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We study aspects of the Berry phase in gapped many-body quantum systems by means of effective field
theory. Once the parameters are promoted to space-time-dependent background fields, such adiabatic phases
are described by Wess-Zumino-Witten (WZW) and similar terms. In the presence of symmetries, there are also
quantized invariants capturing generalized Thouless pumps. Consideration of these terms provides constraints
on the phase diagram of many-body systems, implying the existence of gapless points in the phase diagram,
which are stable for topological reasons. We describe such diabolical points, realized by free fermions and
gauge theories in various dimensions, which act as sources of “higher Berry curvature” and are protected by the
quantization of the corresponding WZW terms or Thouless pump terms. These are analogous to Weyl nodes in
a semimetal band structure. We argue that in the presence of a boundary, there are boundary diabolical points—
parameter values where the boundary gap closes—which occupy arcs ending at the bulk diabolical points. Thus
the boundary has an “anomaly in the space of couplings” in the sense of [C. Cordova, D. S. Freed, H. T. Lam,
and N. Seiberg, SciPost Phys. 8, 001 (2020) and 8, 002 (2020)]. Consideration of the topological effective action
for the parameters also provides some new checks on conjectured infrared dualities and deconfined quantum
criticality in 2+1d.
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I. INTRODUCTION

In this paper, we explore topological invariants associated
with the global structure of phase diagrams of quantum sys-
tems at zero temperature and their physical consequences.
An important source of topology in phase diagrams is the
presence of so-called “diabolical points” [1] (or more gen-
eral “diabolical loci”)—isolated parameter values where the
ground state differs from the surrounding phase, for example
by being degenerate or gapless.

A familiar example is a stationary spin-1/2 in a magnetic
field. At zero magnetic field, the energy spectrum is doubly
degenerate, while at any nonzero magnetic field there is a
unique ground state. One has to tune three real parameters,
namely the components of the magnetic field, to encounter
this degeneracy. A classic result of von Neumann and Wigner
[2] states that this is a generic situation: in quantum sys-
tems with a finite number of degrees of freedom and without
symmetries1 energy level degeneracy generically occurs in
codimension 3.

Another classic observation, due to M. V. Berry [3], is that
such a “diabolical locus” D can be detected by studying the
ground-state wave function on the complement of D. Consider
the case when the parameter space is three-dimensional and D
is a single point. Removing D from its small neighborhood

1When a unitary symmetry is present, energy levels which trans-
form in different representations of the symmetry group generically
cross in codimension 1, since there is no level repulsion in this case.

we end up with a space which is homotopy equivalent to
a two-dimensional sphere. One can show that because of a
nonintegrable Berry phase a properly normalized ground-state
wave function depending continuously on parameters can not
be defined globally on this 2-sphere. The best one can do is
to let the ground-state be a normalized continuous section of
a nontrivial line bundle over the 2-sphere [4]. A manifestation
of this is that the curvature of the Berry connection has a
monopole singularity at D.

In many-body quantum systems, degeneracy of the ground
state generically occurs in codimension 1 rather than 3. These
are loci where the system undergoes a first-order phase transi-
tion. The von Neumann-Wigner result does not apply to such
situations, and the degeneracy locus does not leave a topologi-
cal imprint. Nevertheless, many-body analogues of diabolical
points do exist. These are gapless points or gapless loci in
the phase diagram which are entirely surrounded by the trivial
phase (although they can also occur inside other phases). Such
gapless points are not simply endpoints of first-order transi-
tions, they are robust for topological reasons. The simplest
example is a free Dirac fermion in spatial dimension d with
charge conservation. Depending on whether d is even or odd,
the gapless point in this system occurs in codimension 1 or
2. Usually its stability is explained using anomalies (parity
anomaly for even d and axial anomaly for odd d). However,
there also exist examples of isolated gapless points which can-
not be explained using anomalies. We propose a framework
which treats all these examples on the same footing.

A natural generalization of the Berry phase to d > 0 is
the Wess-Zumino-Witten (WZW) term in the effective action
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for the parameters. A WZW term in spatial dimension d is
described by a closed (d + 2)-form on the parameter space
which may have monopolelike singularities along gapless
loci. Such singularities occur in codimension d + 3, therefore
one might conclude that diabolical points in d dimensions
occur in codimension d + 3. In fact, the situation is more
complex, and the WZW form describes just a particular class
of topological terms in the effective action. In general, there
are several types of diabolical points in a given dimension,
and their classification also depends on whether the system
is bosonic or fermionic. Imposing symmetry also affects the
classification of diabolical points. This was pointed out al-
ready by von Neumann and Wigner who showed that in the
presence of time-reversal symmetry diabolical points in 0+1d
systems occur in codimension 2 [2]. In any case, using the
effective action approach one can classify possible diabolical
loci and prove their stability.

Another point of view on this problem, which is very
powerful, comes from considering the infinite-dimensional
space of all field theories, i.e., UV-complete theories defined
at some UV scale. This space is decomposed into strata de-
fined by the attractive basins of the RG flow, consisting of
field theories which flow to a particular RG fixed point in
the IR. Roughly speaking, the number of relevant operators
at the fixed point gives the codimension of the stratum.2 A
generic phase diagram with k parameters is a k-dimensional
slice through this infinite dimensional space, transverse to all
the strata, meaning a stratum with k relevant operators at the
fixed point occurs at isolated points in this k-parameter phase
diagram. Protected diabolical loci correspond to the situation
where one stratum pokes a hole in another, leaving the latter
with some nontrivial topology. This topology, in turn allows
for the universal definition of topological terms in the effective
action, associated with a certain cohomology of this stratum.
Thus the higher Berry phase and protected diabolical loci
points of view are equivalent.

An important novelty of working in higher dimensions
is the possibility of studying spatial boundaries. We will
describe a boundary-bulk correspondence for these “higher”
Berry phases, which is reminiscent of the Fermi arcs in Weyl
semimetals [6]. Indeed, we observe that relative to some
choice of boundary condition, the higher Berry phase implies
the existence of a diabolical locus in parameter space where
the boundary gap closes, whose boundary in parameter space
is in the bulk diabolical locus. In the context of lattice models,
this observation was recently made in Refs. [7,8]. We also
make contact with the “anomalies in the space of coupling
constants” studied recently by Refs. [9,10].

Many of the physical phenomena associated with higher
Berry phase are well-known and can be exhibited by free
fermion systems. See Ref. [11] for a general approach in
this case. A particularly useful collection of such models was
defined by Abanov and Wiegmann [12]. As we review in
Appendix C 1, they give rise to Sd+2 level 1 WZW terms
and Sd generalized Thouless pumps. We will discuss several

2This is complicated by theories with marginally relevant or
dangerously irrelevant operators, which demonstrate that this strat-
ification is quite singular [5].

of these theories in some detail, including their boundary
phenomena, as well as a free fermion model in 3+1d “miss-
ing” from Ref. [12], which is associated with the p + ip
superconductor/gravitational Chern-Simons term.

While free fermion theories provide many examples of
diabolical points, we stress that our arguments prove their
stability on the nonperturbative level. We also discuss some
interacting models (gauge theories). The focus of this paper is
the long-distance behavior which can be adequately treated
using field theory. However, the same phenomena occur in
lattice models. Some examples of such models have been
constructed in Refs. [7,8], but there are many other examples,
some of them quite classical [13].

The paper is organized as follows. In Sec. II, we dis-
cuss free fermion diabolical points and their corresponding
families in 1+1d. There is a codimension-2 diabolical point
protected by the Thouless pump and a codimension-4 diabol-
ical point protected by a higher Berry number. We discuss the
physics of interfaces and boundaries for both families.

In Sec. III, we extend the discussion to free fermion di-
abolical points and their families in 2+1d. There are again
two types, corresponding to a family with a charged skyrmion,
analogous to the Thouless pump in 1+1d, and a family with a
higher Berry number, respectively.

In Sec. IV, we discuss free fermion diabolical points and
their families in 3+1d. There is a new codimension-2 diabol-
ical point in this dimension that generates an axion coupling
and corresponds to a Thouless pump of a gravitational Chern-
Simons term.

In Sec. V, we discuss interacting examples of diabolical
points and their families in gauge theories. This includes
2+1d Chern-Simons matter theories realizing the generalized
Thouless pump. The nontrivial families are consistent with the
recently studied web of 2+1d IR dualities, and we interpret
the deconfined quantum critical point between the Néel state
and the valence bond solid (VBS) as a protected diabolical
point. We also discuss applications to scalar QED in 3+1d.

In Sec. VI, we provide a general proof of the bulk-
boundary correspondence for the higher Berry phase and
Thouless pumps. The result describes an index theorem
whereby there will be topologically protected boundary dia-
bolical points, the sum of whose higher Berry numbers equals
the bulk higher Berry number.

In Sec. VII, we discuss some mathematical formalism for
describing families of gapped phases, including a classifica-
tion based on cobordism theory and TQFT.

II. FREE FERMIONS IN 1+1d

A. The Thouless pump and a codimension-2 diabolical point

1. A topologically nontrivial family

As a motivating example, consider a single complex
fermion in 1+1d with a Minkowski-signature Lagrangian

LDirac = −ψ i∂ψ − iψ (M1 + iM2γ
01)ψ. (2.1)

Here ∂ = γ μ∂μ, γ 0 and γ 1 are 2d Dirac matrices satisfying
{γ μ, γ ν} = 2gμν , gμν = diag(−1, 1) is the Minkowski metric,
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and γ 01 = γ 0γ 1 is the chirality operator.3 Some unusual-
looking signs and factors of i in (2.1) and similar formulas
below are due to our use of “mostly plus” convention for the
Minkowski metric. Our conventions are chosen to facilitate
comparison with Ref. [12].

Hermiticity of the Hamiltonian requires M1 and M2 to
be real, and it is convenient to introduce a complex mass
M = M1 + iM2. We will also denote α = arg M. This La-
grangian has a U(1) symmetry under which ψ has charge 1
and ψ = ψ†γ 0 has charge −1. The axial U(1) transformation
ψ �→ eiαγ 01

ψ is not a symmetry except for M = 0, since it
has the effect of replacing M with Me2iα . For M �= 0, this
model describes massive fermionic particles and antiparticles
of mass |M|, while for M = 0 it is gapless. Its properties
for spatially varying M have been studied by Goldstone and
Wilczek [14]. It is also a special case of the “A” series of
Abanov and Wiegmann [12].

In this model, the massless point is an isolated gapless
point of codimension 2. One may ask if it is possible to gap
it out by adding interactions or couplings to other massive
degrees of freedom, without breaking U(1) or bringing in new
gapless points from infinity. The answer is no, and one way to
see it is to couple the theory for |M| > 0 to a background U(1)
gauge field and study the effective action after we integrate out
the fermion. We will find a topological term whose presence
is inconsistent with a completely gapped phase diagram.

From the axial anomaly, one finds that this effective action
contains a term

1

2π

∫
α εμνFμνd2x = 1

2π

∫
α F, (2.2)

where F = dA = 1
2 Fμνdxμdxν is the gauge field strength.

This term does not seem to have much effect if we regard A
as a background gauge field and if M is a constant. But as
noticed by Goldstone and Wilczek [14], the situation changes
if we allow M to be a slowly varying function of coordinates.
The above action is then the leading term in the derivative
expansion in M and gives rise to a topological contribution to
the U(1) current:

Jμ
top = 1

2π
εμν∂να. (2.3)

This U(1) current represents the response of the fermionic
vacuum to an adiabatic variation of M. If M depends only
on x1, it gives a U(1) charge density to the vacuum. The net
charge of a configuration where α = arg M approaches α± as
x → ±∞ and slowly varies in between is (α+ − α−)/2π + n,
where n is the (signed) number of times M crosses the branch
cut for the logarithm. In general the charge is fractional. If
α+ = α−, this charge is just n and can be interpreted as the
collective charge of n winding solitons in α [14]. If M depends
only on x0, there is a uniform vacuum current. In particular, if
M is a periodic function of time and winds around the origin
N times per period, the net charge which flows through a
section of a system during this time is −N . This phenomenon
is known as the Thouless charge pump [15].

3For definiteness, in terms of the usual Pauli spin matrices, one can
choose γ 0 = iσ y, γ 1 = σ x , and γ 01 = σ z.

The presence of this topological term implies that we can-
not completely remove the gapless point at the origin in a
U(1)-invariant way by adding UV degrees of freedom and
continuously changing their couplings to the field ψ (although
we can deform it into a more general diabolical locus, see
Appendix B). This is because for a gapped nondegenerate
family on R2, we would need to extend the form εμν∂να,
required to express the topological current, to maps M valued
anywhere in the plane, which is impossible.

To formalize this argument, we interpret the loop of models
defined by |M| = m > 0 as a noncontractible loop in the space
M

U (1)
1 of 1+1d field theories with a unique gapped ground

state (i.e., infrared-trivial theories) and U(1) symmetry.
Consider a general such theory defined over a parame-

ter space P. The low energy limit defines a map from our
parameter space P → M

U (1)
1 . Slowly varying parameters in

space-time thus define a map φ : X → M
U (1)
1 . We can define

an effective action for φ. Expanding in derivatives of φ, the
leading term has the form

Stop =
∫

X
εμνAμ∂νφ

iτ1,i(φ)d2x + . . . =
∫

X
A ∧ φ∗τ1 + . . .,

(2.4)

where τ1 = τ1,i(φ)dφi is a 1-form on M
U (1)
1 (that is, it is

universal) and dots denote terms which are independent of
both A and the metric. Invariance with respect to infinitesimal
gauge transformations A �→ A + df requires the 1-form τ1 to
be closed. Invariance with respect to large gauge transfor-
mations requires it to have integral periods. That is, for any
loop φ : S1 → M

U (1)
1 one must have

∮
φ∗τ1 ∈ Z. This integer

is associated with the Thouless pump of the loop. Indeed,
the topological current corresponding to the above action is
obtained by varying with respect to Aμ:

Jμ
top = εμντ1,i(φ)∂νφ

i. (2.5)

This current leads to the same physical consequences as the
current (2.3). Namely, static configurations of the field φ

acquire U(1) charge, while a time-dependent φ produces a
spatial current. Given a loop φ : S1 → MU (1) with a base
point φ0 ∈ M

U (1)
1 , one can attach to it a solitonic configura-

tion on R which approaches φ0 at x = ±∞. The charge of
this soliton is equal to

∮
τ1,idφi and is integral. We can also

identify S1 with the time coordinate thus making φ a periodic
function of time. The net charge transported per period is
�Q = − ∮

τ1,idφi.
If a given loop in M

U (1)
1 is contractible, then the integral

of τ1 over this loop vanishes. Mathematically, this follows
from the Stokes theorem. The physics of this is also clear: if
a slowly varying field configuration on R can be deformed to
the constant one without changing the asymptotics at x = ±∞
and without creating large gradients, its charge must be zero.4

In the case of the complex fermion in 1+1d, it follows from
Eq. (2.3) that τ1 = 1

2π
dα. Therefore the integral of τ1 over

the loop in the M-plane circling the origin is 1, and thus
this loop is not contractible. Any nonzero multiple of this

4If the gradients become large, there may be level crossing, and the
vacuum charge may jump discontinuously.
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loop is also not contractible in M
U (1)
1 . Thus the fundamental

group of MU (1)
1 contains a copy of Z.5 A more precise way

to phrase it is this. Let MDirac
1 denote the subspace of MU (1)

1
corresponding to the family of theories (2.1) with M �= 0.
Obviously, MDirac

1 is the M plane with the origin removed
and thus π1(MDirac

1 ) = Z. The above argument shows that the
map π1(MDirac

1 ) → π1(MU (1)
1 ) arising from the embedding

MDirac
1 → M

U (1)
1 is injective. This implies that the isolated

gapless point at M = 0 cannot be gotten rid by arbitrary de-
formations which preserve U(1) symmetry.

Although the diabolical point cannot be completely re-
moved, the nature of the diabolical locus can be modified
by deforming the theory for small |M|. For example, one can
deform the free fermion theory into a more general Luttinger
liquid. Depending on how this is done, one can “resolve” the
diabolical point into a first-order phase transition line termi-
nating at two critical Ising points, or into an island of a gapless
Berezinsky-Kosterlitz-Thouless phase. This is described in
more detail in Appendix B.

2. Interfaces

A physical consequence of noncontractibility can be seen
when one studies smooth interfaces between different models
in the family. For the Dirac fermion (2.1), we will study inter-
faces where the mass parameter M = meiα , m = |M|, varies
from m at x = −∞ to some other value meiα0 at x = ∞. In
particular, we will be interested in one-parameter families of
interfaces parametrized by α0 ∈ R/2πZ. We will show that
for at least one of these interfaces, there must be a localized
zero mode.

The simplest option is to take m constant and let α(x) be a
step function, α(x) = α0θ (x). This gives a family of interfaces
which is periodic as a function of α0 but is not smooth in x
space. While this is not quite what we need, the advantage of
this family of interfaces is that it is soluble [16] and one can
find the states localized on the interface exactly. One lets ψ =
ψ (0)e−ax for x > 0 and ψ = ψ (0)eax for x < 0, with some
a > 0. Then ψ (0) satisfies( −ia meiα0

me−iα0 ia

)
ψ (0) = Eψ (0),(

ia m
m −ia

)
ψ (0) = Eψ (0). (2.6)

This gives

a = m sin
α0

2
, E = m cos

α0

2
. (2.7)

For α0 ∈ (0, 2π ), there is a single mode localized on the inter-
face. Its energy becomes zero at α0 = π . The mode becomes
nonnormalizable and merges with the continuum for α0 = 0
(or α0 = 2π ).

5According to the classification we discuss in Sec. VII,
π1(MU (1)

1 ) = Z. Thus τ1 is a complete invariant describing the fam-
ily: two families with the same

∮
φ∗τ1 may be deformed into each

other without closing the gap.

Another soluble case is an interface where α(x) is con-
tinuous, varies linearly with x in an interval 0 < x < L,
and is equal to its asymptotic values 0 and α0 for x �
0 and x � L, respectively. This interface was analyzed in
Ref. [17]. One finds that for small and positive α0 there
is a single mode on the interface whose energy is just
below m and decreases monotonically as α0 increases.
The energy becomes zero for α0 of order mL. At certain
threshold values of α0 additional interface modes appear.
This family of interfaces is not periodic in α0, i.e., the
interface at α0 = 2π is not identical to the interface at
α0 = 0.

To get a family of interfaces which is smooth and periodic
in α0, one needs to make both |M| and α = arg M dependent
on x. For example, one can take M(x) to take values in a
straight-line segment connecting m and meiα0 . This family
of interfaces does not appear to be soluble. Nevertheless, its
qualitative behavior is easy to understand. For α0 	 2π this
family of interfaces coincides with that studied in Ref. [17],
up to terms which are quadratic in α0. Thus there is a single
normalizable mode on the interface whose energy is slightly
below m and approaches m in the limit α0 → 0.

As one increases α0, additional interface modes may ap-
pear. Every time such a mode crosses zero energy from above
(respectively from below), the ground-state charge for the
effective quantum mechanics describing the interface jumps
by +1 (respectively −1). It is easy to show that the alge-
braic number of such crossings (i.e., the number of crossings
from above minus the number of crossings from below) as
α0 increases from 0 to 2π is either 1 or −1. Indeed, charge
conjugation symmetry tells us that each crossing at α0 = b is
accompanied by a crossing at α0 = 2π − b, and their contri-
butions are opposite.

The only unpaired crossing may occur at α0 = π . This
situation corresponds to M(x) being real for all x and varying
from m to −m. It was shown by Jackiw and Rebbi [18] that
there is exactly one normalizable zero mode in this case. Thus
the algebraic number of crossings is ±1. One can verify that
it is 1 by taking the limit L → 0. Then we get an infinitely
thin interface studied by MacKenzie and Wilczek [16], and
we know that in that case the zero energy level is crossed from
above.

To understand the fate of general interfaces, even those
which do not come simply as a spatially varying mass profile,
we can appeal to the topology of MU (1)

1 . An infrared-trivial
interface can be thought of as a path in M

U (1)
1 . Let us fix

the theory at x = −∞ (the start of the path) to be the Dirac
fermion with M = m > 0, and we define the space PmM

U (1)
1

of paths in M
U (1)
1 beginning at this point. There is a map

r : PmM
U (1)
1 → M

U (1)
1 which is given by the theory at large

x. A periodic, smooth 1-parameter family of infrared-trivial
interfaces between the Dirac fermion with M = m > 0 and
the Dirac fermion with M = meiα0 at x = ∞ is the same thing
as a map f : S1

α0
→ PmM

U (1)
1 , such that r ◦ f : S1

α0
→ M

U (1)
1

is our Dirac family with a spatially constant mass M = meiα0 .
However, this is impossible, because that family is noncon-
tractible in M

U (1)
1 , but PmM

U (1)
1 is a contractible space: all

paths can be continuously retracted to the constant path at m.
This is a contradiction, so for any periodic smooth family of
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interfaces with these end points, there must be at least one
interface with a degenerate ground state.

3. Boundary-bulk correspondence

We may regard such behavior as an anomaly in the space
of couplings for the interface, in the sense of Ref. [9]. Imagine
integrating out all the bulk modes, leaving only the modes
bound to the interface. This gives an effective 0+1d field
theory (that is, quantum mechanics) with a U(1) symmetry.
For a generic value of α0 the ground state of this 0+1d field
theory is unique and has a well-defined charge. The only
exceptions are points in the parameter space where the energy
of some modes becomes zero. Every time the energy of a
mode crosses zero from above (respectively from below), the
ground-state charge increases by 1 (respectively decreases
by 1). In view of the above discussion, as one increases
α0 from 0 to 2π the net change of the ground state charge
is 1.

Such a situation would be impossible if there were a
UV-complete effective quantum mechanics for the interface
modes for all α0. Indeed, we would expect a well-defined
effective action away from the gapless points. This effective
action is

Sint =
∫

q(α0)A, (2.8)

where q : S1 → Z is a locally constant continuous function
(the vacuum charge) and A is a background U(1) gauge field
restricted to the interface. The function q can change only at
gapless points. Since q is single-valued, the sum of jumps
of q across all gapless points is obviously zero. This means
that the situation described in the previous paragraph cannot
occur in a family of UV-complete 0+1d theories parameter-
ized by S1. However, it can and does occur in the presence of
a 1+1d bulk. The physical reason for this is that at certain
points in the parameter space the interface modes become
non-normalizable and merge with the bulk excitations. The
function q can change discontinuously at these “delocaliza-
tion” points as well as at gapless points. The sum of jumps
over both types of special points vanishes.

One can quantify the anomaly of the boundary 0+1d field
theory as the sum of jumps of q at the gapless points, or equiv-
alently as minus the sum of jumps of q over “delocalization”
points. The latter viewpoint makes apparent the relation of the
anomaly with the Thouless pump invariant of the bulk system:
The net charge which flows through the system as one cycles
in the parameter space should be equal to the net charge of
the interface modes which became delocalized and escaped
to infinity. This gives us a “boundary-bulk correspondence”:
The sum of jumps of q(α0) over all gapless points is equal
to the Thouless pump invariant of the bulk. This may also be
reasoned from the topological terms (2.8) and (2.4). We will
revisit this correspondence more generally in Sec. VI.

4. Reducing U(1) to fermion parity and torsion

It is clear from the above discussions that the nontrivial-
ity of this family rests on the conservation of U(1) charge.
We can consider reducing the symmetry so that only the Z2

fermion parity is conserved.6 We expect that the Thouless
pump invariants will all be reduced from Z to Z2. Formally,
we regard our family (2.1) for some |M| = m > 0 as a loop in
the space of arbitrary (fermionic) infrared-trivial 1+1d field
theories M1. There is a map M

U (1)
1 → M1 given by forget-

ting the U(1) symmetry. We will show the induced map on
π1(MU (1)

1 ) = Z → π1(M1) is reduction modulo 2.
We do this in two steps. First, let us argue that the family

(2.1) remains nontrivial after breaking U(1) to Z2. This is
simply because by the spin-charge relation, our soliton which
carries one unit of U(1) charge is fermionic. On the other
hand, the constant “loop” (i.e., with constant M) corresponds
to a state with an even fermion parity. This means we will
continue to have a bulk-boundary correspondence, where the
ground state of the boundary changes fermion parity after
absorbing a soliton.

Next, we must show that a loop with winding number 2 is
contractible in M1. One way to do it, from the perspective of
the diabolical point, is to study two copies of (2.1), which we
consider as four real fermions. One can find a U(1)-breaking
mass term which completely gaps the theory. We will study
this system in detail in Sec. II B.

Another way to do it, from the perspective of the gapped
region, is to study a different parametrization of (2.1) over
the circle |M| = m > 0, where our parameter winds around
the origin twice. It does not make sense to extend such a
parametrization to the disk |M| � m. Indeed, the diabolical
point at the origin determines the winding number, so any
extension to a disk must have a different diabolical locus
inside. Doubling the winding number like this may look like
a trivial redefinition of the system, but we will show that after
breaking U(1) we can extend this family to a disk without
closing the gap, i.e., without any diabolical locus.

To do so, let us regard the complex fermion as a pair of real
(Majorana) fermions and add yet another massive Majorana
fermion field. We can consider a more general family of free
field theories describing three Majorana fermions:

L = −ψai∂ψa − iMabψ
a
+ψb

−. (2.9)

Here ψa
+ and ψa

− are right-handed and left-handed compo-
nents of ψa. Hermiticity requires the mass matrix Mab to be
real. If we regard ψa

+ and ψa
− as triplets of O(3)R and O(3)L,

then the mass matrix transforms as M �→ Ot
RMOL. One can

use these transformations to make M diagonal, with real
positive entries. These entries determine the physical masses
of excitations. The original one-parameter family of theories
(2.1) is recovered when one of the physical masses becomes
infinite. The rules of the game allow us to add a third Majorana
fermion with a very large physical mass and then deform all
the physical masses to be the same. Then the mass matrix has
the general form M = mO, where O ∈ O(3) and m > 0. The
space of orthogonal matrices has two components, each of
which is topologically equivalent to RP 3. The original family
is homotopic to a loop in one of these components. Since

6This system satisfies a spin charge relation, so this Z2 is a sub-
group of U(1). Formally, this means that A is not a U(1) gauge field
but a Spinc structure.
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π1(RP 3) = Z2, any loop becomes contractible when iterated
twice. Thus our family over S1 which winds twice may be
extended to a family over a bounding disk, just using nonzero
mass terms—that is, without closing the gap. This shows that
loops with an even winding number become contractible when
regarded as loops in M1.7

This illustrates a general feature of topological families
with torsion invariants [as opposed to ones like the U(1)
Thouless invariant, which is Z valued]. One may say that if the
family looks nontrivial for some parameter θ ∈ [0, 2π ), but
trivial if that family is defined for a 2πn periodic parameter,
what is the physical difference? There is no physical differ-
ence of course, but to obtain the strongest conclusions from
our framework one should use the “minimal” parametrization
which is relevant to the problem. This is similar to how one
may see SPT phases in an spin-1 system like the Haldane
chain by studying SO(3) symmetry, which is natural if there
are no half-integer spin degrees of freedom, but this SPT
phase looks trivial if we consider the symmetry as SU(2).
For families presented by an action principle, and especially
for families defined near a diabolical locus, there is always a
minimal choice of periodicity.

We comment that the usual explanation of the robustness
of the gapless point at M = 0 involves a mixed ’t Hooft
anomaly between the vector and axial U(1) symmetry [or, if
the U(1) symmetry is broken, an ’t Hooft anomaly between
fermion parity and axial U(1)]. However, this assumes that
the mass term is the only term which breaks axial U(1). This
assumption is not very natural, since axial U(1) cannot be
a microscopic on-site symmetry for any M if we assume
that at some UV scale the theory is described by a lattice
Hamiltonian. Our argument does not rely on the axial U(1)
symmetry.

While our discussion is phrased in the continuum, when the
model (2.1) is discretized, it is equivalent to the Rice-Mele
model [13], which describes noninteracting fermionic parti-
cles in a sliding potential. Such systems were realized in cold
atoms experiments and the Thouless pumping was observed
[19,20]. A similar interacting lattice model was studied in
Ref. [21] and the emergence of gapless edge modes as one
varies the parameter was numerically observed. Reference
[21] also proposes that 1d spin chains which exhibit Thouless
pumping can be realized using hydrogenated graphene.

B. The WZW term as a higher Berry phase
and a codimension-4 diabolical point

1. A topologically nontrivial family

Now we will discuss a family which is topological but
which does not rely on any symmetry. In particular, there is
no way to understand its nontriviality by any kind of pumping
argument. However, many of the same features we explored
for the Thouless pump in Sec. II A will appear here. In many
ways, this family is a 1+1d analog of the classic example of
the Berry phase of a spin-1/2 in a magnetic field.

7According to the classification in Sec. VII, π1(M1) = Z2, so this
pump invariant is again complete.

The family we are interested in is defined by a pair of
complex fermions ψ1, ψ2, packaged as a doublet �, with the
Lagrangian

LAW = −�i∂� − i�(M0 + iγ 01Mkσ k )�, (2.10)

where σ k , k = 1, 2, and 3 are Pauli matrices acting in
the flavor space of �. This model belongs the Abanov-
Wiegmann “B” series (C2). There are four real parameters
M = (M0, M1, M2, M3). Any symmetries are accidental, and
our conclusions will be robust to breaking them, but it is
convenient to analyze this simple problem.

As before, this model is trivially gapped away from the
massless point at the origin (it is a diabolical point). We study
the response to slowly varying parameters φ : X → S3

m on a
sphere

S3
m = {M ∈ R4 | |M| = m > 0}.

Abanov and Wiegmann [12] studied this problem and found
that in the effective action for φ, there is a Wess-Zumino-
Witten term of level 1, which has the form

Stop = 1

2

∫
X

εμνω
(2)
i j (φ)∂μφi∂νφ

jd2x =
∫

X
φ∗ω(2), (2.11)

where ω(2) = 1
2ω

(2)
i j (φ)dφi ∧ dφ j is locally a 2-form on S3

m

satisfying dω(2) = 2πvolS3
m

where volS3
m

is the homogeneous
volume form on S3

m normalized to have volume 1.
More precisely, ω(2) is a U(1) 2-form gauge field on S3

m
with Dixmier-Douady-Chern number 1, in other words with
2π units of magnetic flux through S3

m. This means that from
chart to chart, ω(2) transforms by 1-form gauge transfor-
mations ω(2) �→ ω(2) + dλ, where λ is a U(1) gauge field.
Note (2.11) is invariant under such transformations. A 2-form
gauge background with Dixmier-Douady-Chern number n on
S3 can be constructed by an analog of the “clutching construc-
tion” [22], where we define the 2-form on two hemispheres
of S3 and glue them by a gauge transformation along the
equatorial S2 by some λ which has Chern number n on the
equator. This number may also be computed by integrating
the curvature �(3) = dω(2) over S3

m. We find it is

�(3) = 1

6π |M|4 εABCDMAdMBdMCdMD. (2.12)

See Appendix A for a direct calculation. As a matter of fact,
the model (2.10) has Spin(4) symmetry with respect to which
�+ and �− transform as left-handed and right-handed spinors
and MA transforms as a vector. This symmetry together with
the equation d�(3) = 0 fix the Berry curvature �(3) up to a
numerical factor.

The connection ω(2) plays the role of the Berry connection
for this system, in that it describes a quantized adiabatic
response for this system (although it is second order in
derivatives), so in this context we will refer to the Dixmier-
Douady-Chern class of ω(2), or equivalently the WZW level,
as the higher Berry number. In fact, it is directly related to the
0+1d Berry phase by dimensional reduction (see Appendix
C). The coefficient of this term is quantized to be an integer
by gauge invariance. We will give a direct argument for this in
Sec. VI by relating it to the winding number of the phase of a
certain family of partition functions.
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As with the Thouless pump invariant, the presence of this
quantized topological term protects the diabolical point inside
S3

m from all perturbations. That is, there is no way to extend
ω(2) to a 4-ball filling S3

m. We can therefore consider this
family as representing a Z ⊂ π3(M1).8

Because of the large symmetry of the model (2.10), the
stability of the gapless point at M = 0 can be explained using
’t Hooft anomalies. The point M = 0 has global Spin(4) sym-
metry, and this symmetry cannot be gauged (it has an ’t Hooft
anomaly). This means that a gapless point at M = 0 is robust
with respect to Spin(4)-invariant perturbations.

The argument based on the higher Berry phase continues to
apply even if we break this Spin(4) symmetry. However, we
cannot guarantee that the diabolical point does not turn into
a different diabolical locus. For instance, if we add a chiral
mass [not depending on the parameters (ν, ni )] to (2.10), then
such a term will dominate near the origin, and gap the theory.
However, there will still be some gapless points nearby. This
situation is more generic in a four-parameter phase diagram
than the single gapless point of (2.10). The presence of gap-
less points is still protected by the higher Berry number, no
matter what perturbations we add. For a bosonic system also
realizing this higher Berry phase, see Appendix B.

2. Interfaces

Let us examine the consequences of the higher Berry num-
ber for interfaces. Just as for the Thouless pump invariant, the
higher Berry number implies that fixing a basepoint M∗ ∈ S3

m,
any family of interfaces parametrized by M ∈ S3

m, which con-
nect the theory at M∗ for x → −∞ with the theory at M for
x → ∞, must include at least one interface with a degenerate
ground state. This follows from the same path space argument
we used in Sec. II A 2.

One simple family to analyze in detail is given by taking
interfaces which interpolate along a straight line from M to
M∗. Then, the interface corresponding to M = −M∗ passes
through the origin and corresponds to an interface hosting
zero modes, while all other interfaces are trivially gapped.9

Without loss of generality we can take M∗ = (m, 0, 0, 0) and
then this special interface corresponds to the inverting mass
profile studied by Jackiw and Rebbi [18]. It has two zero
modes localized to the place where the interface crosses the
origin, therefore the ground state has quadruple degeneracy.

Near this interface in the family, that is for M = −M∗ +
δM, we can see how the zero modes at the interface become
gapped by studying perturbation theory. The effective Hamil-
tonian for the interface modes is

Heff = a†
α �σα

β aβ · �μ, (2.13)

where aα , α = 1, 2 are the annihilation operators for the in-
terface modes, �σ is the 3-vector of Pauli matrices, and �μ
is defined by δM = (0, μ1, μ2, μ3). This Hamiltonian has a
nondegenerate ground state for all �μ �= 0 with energy −2| �μ|.

8By the classification of Sec. VII, this is an isomorphism.
9This can be seen perturbatively near the soluble interfaces M =

±M∗. For the others, this can be argued using the results of
Appendix A of Ref. [23].

Moreover, from this 0+1d perspective, we find that the degen-
erate interface can be considered as a diabolical point!

This diabolical point, being codimension 3, should have
some ordinary Berry curvature which protects it. To compute
it, we note that both the Fock vacuum |0〉 and the fully occu-
pied state a†

1a†
2|0〉 are eigenvectors of Heff with energy 0 for

all �μ and thus do not contribute to the Berry curvature. One
may restrict Heff to the two-dimensional subspace spanned
by a†

α|0〉. In this subspace, Heff reduces the Hamiltonian of
a spin-1/2 in a magnetic field 2μ. This is a paradigmatic
example of a diabolical point, and the integral of the Berry
curvature over the 2-sphere | �μ| = 1 is 2π .

So we have seen that there is a single degenerate inter-
face for M = −M∗ ∈ S3

m. Near this point, we can study an
effective 0+1d problem and we find that this special interface
represents a 0+1d diabolical point protected by the ordinary
Berry curvature. However, this situation is not consistent from
a 0+1d point of view, in that the small sphere which surrounds
M = −M∗, which we have just argued has ordinary Berry
number 1, is the boundary of a disk which closes off on the
other side S3, which would imply it has ordinary Berry num-
ber 0. In this sense, we consider the theory of the interface to
have an anomaly: its peculiar phase diagram is only realizable
because it exists as an interface. Following the terminology of
Ref. [9], the interface theory exhibits “anomaly in the space
of couplings.”

We will see in Sec. VI that this is a general phenomenon
that connects Berry phases and diabolical points in all di-
mensions. Moreover the number of diabolical points for the
interface, weighted by their Berry numbers, is determined by
the bulk higher Berry number, namely the integral of �(3)

over S3.
The reason one gets quadruple degeneracy rather than the

double degeneracy of von Neumann and Wigner is that our
fermions are free. It is not possible to halve the number
of fermions by imposing a Majorana condition on them. If
we do this, the mass term in (2.10) will vanish. However,
one can halve the degeneracy by adding an interaction of the
form ε(�μ)(a†a − 1)2, where ε(0) > 0. It does not affect the
subspace spanned by a†

α|0〉, but gives positive energy both to
the Fock vacuum and the fully occupied state.

3. No further diabolical points

Let us consider a system of N real fermions in 1+1d with
the Lagrangian (2.9). The mass matrix M is real, and the
theory is massive if det M is nonzero. Thus one can identify
the parameter space of massive free theories as GL(N,R).
It has two connected components labeled by the sign of the
determinant of M and denoted GL+(N,R) and GL−(N,R).
They correspond to two different short-range entangled (SRE)
phases of fermions in 1+1d, the nontrivial one being the
Kitaev phase with Majorana zero modes at its boundaries.
Each of the components is homotopy equivalent to SO(N ).
For N > 2 this space has fundamental group Z2, which corre-
sponds to our Z2 fermion parity Thouless pump in Sec. II A 4.
For N > 4, π3(SO(N )) = Z [24], which corresponds to the
codimension-3 diabolical point we have just discussed (see
Appendix A).

245113-7



HSIN, KAPUSTIN, AND THORNGREN PHYSICAL REVIEW B 102, 245113 (2020)

FIG. 1. The nearby phase diagram of the model (3.1), with our
two massless Dirac fermions at the origin (red dot), drawn with the
vertical axis representing cos ν, and the horizontal axes schematically
representing the three coordinates ni. The dashed blue circle (actually
an S2) is the family at ν = π/2 which realizes the 2+1d Thouless
pump. The yellow cones are gapless points where one eigenvalue
of the mass matrix changes sign. They separate the Thouless region
from the contractible “caps,” where the system realizes the integer
quantum Hall effect with Chern-Simons level (i.e., Chern number)
k = ±1, depending on the sign of cos ν.

There are further stable homotopy groups of SO(N ) in
arbitrarily high degrees (exhibiting Bott periodicity), which
would appear to imply there are free fermion diabolical points
of arbitrarily high codimension. However, these points can-
not be stable from the point of view of the effective action,
since the WZW term (2.11) already has the most number of
derivatives of the parameter background φ which can be fit in
a topological term. This is also reflected in the classification
of Sec. VII. Thus we expect all these free fermion families,
and indeed any infrared-trivial family in d space dimensions
on Sm�d+3 can be extended to an infrared-trivial family on
a bounding ball Bm+1, so there is no associated protected
diabolical point. See Appendix D for more details.

III. FREE FERMIONS IN 2+1d

A. Skyrmion charge and a codimension-3 diabolical point

1. A topologically nontrivial family

Now we consider two 2+1d Dirac fermions ψ1,2 with U(1)
symmetry ψ j �→ eiαψ j . We write the doublet � = (ψ1, ψ2).
The most general free Lagrangian which preserves U(1) sym-
metry is

L = −�i∂� − im�(cos ν + niσ
i sin ν)� (3.1)

where ν ∈ (0, π ), nini = 1 and σ i are Pauli matrices acting
in flavor space. ν and ni together parametrize S3 with radius
m in R4. Without loss of generality we can take m � 0 by
n → −n, ν → π − ν. The parameters sin ν ni for fixed ν can
be thought of as living on an S2 of radius sin ν. The model
preserves SU(2) symmetry at ν = 0, π where this S2 shrinks
to zero size. We draw the phase diagram in Fig. 1.

Consider first ν = π
2 . This family is the 2+1d sibling

of (2.1), the next member of the Abanov-Wiegmann A

series (C21). For m > 0, the theory is gapped with a
unique ground state, while for m = 0 the theory is gap-
less. One can ask if it is possible to remove the gapless
point by a U(1)-preserving deformation without bringing
new gapless point from infinity. One may even allow de-
formations which involve additional massive degrees of
freedom. We will now argue that this is not possible. If
we promote n to be position dependent and turn on the
background gauge field A for the U(1) symmetry, then
it can be shown [12] that the effective action contains10

a theta-term for n with θ = π (i.e., the Hopf term) together
with the following A-dependent term:

Stop = 1

8π

∫
εμνρAμεi jkni∂νn j∂ρnkd3x. (3.2)

A derivation of the A-dependent term is given in
Appendix A. The coefficients of these two terms are related
by the spin-charge relation [25].

Equation (3.2) is a special case of the following effective
action for a family of gapped U(1)-invariant models with
scalar parameters φi:

Stop = 1

2

∫
εμνρAμ∂νφ

i∂ρφ
jτ2,i j (φ)d2x =

∫
A ∧ φ∗τ2,

(3.3)

where τ2 = 1
2τ2,i j (φ)dφi ∧ dφ j is a 2-form on the parame-

ter space. Compare (2.4). Such terms in the effective action
were recently considered in the context of lattice models
[8]. As described in Ref. [8], they describe a 2+1d analog
of the Thouless pump. Gauge-invariance requires τ2 to be
closed and have integral periods. Equivalently, one can say
that closedness and integrality is required by the conservation
of the topological current and the integrality of the charge
of skyrmions (topologically nontrivial configurations of the
fields φi which approach a constant at infinity).

In the case of the model (3.1) at ν = π/2, the form τ2 is
proportional to the volume form of S2, and the topological
current takes the form

Jμ
top = 1

8π
εμνρεi jkni∂νn j∂ρnk . (3.4)

The basic skyrmion is obtained by identifying R2 with a
point at infinity added with S2 and letting n to be the identity
map S2 → S2. The charge of such a skyrmion is 1.11 Since
the form τ2 is not exact, the 2-parameter family obtained by
setting ν = π/2 is not contractible in the space M

U (1)
2 of all

infrared-trivial U(1)-invariant field theories in 2+1d.
The stability of the gapless point at m = 0 can also be

explained by the mixed ’t Hooft anomaly between the time-
reversal symmetry and the SU(2) flavor symmetry which acts
on �1, �2 as a doublet. Time-reversal symmetry is present for
all n if ν is fixed to be π/2, while SU(2) symmetry is restored

10In fact, one can use SU(2) rotation U(x) to fix n to be a constant
while introducing SU(2) background gauge field A = iU −1dU . Then
the improperly quantized Chern-Simons term for the background
SU(2) gauge field reproduces the θ = π term.

11In some settings, this is referred to as quantum Hall ferromag-
netism. See Ref. [26] and references within.
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at m = 0. Therefore ’t Hooft anomaly matching requires gap-
less modes at m = 0. However, this explanation only shows
stability with respect to deformations which preserve both
symmetries. For example, this kind of argument breaks down
if ν is slightly different from π/2. Also, the mixed ’t Hooft
anomaly between time-reversal symmetry and SU(2) has or-
der 2, i.e., it becomes trivial if we take an even number of
copies of the system (3.1) with ν = π/2. The argument based
on the effective action (3.3) shows that neither the number of
copies, nor time-reversal nor flavor symmetry are essential for
the stability of the gapless point at m = 0.

2. Interfaces

This noncontractibility has immediate consequences for
smooth interfaces between different member of the family.
We can fix n = (0, 0, 1) as the basepoint and consider smooth
interfaces between the basepoint model and other members of
the ν = π/2 family obtained by varying mni along a straight
line segment. By a general argument explained in Sec. VI,
if this family of interfaces is continuous, at least one of the
interfaces must be gapless. For the model (3.1), a gapless
interface occurs for n = (0, 0,−1). This is explained in detail
in Appendix C. In brief, one finds that the eigenvalue equation
for modes with zero momentum along the interface reduces to
the 1d eigenvalue equation for the Jackiw-Rebbi model [i.e.,
the model (2.1) with M2 = 0 and M1 varying between m and
−m]. Thus there is exactly one zero mode in this case, and the
interface carries a massless Dirac fermion.

Now consider perturbing n from (0, 0,−1) to a nearby
point (w1,w2,−1 + O(w2

1,2)). Using perturbation theory in
w1,w2, it is easy to check that this gaps the Dirac fermions.
The low-energy effective action for the interface mode is
then described by Eq. (2.1) with M1 = w1, M2 = w2. After
integrating out the mode on the interface, we end up with an
effective action (2.4), where the 1-form τ1 on the w plane is
given by

τ1 = 1

2π
d argw, (3.5)

where w = w1 + iw2. This form is singular at w = 0 which
is the location of the interface diabolical point. Thus a
codimension-3 diabolical point for the bulk theory leads to
a codimension-2 diabolical point for the interface, which is
again protected by a Thouless pump.

There is also a point n = (0, 0, 1) where there are no
interface modes at all. Note that the problem studied here
preserves a U(1) subgroup of SU(2) flavor symmetry, and
that n = (0, 0, 1) and n = (0, 0,−1) are the only two points
on S2 fixed by this symmetry. Thus, if we assume that the
gapless modes on the interface occurs only at isolated points
in the parameter space (which is a generic situation), then
n = (0, 0,−1) is the only such point.

Note that if we had a UV-complete theory describing the
interface for all values of n, then the sum of periods of τ1 over
all gapless points would necessarily be zero. Here it is equal
to 1, thanks to the existence of a point where the interface
mode becomes non-normalizable and escapes to the bulk. In
the language of Ref. [9], the interface theory has an “anomaly
in the space of couplings.”

3. A more general family

Now let us move away from ν = π
2 . Since S3 does not have

noncontractible 2-cycles, we conclude there must be a phase
transition as we move away from ν = π

2 while keeping the
sphere radius m fixed. Indeed, since the determinant of the
mass matrix is m2 cos(2ν), there are two cones of gapless field
theories at ν = π

4 and ν = 3π
4 . They meet at the codimension-

4 diabolical point m = 0. See Fig. 1.
Let us briefly comment on what protects the codimension-1

gapless cones at ν = π
4 , ν = 3π

4 . These are also diabolical
points, in a sense, although they are more familiar as a contin-
uous transition between different integer quantum Hall states.
To see this, note the masses of the two Dirac fermions are
given by the eigenvalues of the mass matrix, which are

√
2m cos

(
ν ± π

4

)
. (3.6)

Thus, due to the parity anomaly, whenever the mass of one of
the Dirac fermion crosses from negative to positive the effec-
tive action contains additional term 1

4π
AdA + 2CSgrav where∫

M3
CSgrav = π

∫
M4

Â(R) with M3 = ∂M4 is the gravitational
Chern-Simons term.

If we study an interface which varies from ν < π/4 to
π/4 < ν < 3π/4, these Chern-Simons terms lead to gapless
chiral modes near where ν crosses π/4. This can be thought
of as another manifestation of bulk-boundary correspondence.

In light of this, the Abanov-Wiegmann theory does not
describe a generic codimension-3 diabolical locus. Suppose
we begin with the three-parameter phase diagram of (3.1) with
ν = π/2, just parametrized by the ni, and then tune ν slightly
away from π/2. Because the diabolical point at the origin is
protected by the Thouless invariant, it cannot disappear com-
pletely, but it is unstable in the view of the above. For small ni,
the SU(2)-invariant mass term dominates, and gaps the central
point. We find that it is replaced by an island of an integer
quantum Hall state with a single gapless Dirac fermion along
its two-dimensional boundary. For a three-parameter phase
diagram, these diabolical islands are the generic situation,
provided U(1) symmetry is maintained.

B. The Wess-Zumino-Witten term and a codimension-5
diabolical point

Even if we do not assume any symmetry, a possible topo-
logical term in the effective action for scalar fields φi is the
WZW term

Stop =
∫

X
φ∗ω(3), (3.7)

where ω(3) is a U(1) 3-form gauge field. Compare (2.11).
Locally it is a 3-form, but it undergoes a 2-form gauge trans-
formation ω(3) �→ ω(3) + dB when one changes charts, under
which (3.7) is invariant. Here B is a 2-form gauge field, similar
to ω(2) in Sec. II B. Therefore the 4-form �(4) = dω(3) is
well-defined and closed, but not necessarily exact. Moreover,
for exp(iStop) to be well-defined, periods of G must satisfy
certain quantization conditions. For fermionic systems with a
general parameter space these conditions are rather nontrivial,
see Ref. [7] for a brief discussion. However in the case when
the parameter space is S4 the same argument as for the 1+1d
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WZW term shows that
∫

S4 �(4) must be an integral multiple
of 2π . If the cohomology class of �(4) is nontrivial, the cor-
responding family of field theories in noncontractible in M3,
the space of infrared-trivial 2+1d field theories.

As a simple example, consider a theory four complex
fermions � = (ψ1, ψ2, ψ3, ψ4). It is convenient to regard
them as a spinor representation of a flavor Spin(5) symmetry,
where � transforms as a spinor, even though this symmetry
will not be important in our analysis. Following Ref. [12] we
consider the Lagrangian

L = −�i∂� − im�(cos ν�5 + ni�
i sin ν)�, (3.8)

where �i are the gamma matrices for the Spin(5) flavor in-
dices, and n2 = 1, i = 1, 2, 3, 4. Under the Spin(5) flavor
action on � the mass parameters (m cos ν, m sin ν ni ) trans-
form as a vector. Without loss of generality we take m � 0 by
ν → π − ν, n → −n. There is also a U(1) symmetry under
which � �→ eiγ �.

For m > 0, the theory is gapped with a unique ground state.
The point m = 0 is a gapless diabolical point of codimension
5. The parameter space with this point removed is homotopy
equivalent to S4. This diabolical point is protected by the
higher Berry phase on S4 and thus is stable under arbitrary
deformations, including those which break Spin(5) and/or
U(1). Indeed, if we promote the parameters φ = (ν, ni ) to
be position dependent, the effective action of the fermion
contains [12] (see also Appendix A) the WZW term (3.7) with

�(4) = 1

8π
εi jkl sin3 νdνnidn jdnkdnl . (3.9)

This is the volume form of S4 normalized so that
∫

S4 �(4) =
2π . Since this integral is quantized, the family (3.8) is not con-
tractible in the space of infrared-trivial 2+1d field theories.

As in Sec. III A, if we add a constant diagonal mass term
to (3.8), this will open a gap near M = 0 into a topological
phase (equivalent to eight copies of p + ip superconductors).
At the boundary of this region two of the eigenvalues of
the mass matrix change sign, yielding an S4’s worth of two
massless Dirac fermions, which is protected by the higher
Berry number of the surrounding region.

A discussion of interfaces in this model and other models
in the “B” series of Abanov and Wiegmann can be found in
Appendix C.

IV. FREE FERMIONS IN 3+1d

A. Skyrmion charge and a codimension-4 diabolical point

Consider a model of free fermions in 3+1d with a La-
grangian

L = −�i∂� − i�(M0 + iγ 0123Miσ i )�, (4.1)

where � = (ψ1, ψ2) is a doublet of Dirac fermions, γ 0123 =
iγ 0γ 1γ 2γ 3 is the chirality operator, σ i for i = 1, 2, 3 are Pauli
matrices, and M = (M0, M1, M2, M3) is the 4-vector of mass
parameters. Uppercase Roman indices take values from 0 to
3. This is a 3+1d analog of the model (2.1). Its topological
properties have been studied by Goldstone and Wilczek [14].
It is also a special case of the “A” series of Abanov and

Wiegmann [12]. The model is gapless for M = 0 and gapped
otherwise.

We claim that M = 0 is a codimension-4 diabolical point
protected by U(1) symmetry. To see this, we need to examine
topological terms in the effective action which depend on the
background U(1) gauge field A as well as scalar parameters
φi representing the slowly varying mass terms M. The term
which is analogous to (2.4) and (3.3) is linear in A and has the
form

Stop = 1

6

∫
X

εμνρσ Aμ∂νφ
i∂ρφ

j∂σφkτ3,i jk (φ)d4x

=
∫

X
A ∧ φ∗τ3, (4.2)

where τ3 is a 3-form on the parameter space. Compare (2.4)
and (3.3). Gauge invariance requires τ3 to be closed and
to have integral periods. If the restriction of τ3 to some
3-parameter family is not exact, the corresponding family
cannot be contracted to a point in the space MU (1)

3 of infrared-
trivial 3+1d field theories with a U(1) symmetry. Intuitively,
this is because the term (4.2) gives rise to a topological current

Jμ
top = 1

6εμνρσ ∂νφ
i∂ρφ

j∂σφkτ3,i jk (φ), (4.3)

which gives charge to skyrmions [topologically nontrivial
configurations of the parameter fields φi(x)]. Continuously
deforming the model within the class of infrared-trivial field
theories cannot change the charge of skyrmions. Note that
charge quantization for arbitrary spatial slices is equivalent to
the integrality of periods of τ3.

In the case of interest to us, the parameters φi can be
identified with MA. The gapped locus is defined by M �= 0 and
is homotopically equivalent to S3. This space has H3(S3,Z) =
Z, so there is a possibility for a term of the form (4.2). In
fact, it was shown in [14] that upon integrating out fermions
the model (4.1) generates the effective action (4.2) with the
3-form τ3 given by

τ3 = 1

12π2|M|4 εABCDMAdMBdMCdMD. (4.4)

This implies that the family (4.1) describes a codimension-4
diabolical point.

The consequences of this for interfaces are similar to the
ones in the 1+1d and 2+1d cases. Namely, if we restrict to
the S3 given by |M| = 1 and study interfaces from a fixed
basepoint p0 to other points p ∈ S3, then any family of in-
terfaces which depends continuously on p will have at least
one gapless interface. If there is a single such point p∗ ∈ S3,
we can consider it as a 2+1d diabolical point for the interface
theory, and the effective action for the nearby gapped inter-
faces will contain a topological term of the form (3.3), where
the 2-form τ2 integrates to 1 on any S2 surrounding p∗. That is,
the field theory on the interface has an “anomaly in the space
of couplings” in the sense of Ref. [9]. For a certain nice family
of interfaces, the effective 2+1d theory on the interface can be
described by the Lagrangian (3.1). This is explained in more
detail in Appendix C.
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B. WZW terms and a codimension-6 diabolical point

If we do not assume any symmetry, then the most obvious
topological term in the effective action is the WZW term

Stop =
∫

X
φ∗ω(4), (4.5)

where ω(4) is a 4-form gauge field on the parameter space,
analogous to (2.11), (3.7), and the quantum mechanical Berry
phase. That is, locally ω(4) is a 4-form, but when one goes
from chart to chart ω(4) transforms by a 3-form gauge trans-
formation ω(4) �→ ω(4) + dC, where C is a 3-form gauge field.
Equation (4.5) is invariant under such gauge transformations.
The gauge curvature �(5) = dω(4) is a closed but not necessar-
ily exact 5-form on the parameter space (the WZW 5-form).

As in lower dimensions, if �(5) has a nonzero integral
over a family parametrized by S5, then that family cannot be
contracted to a point within the space M3 of infrared-trivial
field theories in 3+1 dimensions. In particular, we expect that
there are diabolical points in codimension 6 which are stable
without imposing any symmetry. An example of such a model
has been constructed by Abanov and Wiegmann [12]. Con-
sider four Dirac fermions � = (ψ1, . . . , ψ4) transforming in
the fundamental representation of USp(4) [or equivalently,
as a spinor of Spin(5)]. Following Ref. [12] we consider the
Lagrangian

L = −�i∂� − i�(M0 + iγ 0123Mi�i )�, (4.6)

where �i, i = 1, . . . , 5, are Spin(5) Dirac matrices acting in
the flavor indices and M = (M0, M1, . . . , M5) is a 6-vector of
mass parameters. The model has a gapless point at M = 0.
Reference [12] shows that upon integrating out the fermions
one gets the effective action (4.5) where the 5-form �(5) on
R6\{0} is given by

� = 1

60π2|M|6 εABCDEF MAdMBdMCdMDdME dMF . (4.7)

The integral of this 5-form over the S5 is 2π . This implies
that �(5) is not exact and therefore the family (4.6) is not
contractible in the space of all 3+1d infrared-trivial field
theories.

As usual, noncontractibility implies that a family of inter-
faces which depends continuously on M will have at least
one gapless point. As explained in Appendix C, in the case
of model (4.6) such a gapless point occurs when one con-
siders an interface between M = (m, 0, 0, 0, 0, 0) and M =
(−m, 0, 0, 0, 0, 0). In the neighborhood of this special inter-
face there are almost-gapless interface modes described by the
Lagrangian (3.8). This is an example of the boundary-bulk
correspondence.

C. Axion couplings

Until now, all diabolical loci not protected by any sym-
metry arose from WZW terms in the effective action for the
parameter fields. Such diabolical loci occur in codimension
d + 3, where d is the spatial dimension, and are direct de-
scendants of the von Neumann-Wigner points. In 3+1d, a
new phenomenon occurs: One encounters diabolical loci in
codimension 2, which are related to coupling to background

geometry. Topological invariance requires these terms to have
the form

Stop = 1

2π

∫
X

CSgrav ∧ φ∗ρ, (4.8)

where ρ is a 1-form on the parameter space with quantized
periods. One can always assume that the parameter space
is S1, in which case ρ = Ndα, where α is a 2π -periodic
coordinate on S1 and N is a number. Then the above coupling
can be written as an axion coupling

Stop = − N

384π2

∫
X

α TrR2. (4.9)

In order for exp(iStop) to be well-defined, N has to be quan-
tized. The precise quantization condition depends on whether
X is allowed to be an arbitrary oriented 4-manifold (the
bosonic case) or a spin manifold (the fermionic case). In the
former case, N must be a multiple of 16, while in the latter
case it must be integral. Whenever N is nonzero, the family
parameterized by α is noncontractible, signifying the presence
of a diabolical locus in codimension 2. This diabolical locus
is stable with respect to arbitrary modifications of the theory
in the UV.

Examples of models where gravitational axion couplings
arise are well-known. One can take a single Majorana fermion
with mass M and set α = arg M. Gravitational anomaly for
chiral U(1) symmetry then leads to the coupling (4.9) with
N = 1.

The physical consequences of the gravitational axion cou-
pling are also well-known. If α winds k times around the
origin in the 12 coordinate plane in space-time, then at the ori-
gin of the coordinate plane there must be chiral gapless modes
propagating in the x3 direction with the chiral central charge
cR − cL = Nk/2. If one considers smooth interfaces between
all models with |M| = m > 0 and the basepoint model M =
m, then there will be a gapless interface for at least one value
of α = arg M. This is so even if one modifies the theory in
the UV while preserving the gap for all α. In the case of the
massive 3+1d Majorana fermion, the gapless interface carries
a massless 2+1d Majorana fermion.

Usually the stability of the gapless point at M = 0 is ex-
plained in terms of the ’t Hooft anomaly for the chiral U(1)
symmetry. This symmetry is restored at M = 0 and thus ’t
Hooft anomaly matching requires the presence of massless
modes. This explanation is problematic from the point of
view of lattice regularization, since a chiral U(1) symmetry
cannot be realized on a lattice in a completely local way. Our
explanation avoids using any symmetries and relies instead
on the topology of the parameter space of infrared-trivial field
theories.

If one considers gapped models with a global U(1) sym-
metry, an axion coupling to a background U(1) gauge field
is also allowed. Such a coupling signifies a diabolical locus
in codimension 2 as well. The usual explanation of stability
involves a mixed ’t Hooft anomaly between two different U(1)
symmetries one of which is broken only by a mass term.
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V. INTERACTING GAUGE THEORIES

A. Gauge theories in 2+1d

1. Operation ST and the generalized Thouless pump invariant

Let us describe a general technique for producing new
diabolical loci in 2+1d protected by a U(1) Thouless pump.
Suppose we begin with such a family. If we turn on nontrivial
background gauge field A for the U(1) symmetry and pro-
mote the parameters to be position-dependent φ : X → M on
space-time X , then the effective action can be expressed as
(3.3). The U(1) current is

jμ = 1
2εμνρ∂νφ

i∂ρφ
jτ2,i j (φ). (5.1)

Now, let us gauge the U(1) symmetry and study the
effective action of the resulting theory. We first add a Chern-
Simons counterterm∫

X

(
1

4π
AdA − 1

2π
AdB

)
, (5.2)

where B is a background U(1) gauge field, and then promote A
to be a dynamical gauge field a. We may also add a Maxwell
term for a, but the infrared behavior is determined by the level
one Chern-Simons term for a. It makes a massive, and more
over makes the corresponding low-energy theory invertible
(see for instance Appendix B of Ref. [27]). Thus we obtain a
new system that is invertible away from the diabolical points
and has a global U(1) symmetry with a current

j′μ = 1

2π
εμνρ∂νaρ (5.3)

which couples to the background gauge field B. This is the ST
operation of Ref. [28] which originally appeared in Ref. [29].

The new system is described at low energies by a topolog-
ical U(1) gauge theory with an action

Seff =
∫

X

(
1

4π
ada − 1

2π
adB + a φ∗τ2

)
. (5.4)

By shifting a �→ a + B in (5.4), we find the effective action

S′
eff =

∫
X

(
1

4π
ada + a φ∗τ2

)
+

∫
X

(
− 1

4π
BdB + B φ∗τ2

)
.

(5.5)

The first term describes a family of infrared-trivial 2+1d field
theories which does not couple to the background U(1) gauge
field B.12 Therefore the Thouless pump invariant is deter-
mined by the second term and is the same as for the original
family (3.3), but diabolical point is modified: it is mapped to
its ST transform.

12The partition function of this invertible theory is a Hopf-like term

eiH [φ] ≡
∫

Daei
∫

X ( 1
4π ada+a φ∗τ2 ), (5.6)

which can be formally expressed as (omitting the gravitational
Chern-Simons term − ∫

X 2CSgrav) H [φ] = π
∫

Y φ∗(τ2)2 for spin 4-
manifold Y that bounds the space-time. It does not depend on the
choice of Y . An example of such a Hopf term is discussed in
Ref. [30].

2. U(1)1 with two fermions

Let us apply the above procedure to the theory of two
complex 2+1d fermions with SU(2)-covariant vector mass
discussed in section III. In this case j in (5.1) is the current
for the skyrmion number. The U(1) symmetry transforms the
two fermions by the same phase.

The ST operation gives an interacting U(1)1 Chern-
Simons-matter theory with two fermions of charge one. This
theory has a magnetic U(1) symmetry whose current is the
dual of the gauge field strength. From the previous discussion,
away from the m = 0 point the theory has a Thouless pump
invariant for this U(1) symmetry.

The first term in the effective action (5.5) gives an addi-
tional θ = π Hopf term [30], which cancels the Hopf term
from two complex fermions discussed in section III. This
implies that the skyrmion that carries a unit charge of the
topological current j is a boson [30]. Since the equation of
motion for a in (5.5) identifies the current (5.1) with (5.3) up to
a contact term, the skyrmions correspond to the monopoles in
the gauge theory. Indeed, the monopole operators in the U(1)
gauge theory with charge one fermions are bosons [31].13 The
critical point at m = 0 is protected by the nonzero skyrmion
charge as in the original family of two complex fermions.

Similar to the discussion in Sec. III, we can take m > 0
and consider a family of interfaces with fixed base point n =
(0, 0, 1) obtained from the family in Sec. III by gauging the
U(1) symmetry. From the “boundary-bulk” correspondence
this family must contain an gapless interface. An analysis
along the lines of Appendix C shows that this gapless interface
hosts a massless periodic scalar which is the bosonization of
a massless Dirac fermion.

3. U(N) gauge theory with two scalars, deconfined quantum
criticality, and boson/fermion duality

In the examples we discussed so far (and the examples
discussed in Ref. [12]) the Berry phase or Thouless pump
invariant are derived from integrating out massive fermions.
Here we present a new class of examples where the Berry
phase is obtained from a massive scalar through the Higgs
mechanism.

Consider U(1) gauge theory with two complex scalars φ of
charge one and quartic potential that respects the SU(2) flavor
symmetry,14, aka the CP 1 or abelian Higgs model. We can
add the SU(2) vector mass term

V (φ) = m2niφ
†σ iφ + λ(φ†φ)2, (5.7)

where we take m2 → ∞, λ > 0 and σ i are the Pauli matrices
for SU(2) isospin and

∑
n2

i = 1.
For large m2, due to the Higgs potential the U(1) gauge

field obtains a mass square m2/λ. If we promote the mass
parameters ni to be position dependent, then to leading order

13Another way to see this is that the theory obeys spin/charge
relation with respect to the dynamical U(1) gauge field, and thus
gauge invariant local operators are bosons.

14The more precise global symmetry is discussed in Ref. [32].
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in the 1/m expansion there is current

j = i
(
φ†dφ − H.c.

) = − n1dn2 − n2dn1

2(1 − n3)(λ/m2)
+ · · ·, (5.8)

where · · · are suppressed by 1/m2. The equation of motion
for the U(1) gauge field a to leading order gives

a = n1dn2 − n2dn1

2(1 − n3)
+ · · ·, (5.9)

where · · · are suppressed by 1/m2. Thus, to leading order,15

da = dn1dn2

2(1 − n3)
+

(
dn1dn2

2(1 − n3)
+ dn3(n1dn2 − n2dn1)

2(1 − n3)2

)
= − 1

2
εi jknidn jdnk, (5.11)

The relation (5.11) implies that the monopole of the micro-
scopic gauge theory corresponds to the skyrmion configura-
tion of the field ni.

If we turn on background gauge field A for the magnetic
U(1) symmetry with current j′μ = − 1

2π
εμνρ∂νaρ , at low en-

ergy the theory contains the following effective action:∫
Aμ j′μ = 1

8π
εμνρεi jk

∫
Aμni∂νn j∂ρnk . (5.12)

Thus this model provides an example of family of interacting
bosonic theories that has a nontrivial 2+1d Thouless pump
invariant.

For m2 = 0, the model is proposed to describe the decon-
fined quantum critical point between the Néel phase and the
valence bond solid (VBS) [33]. This is a proposed continuous
phase transition in a S = 1/2 antiferromagnet from a Néel
phase, where spin rotation SO(3) is spontaneously broken, to
a VBS phase, where site-rotation symmetry is broken. On a
square lattice, this group is Z4, on a honeycomb lattice, it is
Z3, and so on. The SO(3) spin-rotation is proposed to act as
the flavor symmetry of the two scalars, while rotations act as
a subgroup of the U(1) monopole symmetry.

The single symmetric relevant operator which tunes the
transition is the SO(3)-invariant mass term M2φ†φ for the
scalars. For M2 � 0, the scalars may be integrated out and
we are left with a free U(1) gauge theory. If there are no
monopoles in the action, this leads to a Coulomb phase where
the U(1) monopole symmetry is spontaneously broken. How-
ever, in the setting of Neel-VBS, only a finite subgroup, e.g.,
Z4 or Z3, is a microscopic symmetry, so generically there will
be charge 4 or 3 (respectively) monopoles in the action, which
are irrelevant at the critical point but destabilize the Coulomb
phase, leading to a gapped phase where the rotation symmetry
is spontaneously broken—this is the VBS phase.

For M2 	 0, the scalars condense, and the U(1) gauge
field is Higgsed, with a vacuum moduli space CP 1 = S2,
which means the SO(3) symmetry is spontaneously broken

15A useful identity is

n3(n1dn2dn3 + n2dn3dn1 + n3dn1dn2) = dn1dn2, (5.10)

which can be derived using n2
1 + n2

2 + n2
3 = 1 and n3dn3 =

−n1dn1 − n2dn2.

and the system is in the Néel phase. This direct order-to-
order transition may be explained for square, rectangular, or
triangular lattices, which have a Z2 site-rotation symmetry,
by the ’t Hooft anomaly of SO(3) × U(1) [32,34,35]. This
anomaly argument is a version of the Lieb-Schultz-Mattis
(LSM) theorem. Whether there is actually a continuous phase
transition remains controversial. See for instance [36–44].
For the honeycomb lattice, which has only Z3 site-rotation
symmetry, there is no ’t Hooft anomaly in the field theory and
no LSM theorem for the lattice, so there is the possibility for
an intermediate trivial gapped phase. Possible ground states
for this phase were constructed in Refs. [45–47], although it
is not clear how to reach them from the CP 1 model.

Applying the Thouless pump invariant to this study we
learn some new conclusions, including for the honeycomb
lattice. The SO(3)-vector scalar mass terms m2ni = Ni cor-
respond to Néel polarizing fields, so we will refer to the
gapped state obtained by giving these terms a large coef-
ficient as the polarized state. As we have argued, in the
three-parameter phase diagram of the Ni, regardless of other
local perturbations such as the precise value of M2 or the
strength of symmetry-allowed monopole operators, on a large
S2 there will be a Thouless pump for the unbroken monopole
symmetry, in other words for the site-rotation symmetry Zp,
p = 2, 3, 4, or 6.

The Thouless pump implies that the phase diagram must
have some diabolical locus for small �N . For instance, if we be-
gin in the Néel phase, where SO(3) is spontaneously broken,
then for any nonzero �N the system is polarized, so the gapless
Néel phase appears as just a single gapless point at �N = 0,
described in the IR by an S2 sigma model. For M2 � 0, on
the other hand, we will open up a VBS phase at �N = 0. There
will be a phase transition at some nonzero �N into the polarized
state.

As we vary M2 between these two regimes, there must
always be a phase transition somewhere in the slice of the
phase diagram corresponding to a fixed M. See Fig. 2. This
is true even on the honeycomb lattice, where one might go
through an intermediate trivial phase for some M and zero
polarizing field. In that case, by the spherical symmetry of the
phase diagram, this trivial phase will still be separated from
the polarized phase at large �N by a phase transition at some
positive |N |2. Near this phase transition, both nearby phases
look trivial. This situation is fine-tuned in the sense that the
Ni are the only SO(3)-breaking perturbations. If we add other
such perturbations, we can spoil the spherical symmetry of the
phase diagram in Fig. 2, resulting in a generic (although still
nontrivial) diabolical locus.

If we include in the action a level k Chern-Simons term
for the dynamical U(1) gauge field, then (5.11) implies that
the Chern-Simons term produces a Hopf term with coefficient
k for the parameters ni [30]. As discussed in Ref. [30], such
term results in the skyrmion being a fermion or boson when k
is odd or even, in agreement with the spin of the monopole
in the microscopic gauge theory. The computation can be
generalized straightforwardly to U(N ) gauge theory coupled
to two complex scalars.

Note that the 2+1d Thouless pump term coincides with
that of two complex fermions in (3.4). For k = 1, the Hopf
term coincides with the θ = π term for ni in the system of
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Perturbed
CP1 Model

FIG. 2. The three parameter phase diagram of the CP 1 model
with potential (5.7), at some value of M2 and other perturbations not
necessarily at the critical value, and where we have explicitly broken
the SO(3) symmetry by the three mass parameters Ni = m2ni, which
correspond to Néel polarizing fields in the Néel-VBS transition. The
fate of the theory at the origin is unknown except in the large M2

regions, but there is a Thouless pump for the U(1) monopole charge
on a sphere of large radius which protects a diabolical locus inside for
all M2. This is true even after breaking U(1) to a cyclic subgroup of
odd order, for which there is no ’t Hooft anomaly or LSM constraint.
Note that the phase diagram is spherically symmetric so long as the
Ni are the only SO(3)-breaking perturbations.

two complex fermion. Thus the above computation provides
a new consistency check for the duality between two complex
fermions and U(N )1 coupled to two complex Wison-Fisher
scalars [48,49],16

2 free Dirac fermions ←→ U (N )1 + 2φ. (5.13)

On the other hand, the theory with a more general Chern-
Simons level k may flow to interacting fixed points. In those
models, there is a kind of Thouless pump, but the surrounding
phase is a nontrivial TQFT, and the skyrmion binds a nontriv-
ial anyon [25].

It is also suspected that there is an emergent SO(5) sym-
metry in this model, where the two monopole operators M1 ±
M−1 and the ni form an SO(5) vector [43].17 If we consider
perturbations by these operators, the theory describes a di-
abolical locus in a five-parameter phase diagram, protected
by a WZW term of level 1 [51–53]. The protection of this
diabolical locus holds without assuming any symmetry at
all! The WZW term can be derived using from the Thouless
pump above, and vice versa, using equivariant cohomology
techniques for computing anomalies of WZW theories [54].

16The duality holds for N � 2 since otherwise the mass deforma-
tion in the scalar theory contains extra Goldstone mode [49]. We
remark that the effective action discussed here cannot be removed
by a well-defined local counterterm of the background field since it
is not well-defined at m2 = 0. Thus it must agree across the duality.

17There are also results from conformal boostrap against a stable
critical point with SO(5) symmetry in (2 + 1)d [50].

The above computation can be generalized to other di-
mensions, with the 0-form symmetry for the Thouless pump
invariant replaced by higher-form symmetry. We will give an
example in Sec. V B 1.

B. Gauge theories in 3+1d

1. U(1) gauge theory with two scalars

Consider a U(1) gauge theory in 3+1d coupled to two com-
plex scalars of charge one with an SU(2)-invariant potential
(5.7). The theory has a magnetic U(1) 1-form symmetry with
a current jμν = 1

2π
εμνρσ ∂ρaσ where a is the gauge field [55].

Then by repeating the computation in Sec. V A 3 we find that
in the presence of a background 2-form gauge field B(2) for the
U(1) 1-form symmetry, the effective action for the family of
theories away from the point m2 = 0 has the following 3+1d
Thouless pump invariant

Stop = 1

8π

∫
εμνρσ εi jkB(2)

μνni∂ρn j∂σ nk d4x. (5.14)

The significance of this topological terms is as follows. For a
fixed m2, the parameter space of the family of theories we con-
sider is S2. Therefore it makes sense to consider skyrmionic
strings: Static topologically nontrivial configurations of the
parameter fields ni which depend on two out of three coor-
dinates on the space R3 and approach a constant at infinity.
Such strings are classified by a skyrmion 1-form charge tak-
ing values in π2(S2) = Z. The term (5.14) makes skyrmionic
strings charged with respect to the 1-form U(1) symmetry, so
that their U(1)-charge is identified with the skyrmion charge.
This protects the gapless locus at m2 = 0 provided 1-form
U(1) symmetry remains unbroken.

The stability of the m2 = 0 point is also protected by an
order 2 mixed ’t Hooft anomaly between the magnetic 1-
form symmetry and the PSU(2) = SO(3) flavor symmetry.18

However, the previous argument using the Thouless pump
invariant does not rely on SO(3) symmetry and thus is still
valid for perturbations that break SO(3). Moreover, such an
anomaly becomes trivial when we consider two copies of the
system. The argument based on the effective action (5.14)
shows that neither the number of copies nor the SO(3) flavor
symmetry are essential for the stability of the phase transition
at m2 = 0.19

18To see this, we can turn on background SO(3) gauge field with
nontrivial w

SO(3)
2 which is the obstruction to lifting the bundle to an

SU(2) bundle, then the Dirac quantization of the U(1) gauge field a
is modified to be ∮

da

2π
= 1

2

∮
w

SO(3)
2 mod Z. (5.15)

Thus the coupling
∫

B(2)da/(2π ) to background B(2) for the magnetic
1-form symmetry is no-longer 3+1d, and we find the theory lives on
the boundary of the SPT phase

π

∫
5d

dB(2)

2π
∪ w

SO(3)
2 . (5.16)

19The same comment applies to the 2+1d theory discussed in
Sec. V A 3 whose discrete ’t Hooft anomalies were studied in [32].
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VI. THE BULK-BOUNDARY CORRESPONDENCE
FOR SPHERES

We will show that given any boundary condition of a
d-dimensional system with a higher Berry number on a pa-
rameter space with the topology of Sd+2, there is at least one
parameter value where the boundary gap closes, indicating
either gapless edge modes or an edge degeneracy. In the case
that the parameter space is Rd+2\{0}, repeating the argument
on successive spheres we find an arc connecting the origin to
infinity, along which the boundary gap closes. Furthermore,
if we consider varying parameters near the boundary, along a
small Sd+1 which links the singularity, we find the boundary
theory has a higher Berry number on the linking Sd+1. This
by itself is not anomalous, but the fact that this Sd+1 lies
in a larger parameter space where it is homotopically trivial
requires the existence of the bulk. Compare Secs. II A 2.

To see there must be a boundary singularity, we will show
the partition function vanishes at a certain point by studying
the winding number of its phase. Indeed, far from the bound-
ary, but still over a wide-enough region so that we do not
cause the bulk gap to close, we can cause the phase of the
partition function to wind a number equal to the higher Berry
number. We do this by choosing spatially varying parameters
which draw a “hoop” in parameter space, such that along a
1-parameter family of such hoops beginning and ending at a
chosen configuration of constant parameter, we envelop the
target space once. See Fig. 3.

So long as the partition function does not vanish, this wind-
ing number is a quantized integer. The nonvanishing of the
partition function is ensured by the uniform gap assumption.
On the other hand, since we are on a space-time with bound-
ary, we can move the hoop region to the edge, absorbing it and
unwinding the one-parameter family so constructed. At the
end of this, the winding number must be zero. Therefore the
partition function must vanish somewhere during this process,
so the assumption of the uniform gap must be violated by the
boundary.

We can perform this unwinding more systematically by
using the boundary to retract each hoop. See Fig. 4. This
defines a two-parameter family φ(u, v) of backgrounds. Let
u denote the parameter of the original family (which may
be considered a circular parameter) and v the parameter of
the unwinding. We have argued there is some u∗, v∗ where
the partition function vanishes, hence there is some parameter
value p∗ in the image of φ(u∗, v∗) where the boundary is either
degenerate or gapless. Typically there could be several such
points.

In a small neighborhood of such a point, we may integrate
out the bulk and consider p∗ as a diabolical point for the
effective boundary theory. This implies that such points are
isolated in the absence of extra symmetries. Furthermore, they
are protected by a higher Berry number of the boundary,
which we can compute as follows.

The special point p∗ is isolated so there is some ε > 0
such that there are no other boundary diabolical points within
the parameter values in the image of the strip v∗ − ε < v <

v∗ + ε, u ∈ S1. We form a 1-parameter family of backgrounds
by composing the 1-parameter families φ(u, v∗ + ε/2) and
φ(2π − u, v∗ − ε/2) (these are composable because all

FIG. 3. A 1-parameter family of backgrounds on space-time
Rd+1 (or a ball Bd+1) useful for measuring the higher Berry number
around a parameter space Sd+2 and for arguing the bulk-boundary
correspondence. Here we have drawn the case d = 0, with each hoop
depicting the image of the parameter map φ. We fix the parameter
values at space-time infinity (or sufficiently near the boundary) at
the blue point, where all hoops meet, and varying the parameters
in a compact but large region so that over the 1-parameter fam-
ily, the parameter values wind around the sphere once. Note that
this family begins and ends at a background where the parameters
are constant, at the blue point. Thus the partition function in this
process will return to itself. Assuming a uniform energy gap over
the sphere implies that this partition function never vanishes, hence
the winding number of the phase of the partition function over
this process is a quantized topological invariant, which we identify
with the higher Berry number by the effective action (2.11) and its
higher-dimensional generalizations. The red point is a hypothetical
diabolical point which sources the Berry curvature.

families begin and end at the blue point in Fig. 4). This family
is constructed so that the parameter values on the boundary
wind once around the boundary diabolical point p∗. Further,
because we are in the strip away from any other diabolical
points, the partition function is nonvanishing in this fam-
ily. Finally, the winding number jumps between the families
φ(u, v∗ + ε/2) and φ(u, v∗ − ε/2), and we have composed
them with different orientations in u, so the one so constructed
has nonzero winding number. This winding number protects
the boundary diabolical point by our usual arguments, and
thus is very analogous to a bulk higher Berry number.

There is an important subtlety, however, which distin-
guishes this situation from cases where there is no bulk.
Indeed, if we sum up the winding numbers defined above
over all the boundary diabolical points, we get something
nonzero—in fact one can readily see we get the bulk higher
Berry number! This “index theorem” is an aspect of anomaly
in-flow for the higher Berry phase. Indeed, without the bulk,
for a compact parameter space it is easy to see the total index
of diabolical points (summing their higher Berry numbers)
must be zero.

To put it another way, our one-parameter family we defined
above to encircle the boundary diabolical point p∗ is homo-
topic without changing the boundary values to one where
the bulk parameter values lie only in the special strip. On
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FIG. 4. A two-parameter family of backgrounds where the
boundary is used to unwind the one-parameter family in Fig. 3,
depicted at the point where the latter family is half-way “absorbed”
into the boundary. We have drawn the image of the parameter values
at the boundary as a red circle. Because this family of families
interpolates between a trivial family and one for which the phase
of the partition function winds, the partition function must vanish for
some value of the two parameters, which implies the gap must close
at the boundary at that value. This occurs precisely where the red
circle crosses a boundary diabolical point. We may define a boundary
Berry number for such points. We find that the sum of these boundary
Berry numbers equals the bulk Berry number.

the other hand we could’ve defined a one-parameter family
with the same boundary values but where the bulk parameter
values lie outside the strip, such that the two one-parameter
families are complementary, in that we can glue them together
along the boundary to form something homotopic to our bulk
1-parameter family in Fig. 3. Thus, while these one-parameter
families have precisely the same boundary parameters, their
winding numbers differ by the bulk higher Berry number.

This confirms a point of view in Ref. [9], which is that
theories with anomalies in the space of coupling constants
are typically presented with a noncompact parameter space,
and while the ground state is trivially gapped at infinity, there
is some winding that prevents one from compactifying the
parameter space. Here we see that we expect such compact-
ification is possible iff one introduces a bulk. We comment
on the applications of these arguments to interfaces in
Appendix C.

This discussion can be extended to systems with a global
symmetry group G. We study families parameterized by
Sd+1−k , k � 0, which are characterized by a generalized
Thouless pump for which some k-space-time-dimensional
G-SPT �k is carried by the skyrmion. After compactifying
along a k-dimensional test manifold with background gauge
field for this SPT, we can reduce the detection of this SPT
on the skyrmion by measuring the phase (or winding num-
ber thereof) of the sphere partition function. Introducing a
boundary and using it to unwind the skyrmion as in Fig. 4,
we again find there is a boundary diabolical point where this
partition function vanishes. If d + 1 − k = 1, at this point
the boundary looks like a phase transition between G-SPTs.
If d + 1 − k > 1, the boundary diabolical point is associated

with a Thouless pump over an Sd−k . As before, the sum of the
G-SPT classes associated with each of these diabolical points
must be �k .

VII. CLASSIFICATION OF DIABOLICAL LOCI

In this section, we discuss a conjectural classification of
higher Berry numbers and diabolical loci. Consider the space
Md of infrared-trivial systems, that is, those with a unique,
gapped ground state and no topological degrees of free-
dom. The connected components of this space [elements of
π0(Md )] are the short-range entangled (SRE) phases of mat-
ter. It is by now well accepted, although it remains unproven,
that in the case of bosons (respectively fermions), π0(Md )
can be expressed in terms of cobordism groups of oriented
(respectively spin) closed manifolds [56,57].

In fact, there is a much stronger conjecture, motivated by
TQFT, which identifies the entire homotopy type of Md with
that of a space in a certain cobordism spectrum [58]. The
fact that the homotopy type forms a loop-spectrum is very
powerful, and allows us to immediately derive the classifica-
tion of SRE phases with global symmetries (i.e., SPT phases)
[59–64] as well as classify families of SRE phases [65], which
is what we are interested in.

For instance, a basic consequence of the existence of a
loop-spectrum for SRE phases is the isomorphism

πk (Md ) = π0(Md−k ), (7.1)

which says that a family of infrared-trivial systems
parametrized by Sk can be characterized by a generalized
Thouless pump which pumps a d − k-dimensional SRE phase
to the boundary.

We see that if d and k are increased together, d − k does
not change, so for each m = d − k there is a series of families
associated to an m-dimensional SRE phase. The Abanov-
Wiegmann “A” series in (C21) and (C20), for instance, is
associated to the 0+1d fermionic SRE “phase” characterized
by the fact that the ground state has fermion number 1 (or
1 mod 2 if only the fermion parity is conserved.) This phase is
the generator of π0(M1) = �1

spinc = Z in the U(1) conserving
case or π0(M1) = �1

spin = Z2 in the case with just fermion
parity. The theory studied in Sec. IV C with the axion coupling
corresponds to m = 2, with π0(M2) = Z generated by the
p + ip superconductor.

The “B” series in (C1), (C2) corresponds m = −1. Since
(−1)-dimensional systems do not make sense, one cannot
associate this series to an SRE phase. However, one can
set k = 1 and associate it to a noncontractible loop of SRE
“systems” in 0 + 0 dimensions. A “system” in zero dimen-
sional space-time is characterized by its partition function,
which is a complex number. For an SRE “system,” this
number is nonzero. The noncontractible family in question
is the one where the phase of the partition function winds
once around the origin of the complex plane. Although this
series has m = −1, geometrically it corresponds to the gen-
erator of the bordism group of spin 0-manifolds, which is
Z. This degree shift is a consequence of Anderson duality
applied to the bordism spectrum [58]. With time reversal
symmetry, the partition function is real, so there is no integer
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Berry number, but for m = 0 there are two SRE “phases,”
the trivial one and the nontrivial one. The nontrivial one
gives rise to a series of codimension-d + 2 diabolical loci of
time-reversal-invariant systems in spatial dimension d . The
one for d = 0 was observed already by von Neumann and
Wigner [2] and corresponds to the holonomy of the Berry
connection being −1. Geometrically this series arises from
the generator of the bordism group of unoriented points,
which is Z2. It does not get shifted in degree by Anderson
duality.

These considerations are the interacting analog of the work
of Teo and Kane [11] on topologically protected defects
in gapped systems of free fermions in d spatial dimen-
sions. They argued that the classification of such defects
depends only on δ = d − k, where k + 1 is the codimension
of the defect. A defect of codimension k + 1 in a system
of free fermions can be created by making the system’s pa-
rameters depend on the coordinates of Sk which surrounds
the defect. Therefore a topologically protected defect cor-
responds to a nontrivial element of πk (Kd ), where Kd is
the space of gapped systems of free fermions in d dimen-
sions. Since the spaces Kd form a loop spectrum too (the
K-theory spectrum [66–68]), one finds again that πk (Kd ) =
π0(Kd−k ). Thus the classification of topologically protected
defects depends only on d − k and can be obtained from the
periodic table of topological insulators and superconductors
[66,67] by a shift d �→ d − k. In particular, Bott periodicity
in K theory implies that the classification of defects is pe-
riodic in k with period 2 or 8 depending on the symmetry
class.20

If one views k + 1 as the codimension of a spatial de-
fect, then k cannot be larger than d . But if one views k
as the codimension of a diabolical point in the phase dia-
gram, then k can be arbitrarily large. Bott periodicity thus
implies that in a d-dimensional system of free fermions the
codimension of a diabolical point can be arbitrarily high. In
contrast, in the interacting case there are no diabolical points
of codimension greater than d + 3. Interactions destabilize all
diabolical points of higher codimension. An argument for this
is sketched in Appendix D.

For a general parameter space P, the classification implies
that families of d-space-dimensional infrared-trivial systems
parametrized by P are classified by a certain cobordism group
for closed d + 1-manifolds equipped with a map to P, which
we{

families of infrared-trivial systems
of bosons or fermions parameterized by P

}
��d+1

SO or Spin(P).

(7.2)

There is a “supercohomology” approximation to this classifi-
cation which was described in [71]. In particular, if P supports
fermion parity Thouless pumps, it can affect the quantization
of the WZW term to be fractional relative to the quantization
on a sphere. If there is a global symmetry G, we study instead
the cobordism group of P × BG, with appropriate twists [57].

20Some of these K-theory invariants, such as the higher Chern
numbers, have been interpreted in terms of curvatures of higher form
connections on the Brillouin zone in Refs. [69,70].

The group on the right hand side is interpreted as cobordism-
invariant effective actions for a d + 1-dimensional space-time
with a map to P, i.e. a spatiotemporally varying background.

The correspondence between families of theories and
theories equipped with varying parameters, or parameters
promoted to fields, is quite general, and has been used
in many contexts in physics. There is mathematical evi-
dence for this correspondence. For instance, it has been
observed in Ref. [65] that the Baez-Dolan-Lurie cobordism
hypothesis [72,73] implies an equivalence between fami-
lies of TQFTs parametrized by a space P and TQFTs for
manifolds equipped with a map to P. In the general case,
looking at the space of systems MT

d whose IR limit is a
d+1-dimensional TQFT T , one expects for 0 < k < d + 2,
πk (MT

d ) is the group of invertible d − k-dimensional topo-
logical defects in T , πd+2(MT

d ) = Z, and higher homotopy
groups vanish. This is relatively well-understood for d � 2
[74,75], and an understanding is slowly emerging in higher
dimensions [76].

Finally, there is the question of how these various spaces
are embedded into the space Md of all low-energy theories
in d space dimensions. This space may have several compo-
nents, labeled by anomalies for instance. Our spaces Md are
embedded in the component M0

d of “anomaly free” low-energy
theories. One might expect this space is homotopic to the
space of local lattice Hamiltonian models, a convex space,
hence that M0

d is contractible. This would be satisfying, since
it implies that every nontrivial homotopy group of Md (or
any other stratum) corresponds to some diabolical point on
a deeper stratum inside.

Note added. At the same time as this paper, another paper
on a closely related subject appeared on the arXiv [77]. That
paper studied a phenomenon they dubbed “vacuum crossing,”
wherein traversing a noncontractible loop in a region of pa-
rameter space with multiple vacua (e.g., in a spontaneous
symmetry breaking phase), the system undergoes an adiabatic
transformation from one ground state to another. If M is a
region of parameter space where the system has n degenerate
ground states, then this adiabatic transformation is encoded in
a permutation representation π1(M ) → Sn. If these n degener-
ate ground states form a representation of some spontaneously
broken symmetry G, then this permutation must be valued in
the commutant of G. If they are associated with anyons, such
as when considering ground states of a 2+1d TQFT on a torus,
then this permutation representation must respect the braiding
action.

One point of view which encompasses both vacuum cross-
ing and the invariants discussed in this paper is to say that
for any subset M of parameters where the system flows to the
same IR fixed point T , the homotopy type of M acts upon T as
a (higher) symmetry, so that for 0 < k < d + 2, any element
of πk (M ) is associated with a symmetry defect of T (which
may be spontaneously broken), while πd+2(M ) is associated
with higher Berry phases. If M is homotopy equivalent to S1,
this is the permutation representation mentioned above. If M
is homotopy equivalent to Sd+2, where d is the space dimen-
sion, then this is the higher Berry phase. Taking M = MT the
space of all theories which flow to T , there is a universal such
action. It would be very interesting to try to understand this in
detail. .
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APPENDIX A: TOPOLOGICAL ACTIONS FOR FREE
FERMIONS IN d DIMENSIONS

1. Wess-Zumino-Witten terms

Consider N free massive fermions in d + 1 space-time
dimension. The mass term in the Lagrangian has the form
mψ

a
Pabψ

b, where we parameterized the mass matrix m = mP
by an overall scale m > 0 and a dimensionless matrix P with
entries Pab.

In odd space-time dimensions, Lorenz invariance forces
the mass matrix to act trivially on the spinor indices. Unitar-
ity then requires P to be hermitian. The physical masses of
fermions are m times the absolute values of the eigenvalues of
this matrix. Thus the model describes massive fermions if and
only if P nondegenerate. If we have N Dirac fermions, we can
diagonalize P with a U(N ) transformation, and all eigenvalues
are nonzero. We can deform them all to ±1 while keeping
them nonzero. Hence we can assume that P2 = 1.

In even space-time dimensions we can write P = P1 +
iγ 0···d P2 with hermitian P1, P2 which act trivially on the
spinor indices, and with γ 0,··· ,d the chirality operator. In the
cases of interest to us, these two matrices commute (in fact,
P1 is always a scalar matrix). For N flavors of fermions a
U(N ) rotation ψ �→ Uψ can diagonalize both P1 and P2.
The physical masses of fermions squared are m2 times the
eigenvalues of P2

1 + P2
2. If we deform all masses to be m, the

matrix P satisfies P†P = 1. The conclusion is that for all d we
can assume P†P = 1.

The variation of the effective action with respect to the
parameter m is

δSeff = Tr δm(D†D)−1D†, (A1)

where D = i∂ + im, and D†D = −∂2 + m†m − ∂m. The
topological term in the effective action is

δSeff =−iTr md+3δP(−∂2+m2)−1 · ((−∂2 + m2)−1∂P)d+1P†

= −iθ0

∫
Tr (δP(∂P)d+1P†), (A2)

where in the last line we used P†P = 1, and

θ0 =
∫

dd+1 p

(2π )d+1

md+3

(p2 + m2)d+2
= i

π (d+1)/2

(2π )d+1

�(3/2 + d/2)

�(d + 2)

= i

4d+1πd/2�
(

d+2
2 )

. (A3)

We can perform the trace over spinor indices using
the identities

odd d : Tr (γ i1γ i2 · · · γ id+1γ 0,··· ,d )

= i(−2i)[(d+1)/2]εi1,i2,··· ,id+1 ,

even d : Tr (γ i1γ i2 · · · γ id+1 ) = i(−2i)[(d+1)/2]εi1,i2,··· ,id+1 ,

(A4)

which can be derived from cyclic property of trace and
anticommutation relation of the gamma matrices. In odd
space-time dimension (even d) the result is the following
Wess-Zumino-Witten term:

θ0
(−2i)d/2

d + 2

∫
Tr (P(dP)d+2). (A5)

In even dimensions, one can perform a similar computation
with P = P1 + iγ 0,··· ,d P2. We will not give a closed form
expression here.

2. Topological terms with a background gauge field

One can perform a similar computation with an additional
background gauge field A for an internal Lie group symmetry
G. We will assume the mass matrix is invariant under G
symmetry. The expansion of (D†D)−1 is modified to be

(D†D)−1 =
∑

s

(−∂2 + m2)−s−1
∑

r

(−i∂A)r (m∂P)s−r + · · ·,
(A6)

where the last term should be understood as a sum over dif-
ferent orderings of ∂A and ∂P. The terms contributing to a
(d + 1)-form in the effective action correspond to 2r + s −
r = d + 1, namely s = d + 1 − r.

The variation of the effective action thus contains∑
r

(−i)r+1θr,d Tr δP((∂A)r (∂P)d+1−2r )P†, (A7)

where

θr,d =
∫

dd+1k

(2π )d+1

md−2r+3

(k2 + m2)d−r+2

= i
π (d+1)/2

(2π )d+1

�(3/2 + d/2 − r)

�(d + 2 − r)
. (A8)

a. Odd dimension

In odd space-time dimensions (even d) we can use the trace
identity (A4) to obtain the following topological terms in the
partition function:

exp

(
i
∫

Md+2

Tr eF/(2π )χ (P)

)
, (A9)

where ∂Md+2 = Md+1 and

χ (P) ≡
∑

s

√
π is+d/2

(2π )s−d/2

�(s − d/2 + 1/2)

(2s − d )!
Tr

(
(dP)2s−d P

)
.

(A10)

b. Even dimension

In even space-time dimensions (odd d), we express the
mass matrix as P = P1 + iγ 0,··· ,d P2, where P1, P2 act only on
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the flavor indices. We can evaluate the trace in the variation of
the effective action by applying the identity (A4) that requires
a single overall γ 0,··· ,d . Consider the rightmost ∂P in (A7) that
contributes γ 0,··· ,d

Tr (P†δP · · · (i∂γ d+2P2) fk ) (A11)

where fk is a product of powers of (∂A) and (∂P1) that has
a total of k gamma matrices. Moving γ 0,··· ,d to the right end
introduces (−1)k . We repeat this procedure for the next one
to the left contributing γ 0,··· ,d to the effective action until

all γ 0,··· ,d are moved to the right. If the number of γ 0,··· ,d
is (2 j + 1), there is additional factor (−1) j from bringing
γ 0,··· ,d through ∂P2. Applying the trace identity (A4) erases
the gamma matrices and fk becomes a k-form. Then we move
dP2 across the k-form to the right end, which introduces
another sign that compensates (−1)k . This gives

exp

(
i
∫

Md+2

Tr eF/(2π )χ (P)

)
, (A12)

where the variation of
∫

χ (P) gives the boundary terms

δχ (P) ≡
∑

s

(s − (d + 1)/2)!

(2π )s−(d+1)/2
is− d+1

2

{
[s−(d+1)/2]∑

j=0

1

(2 j)!(2s − d − 2 j − 1)!
Tr (P†

1δP2 − P†
2δP1)(dP1)2s−d−1−2 j (dP2)2 j

+
[s−d/2−1]∑

j=0

1

(2 j + 1)!(2s − d − 2 j − 2)!
Tr (P†

2δP2 + P†
1δP1)(dP1)2s−d−2 j−2(dP2)2 j+1

}
. (A13)

For instance, in even space-time dimensions (d + 1) the
effective action of a single massive fermion with P1 =
cos α, P2 = sin α contains the following Wess-Zumino term:

i
1

(2π )(d+1)/2((d + 1)/2)!

∫
Md+2

dα Tr F (d+1)/2. (A14)

This is exactly as expected from the Atiyah-Patodi-Singer
index theorem [78] that relates the η-invariant of the Dirac
operator with Tr eF/2π .

APPENDIX B: LUTTINGER LIQUID DEFORMATIONS
OF THE 1D THOULESS PUMP

Both the Thouless pump and the diabolical point con-
sidered in Sec. II A admit a simple description in terms
of a compact boson. Let θ , φ be 2π -periodic dual
fields describing a 1+1d compact boson. In our conven-
tion at radius R, the vertex operator exp(inθ + iwφ) has
dimensions

(h, h) = (
1
2 (n/R + Rw/2)2, 1

2 (n/R − Rw/2)2
)
.

The free fermion theory is equivalent to R = 2, with charge
conservation corresponding to the U(1) shift symmetry of θ .

There are two U(1)-invariant and Lorenz-invariant relevant
operators, namely cos φ and sin φ. These correspond to the
two mass parameters of the Dirac fermion. The axial U(1)
symmetry acts as the shift symmetry of φ. If we turn on
some linear combination of these mass terms, φ becomes
fixed in the ground state due to a periodic potential. While
all these ground states look trivial on their own, there is
nevertheless a winding as we vary the argument of the mass
around the origin, witnessed by the fixed value of φ winding
around. Because ∂xφ is the current for the θ -shift symmetry,
our U(1), we immediately derive the topological current of
Sec. II A.

Suppose we deform the family of theories by keeping R =
2 for sufficiently large |M|, but making it larger near M = 0.
If at some |M|, the radius R exceeds 2

√
2, both cos φ and

sin φ become irrelevant and the model flows to a Berezisnky-
Kosterlitz-Thouless (BKT) phase with an algebraic decay of
correlators. Thus the diabolical point gets resolved into an
island of the BKT phase. On the boundary of this island the
model undergoes a phase transition from the gapless BKT
phase to the trivial gapped phase.

Alternatively, one can make R smaller than 2. As we tune R
past the self-dual radius R = √

2, two new operators become
relevant: cos 2φ and sin 2φ. In a generic 2-parameter phase
diagram, this will cause the gapless Luttinger liquid point
at zero mass to become destabilized. To see what happens,
without loss of generality we may add a uniform perturbation
cos 2φ to the theory at each point in the 2-parameter phase
diagram. Along the cos φ axis of the phase diagram, there is
an accidental charge conjugation symmetry

C :

{
φ �→ −φ

θ �→ −θ
.

Near the origin, where cos 2φ dominates ± cos φ, C is spon-
taneously broken, leading to a first order line. By studying the
competition between these two potentials, we find this first
order line ends at two Ising critical points at cos 2φ ± 4 cos φ.
This is depicted in Fig. 5.

If we are willing to break the U(1) symmetry, then we can
add cos 2θ (cos θ violates fermion parity and is not allowed).
This creates a similar phase diagram as in the figure, with a
first order line along the C-invariant axis ending in two Ising
critical points.

If one studies this theory as describing a system of bosons,
meaning we can also break the Z2 shift symmetry of φ,
then we can consider the four-parameter phase diagram of
cos φ, sin φ, cos θ , and sin θ . These operators form an SO(4)
vector at the SU(2)1 radius R = √

2. This implies that in
that phase diagram the gapless point is isolated at the origin.
The SU(2)1 WZW term means that the higher Berry num-
ber is 1 for the 3-sphere which links the origin. See also
Ref. [79].
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FIG. 5. A first-order line ending at two Ising critical points, pro-
tected by a U(1) symmetry with a Thouless pump invariant encircling
the diabolical locus (the interval and its endpoints). Without the U(1)
symmetry, the two points can come together and annihilate, leaving
a phase diagram which is trivially gapped everywhere. With U(1),
however, they can only merge into a gapless Luttinger liquid point.
There appears to be no way to rid the phase diagram of gapless points
by U(1)-symmetric perturbations. The same conclusions hold even
after breaking U(1) down to just the fermion parity Z2 subgroup.

APPENDIX C: DIMENSIONAL REDUCTION
FOR INTERFACES

1. Interfaces for the Abanov-Wiegmann series

The Abanov-Wiegmann “B” series model in an odd space
dimension d is defined as a free theory of 2(d+1)/2 flavors
of 2(d+1)/2-component complex fermions. The action has a
Spin(d + 2) flavor symmetry, and the fermions transform
in its spinor representation. If we denote the generators
of the (d + 2)-dimensional Clifford algebra �a, where a =
1, . . . , d + 2, the Lagrangian has the form

Lodd
d = −iψ jγ

μ∂μψ j − iM0ψ jψ j − Maψ jγ
0,··· ,d�a

jkψk,

(C1)

where γ 0,··· ,d is the chirality operator. Similarly, in an even
space dimension d , we use 2d/2+1 flavors of 2d/2-component
complex fermions transforming in the spinor representation
of Spin(d + 3), with Clifford algebra generators denoted �a,
a = 1, . . . , d + 3 and the Lagrangian

Leven
d = −iψ jγ

μ∂μψ j − iMaψ j�
a
jkψk . (C2)

This parametrization is related to the one in (3.8) by ni sin ν =
Mi, i = 1, . . . , d + 2, m cos ν = Md+3.

Each of these models has a parameter space Rd+3 spanned
by the M’s, with a diabolical point at the origin and massive
elsewhere, giving rise to a WZW term of level 1 for the unit
sphere Sd+2 ⊂ Rd+3.

We will show this by studying interfaces in the mass pa-
rameter space, which we realize as paths. First we consider
the even dimensional case d = 2n, n > 0, with 2n+1 complex

fermions transforming under the flavor group Spin(d + 3)
with the action (C1). We can choose a basis where one of the
Spin(d + 3) generators, which we take to be �d+3, is of the
diagonal form[

12n×2n 0
0 −12n×2n

]
= σ z ⊗ 12n×2n , (C3)

while �0,··· ,d is of the form[
0 12n×2n

12n×2n 0

]
= σ x ⊗ 12n×2n , (C4)

where σ x, σ y, σ z are the usual Pauli spin matrices. In this
basis, Md+3ψ�d+3ψ looks like a diagonal mass term. We
consider a Jackiw-Rebbi-like domain wall setup where Md+3

varies along the coordinate xd from −1 for sufficiently neg-
ative xd to 1 for sufficiently positive xd . As is well-known,
each of the 2n+1 fermions will contribute a massless chiral
mode localized on the wall. With �d+3 as above, we find
normalizability constrains the zero modes to satisfy

γ dψ j = ψ j 1 � j � 2n (C5)

γ dψ j = −ψ j 2n + 1 � j � 2n+1. (C6)

The resulting low-energy theory thus consists of 2n com-
plex nonchiral fermions localized on the wall we describe as
follows. If we choose a basis for the spinor labels where γ d

has the diagonal form (C3), we have

ψ j =
[
ψ+

j
ψ−

j

]
, (C7)

where ψ±
j is a 2n-component spinor. We define the 2n spinors

on the wall (which have the same number of components as
the ψ but there are half as many of them) by

χ j =
[

ψ+
j

ψ−
2n+ j

]
, χ+

j = ψ+
j χ−

j = ψ−
2n+ j 1 � j � 2n.

(C8)
We observe that �d+3 acts the same as γ d on these spinors.
Further, the interaction in (C1)

Maψ j�
a
jkψk (C9)

couples ψ±
j ’s of both opposite γ d and �d+3. It restricts to an

interaction among the χ j . To express this interaction, we first
observe that in our chosen basis, with �d+2 of the form (C4),

Md+2ψ j�
0,··· ,d
jk ψk = Md+2((χ+

j )†χ−
j + (χ−

j )†χ+
j ) (C10)

is the diagonal mass term. The rest of the generators of
(d + 3)-dimensional Clifford algebra can be written in a basis
compatible with (C3) and (C4) by letting

�a = σ y ⊗ �̃a, (C11)

where �̃a, a = 1, . . . , d + 1 generate a (d + 1)-dimensional
Clifford algebra. We find that the terms associated to Ma over
this range of a thus take the form

ina(χ+
j )†�̃a

jkχ
−
k − iMa(χ−

j )†�̃a
jkχ

+
k = iMaχγ d �̃aχ. (C12)

Summarizing, we have found the effective Lagrangian

−iχ jγ
μ∂μχ j − Md+2χ jχ j − iMaχ jγ

d �̃a
jkχk,

a = 1, . . . , d + 1 (C13)
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FIG. 6. The spatially varying parameters in Sd+2 for the domain
wall configurations trace out a great semicircle (black) connecting
the north and south poles (orange) and are parametrized by a point
q ∈ Sd+1 (pink), where the semicircle intersects the equatorial (d +
1)-sphere (dotted). The winding number of a family of such profiles
over Sd+2 equals the winding number of the intersection points q
over Sd+1, giving an equality between the Berry number of the d-
dimensional theory and its domain wall.

among 2n complex fermions along the wall. We recognize this
is the same as Lodd

d−1 in (C1) after identifying γ 0···(d−1) = γ d .
In this case, there is a simple relationship between the

Berry number of the d-dimensional theory parametrized by
Sd+2 and the d − 1-dimensional theory on the domain wall,
parametrized by Sd+1. Indeed, the theory on the wall with
given parameter values Ma, a = 1, . . . , d + 2 is defined from
the d-dimensional theory with a spatially varying parameters
Ma such that along the xd coordinate, the system parameters
draw a great semicircle from the south pole Md+3 = −1 to
the north pole Md+3 = 1. If the system parameters of d − 1-
dimensional theory wind once over the equatorial Sd+1, we
see that the semicircular arcs also wind once over the whole
Sd+2. Thus the Berry numbers of the two theories are equal.
See Fig. 6.

Now we consider the odd dimensional case d = 2n − 1,
with 2n-many 2n-component complex fermions transform-
ing in the flavor group Spin(d + 2) with generators �a, a =
1, . . . , d + 2. We again consider the Jackiw-Rebbi problem
with a spatially varying mass m(xd ) which goes from −1 to
1 over a region near xd = 0. We find 2n zero modes, one for
each fermion, satisfying

γ dψ j = ψ j . (C14)

We choose a basis for the spinor space where γ d takes the
form σ z ⊗ 1 of (C3), so that

ψ j =
[
ψ+

j
ψ−

j

]
(C15)

and the constraint γ dψ j = ψ j sets ψ−
j to zero. We define the

2n domain wall fermions by

χ j = ψ+
j . (C16)

Note these have half as many components as the ψ j’s.
Recall that the chirality operator is

γ 0,··· ,d = i(d−1)/2γ 0 · · · γ d . (C17)

When this acts on χ j it acts as

i(d−1)/2γ 0 · · · γ d−1, (C18)

which is identically 1 on this subspace. Thus our interaction
simplifies to

Maχ j�
a
jkχk . (C19)

We thus obtain the theory Leven
d−1 of (C2) on the wall. See

Ref. [80] for a related discussion in the Hamiltonian language.
By the same argument as above, the Berry number of L2n−1

equals that of L2n. Combining with the other inductive lemma,
all of the Berry numbers of the Abanov-Wiegmann family are
equal. Since the D = 1 case has Berry number 1 (the usual
Berry number), all of the Berry numbers are 1.

Another important family is the Abanov-Wiegmann “A”
family, which realizes generalized Thouless pumps. In odd
space dimensions d , the theories consist of 2(d−1)/2-many
2(d+1)/2 complex fermions ψ j transforming under the flavor
group Spin(d ) with generators �a and the Lagrangian

Lodd
d = iψ jγ

μ∂μψ j + M0ψ jψ j + iMaψ jγ
0,··· ,d , �a

jkψk,

(C20)

where γ 0,··· ,d is the chirality operator. Meanwhile, in even
space dimensions, the theories consist of 2d/2-many 2d/2-
component complex fermions transforming under Spin(d +
1) with generators �a and the Lagrangian

Leven
d = iψ jγ

μ∂μψ j + Maψ j�
a
jkψk . (C21)

One can repeat the derivations above to show that this series
also dimensionally reduces along interfaces. We can use this
to reduce all the way down to quantum mechanics, where we
find a 1-component complex fermion, which depending on the
sign of the chemical potential has either a neutral unoccupied
or a charged occupied ground state. The generalized Thouless
pump follows for the whole series from this simple observa-
tion.

2. Anomalous interfaces

In our construction above, the interface was always triv-
ially gapped, and the parameter space of the interface was
reduced to a smaller-dimensional sphere Sd+1. This is unlike
our prescription for studying boundary anomalies in Sec. VI,
however they can be related. In particular, we will see that
the boundary diabolical point is hiding “inside” the Sd+1 we
defined above.

Indeed, we can define an extension of the interface param-
eter space from Sd+1 to the interior ball Bd+2 by adding a
“radial” parameter which interpolates our great circular path
with a straight line path. One of these paths passes through
the massless point of the d-dimensional theory. In the free
fermion theory, it is easy to show that the are gapless modes
along the interface for any such path, generalizing the argu-
ments of Jackiw-Rebbi. Even if we add interactions, however,
because there is a higher Berry number on the boundary of
this Bd+1, there is guaranteed to be a diabolical locus inside.
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To directly relate the interfaces to the conclusions of
Sec. VI however, we have to allow one of the end points to
vary over the bulk parameter space, while the other is fixed at
some value p0, which represents the parameter value “outside
of the sample.” In this case, our choice of boundary condition
for each bulk parameter p amounts to a choice of path fp(u)
from p to p0. This defines a boundary condition for each
p ∈ Sd+2. Because the sphere is not contractible, at least one
of these paths fp∗ (u) must pass through the massless point
in the origin for some u (or more generally through some
diabolical locus analogous to the one defined above). The
point p∗ thus defines a boundary diabolical point, as required
by Sec. VI.

APPENDIX D: DIABOLICAL POINTS
OF HIGH CODIMENSION

We will argue by induction that a system in d space
dimensions has no protected diabolical points of codi-
mension m > d + 3. The argument is rigorous for quan-
tum mechanical systems but only a sketch for higher
dimensions.

For quantum mechanical systems, this can be argued as
follows. First, by adding to the Hamiltonian, a term propor-
tional to the fermion parity, we can modify our family so that
all ground states, including degenerate ones, have the same
charge. By working only in this sector, we reduce the prob-
lem to eliminating a diabolical point of codimension >3 in
an ordinary quantum mechanical system without any special
symmetries.

Let us choose local coordinates on the parameter space
so that the diabolical locus is at the origin. We can con-
tinuously deform our family away from the diabolical locus

(and without creating any other diabolical points) so that at
some distance R > 0 from the origin the Hamiltonians are
all (minus) projectors onto their unique ground state. The
space of such projectors is a complex projective space CP l−1,
where l is the dimension of the Hilbert space. For any m > 2,
by adding spectator degrees of freedom, we can make l big
enough so that πm(CP l−1) = 0.21 Once we do so, it is possi-
ble to extend our family of projectors to the interior of the ball
of radius R. We can then linearly interpolate with our original
family to rid ourselves of the diabolical points inside this ball,
all the while not modifying the Hamiltonian on the sphere, so
in particular no diabolical points leave the ball. We are left
with a completely nondegenerate phase diagram.

Now suppose we have shown the result for dimensions
smaller than d , and we have an m-parameter phase diagram of
d dimensional systems, m > d + 3, and a diabolical locus in
some compact region. We choose some basepoint p0 ∈ Sm−1

R
on a sphere of radius R large enough to enclose the diabolical
locus. We study interfaces from p0 to other points p ∈ Sm−1

R
by choosing paths in our parameter space. This will introduce
diabolical loci of codimension m − 1 for the interface. By
the inductive hypothesis, these interfaces may be smoothed

21Recall CP∞ has homotopy type K (Z, 2). That is, all its homo-
topy groups except π2 are zero, while π2 is isomorphic to Z. In fact,
by these same arguments we find M0 is homotopic to CP∞.
so that there are no diabolical points amount the interface
theories. Thinking of these interfaces as paths in Md , we learn
that our family on Sm−1

R can be extended to a ball Bm
R . Linearly

interpolating our original family with this one inside the ball
we rid ourselves of any diabolical points while keeping the
family unchanged for radii greater than R.
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