
In spite of this complexity, the extrapolations successfully
give the results of α = 1.00206 and β = 1.7345, as shown
in Figs. 9(d) and 9(e), which are again close to 1 and

√
3,

respectively.
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FIG. 9. Details of the extrapolation for (a)–(c) k = N/8 with
N = 16, 24, 32, 40, and 48, and (d) and (e) for the lowest k at each
N (k = 1).
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FIG. 10. Extrapolation of the absolute value of the non-zero off-
diagonal matrix element, m10.

APPENDIX D: MATRIX ELEMENT OF THE
FOUR-OPERATOR PRODUCT

We discuss the following matrix element:

Mk′,k ≡ 〈0| OkOkPO†
k′O

†
k |0〉 , (D1)

where O†
k is the creation operator of an odd-parity DH pair

defined as

O†(k) ≡ 1√
2N

∑
li

(d†
l+ih

†
l − h†

l+id
†
l ) fk (i) , (D2)

where fk (i) = (2/
√

N ) sin(πki/(N/2)), and k and k′ take in-
tegers between 1 and Nmode (= (N − 2)/2). We calculate this
matrix element for each N and find that the element remains
finite, with the exception of the diagonal element and one
special off-diagonal element. Other elements are of the orders
of 10−15 or less in the double precision are considered to be
zero. In more detail, the matrix elements, with the exception
of the negligible ones, are written for N = 4n (n is an integer)
as

Mk′,k = m0δk′,k + m1(k)δk′,k∗(k) , (D3)

where m0 is a constant, and k∗(k) is the row number as a
function of k. Furthermore, using the definition of the inverted
number for k, i.e., kI = Nmode + 1 − k, k∗ and m1 are deter-
mined by the following conditions:

(1) If 3k � Nmode, k∗ = 3k and m1(k) = −m10.
(2) If Nmode + 1 − 3kI � 1, k∗ = Nmode + 1 − 3kI and

m1(k) = −m10.
(3) If k = n ± 3l and 1 � n ± 3l � Nmode, k∗ = n ∓ 3l

and m1(k) = m10.
Here, m10 is a finite positive constant, and l is a positive

integer. We emphasize that the above conditions are exclusive
to one another and select only one k∗ for each k in most
cases. (One exception is the case for Nmode = 3r + 2 (r is an
integer), where no k∗ is selected for two particular columns.)
In Fig. 10, we plot m10 as a function of 1/N . The curve is very
accurately fitted with a parabolic function, indicating that the
extrapolated value for infinite N is zero; this shows that Mk′,k
is a diagonal matrix in the same limit.

FIG. 11. Details of the analysis using the minimum model for
excitation at k = N/8. (a) Spectra for N = 48 with (U , V )/T =
(10, 0) and γ = 0.02T . The three peak energies of ωσ (ω), e1 ∼ e3,
are defined in the main text. (b) Extrapolation of the intensity ratio
toward infinite N .

APPENDIX E: DETAILS OF THE EXTRAPOLATION
USING THE MINIMUM MODEL: CASE OF V = 0 AND THE

k = N/8 EXCITATION

We investigate the case of k = N/8 for V = 0. First, we de-
fine three peak energies of ωσ (ω), as shown in Fig. 11(a). The
peak energy of ωσ (ω) with k = N/8 is denoted as e2, while
the neighboring peaks with k = N/8-1 and k = N/8 + 1 as e1
and e3, respectively. We integrate ωσ (ω) and ωσ (2)(ω) in the
interval of [(e1 + e2)/2, (e2 + e3)/2] and plot the ratio as a
function of 1/N , as shown in Fig. 11(b). Via extrapolation, the
value for infinite N is evaluated as 2.7515, which is thought to
give a rough estimate of β2.

FIG. 12. Spectra of the full model with (U , V )/T = (10, 0).
The other parameters are N = 20 and γ = 0.02T . e1 ∼ e3
are defined in the main text. The integrated intensities in
[(e1 + e2)/2, (e2 + e3)/2] are used to obtain Fig. 3(b) in the main
text.
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FIG. 13. Details of the extrapolation using the minimum model
with (U,V )/T = (10, 3). (a) Dependence of the intensity ratio on
the γ value. (b) Spectra for N = 200.

APPENDIX F: DETAILS OF THE EXTRAPOLATION
USING THE FULL MODEL: CASE OF V = 0 AND THE

k = N/4 EXCITATION

We show the spectra for N = 20 in Fig. 12, as exam-
ples. These are obtained using (U , V )/T = (10, 0) and γ =
0.02T . The interval in which the intensities are integrated is
[(e1 + e2)/2, (e2 + e3)/2], where the peak energy of ωσ (ω)
with k = N/4 is denoted as e2, while the neighboring peaks

with k = N/4 − 1 and k = N/4 + 1 as e1 and e3, respectively.
The resultant intensities and the ratio between them are used
for the plot in Fig. 3(b).

APPENDIX G: DETAILS OF THE EXTRAPOLATION
USING THE MINIMUM MODEL: CASE OF FINITE V

We discuss the case for finite V , using the minimum model.
In contrast to the preceding case, V = 0, there is no well-
defined interval in which the spectral intensities should be
integrated. Therefore, we resort to another method, explained
in the following. As already mentioned in the main text, the
peak is not a pure single peak but instead consists of many
peaks. First, we must exclude the effects of the peaks that
are not relevant in the present estimation. To do so, we vary
γ in a finite interval and determine the extrapolated value
toward γ = 0. Figure 13(a) shows such γ dependence for
(U , V )/T = (10, 3) with N = 200. The example spectra for
γ = 0.05T are shown in Fig. 13(b). Here, the largest size is
increased to N = 200 as the previous largest size, N = 48,
is insufficient due to a more complicated N-dependency, as
shown in Fig. 4(a).
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[23] Z. Lenarčič and P. Prelovšek, Phys. Rev. Lett. 111, 016401

(2013).
[24] M. Eckstein and P. Werner, Phys. Rev. Lett. 110, 126401 (2013).
[25] E. Iyoda and S. Ishihara, Phys. Rev. B 89, 125126 (2014).
[26] M. Mitrano, G. Cotugno, S. R. Clark, R. Singla, S. Kaiser,

J. Stähler, R. Beyer, M. Dressel, L. Baldassarre, D. Nicoletti,
A. Perucchi, T. Hasegawa, H. Okamoto, D. Jaksch, and A.
Cavalleri, Phys. Rev. Lett. 112, 117801 (2014).
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