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We take advantage of recent improvements in the grand canonical hybrid Monte Carlo algorithm, to perform
a precision study of the single-particle gap in the hexagonal Hubbard model, with on-site electron-electron
interactions. After carefully controlled analyses of the Trotter error, the thermodynamic limit, and finite-size
scaling with inverse temperature, we find a critical coupling of U./k = 3.834(14) and the critical exponent
zv = 1.185(43). Under the assumption that this corresponds to the expected antiferromagnetic Mott transition,
we are also able to provide a preliminary estimate 8 = 1.095(37) for the critical exponent of the order parameter.
We consider our findings in view of the SU(2) Gross-Neveu, or chiral Heisenberg, universality class. We also
discuss the computational scaling of the hybrid Monte Carlo algorithm, and possible extensions of our work to

carbon nanotubes, fullerenes, and topological insulators.

DOI: 10.1103/PhysRevB.102.245105

I. INTRODUCTION

Monte Carlo (MC) simulations of strongly correlated elec-
trons in carbon nano-materials [1-3] is an emerging topic
in both the condensed matter [4-6] and nuclear physics
communities [7,8]. The basis of such studies is the Hub-
bard model, a Hamiltonian approach which reduces, at weak
electron-electron coupling, to the tight-binding description
of atomic orbitals in a lattice of carbon ions [9-11]. The
properties of the Hubbard model on a honeycomb lattice are
thought to resemble those of graphene. MC simulations of
the Hubbard model are closely related to problems of current
interest in atomic and nuclear physics, such as the unitary
Fermi gas [12—15] and nuclear lattice effective field theory
[16-19].

Our objective is to take advantage of this recent algorithmic
development and perform, for the first time, a precision calcu-
lation of the single-particle gap A of the hexagonal Hubbard
model, in the grand canonical ensemble. Whether such a gap
exists or not, is determined by the relative strength of the
on-site electron-electron coupling U, and the nearest-neighbor
hopping amplitude «. Prior MC work in the canonical ensem-
ble has established the existence of a second-order transition
into a gapped, antiferromagnetic, Mott insulating (AFMI)
phase at a critical coupling of U./x =~ 3.8 [20-23]. The ex-
istence of an intermediate spin-liquid (SL) phase [20] at
couplings slightly below U,, appears to now be disfavored
[23]. Long-range interactions in graphene [24,25] are thought
to frustrate the AFMI transition, as these favor charge-density
wave (CDW) symmetry breaking [26,27] over AFMI. The
critical exponents of the AFMI transition should fall into the

2469-9950/2020/102(24)/245105(16)

245105-1

SU(2) Gross-Neveu (GN), or chiral Heisenberg, universality
class [5,28].

The observability of the AFMI transition in graphene is
of interest for fundamental as well as applied physics. While
k is well constrained from density functional theory (DFT)
and experiment [2], the on-site coupling U is more difficult
to determine theoretically for graphene [11], although the
physical value of U/« is commonly believed to be insufficient
to trigger the AFMI phase in samples of suspended graphene
or with application of biaxial strain [10,11]. The AFMI phase
may be more easily observed in the presence of external mag-
netic fields [29,30], and the Fermi velocity at the Dirac point
may still be strongly renormalized due to interaction effects
[11]. The reduced dimensionality of fullerenes and carbon
nanotubes may increase the importance of electron-electron
interactions in such systems [31].

Let us summarize the layout of our paper. Our lattice
fermion operator and hybrid Monte Carlo (HMC) algorithm is
introduced in Sec. II. We describe in Sec. III how correlation
functions and A are computed from MC simulations in the
grand canonical ensemble. We also give details on our extrap-
olation in the temporal lattice spacing (or Trotter error) § and
system (lattice) size L, and provide results for A as a function
of U/k and inverse temperature 8. In Sec. IV, we analyze
these results using finite-size scaling in 8 and provide our best
estimate U, /k = 3.834(14) for the critical coupling at which
A becomes nonzero. We also provide a preliminary estimate
of the critical exponent of the AFMI order parameter, under
the assumption that the opening of the gap coincides with
the AFMI transition. In Sec. V, we compare our results with
other studies of the Hubbard model and the chiral Heisenberg
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universality class, and discuss possible extensions of our work
to carbon nanotubes, fullerenes and topological insulators.

II. FORMALISM

The Hubbard model is a theory of interacting fermions, that
can hop between nearest-neighbor sites. We focus on the two-
dimensional honeycomb lattice, which is bipartite in terms of
A sites and B sites. The Hamiltonian is given by

) 1
. T T E
H:=— E (axhxyay + bxhxyb)’) + z vaxypy’ M
Xy

Xy

where we have applied a particle-hole transformation to a the-
ory of spin 1 and spin |, electrons. Here, a' and a are creation
and annihilation operators for particles (spin-up electrons),
and b" and b are similarly for holes (spin-down electrons).
As usual, the signs of the b operators have been switched for
B sites. The matrix hy, := k8., describes nearest-neighbor
hopping, while V,, is the potential between particles on differ-
ent sites, and p, := b}:bx — a:[ax is the charge operator. In this
work, we study the Hubbard model with on-site interactions
only, such that V,, = Ud,y; the ratio U/« determines whether
we are in a strongly or weakly coupled regime.

Hamiltonian theories such as (1) have for a long time been
studied with lattice MC methods [32,33], as this allows for
a fully ab initio stochastic evaluation of the thermal trace, or
Grassmann path integral. There is a large freedom of choice in
the construction of lattice MC algorithms, including the dis-
cretization of the theory, the choice of Hubbard-Stratonovich
(or auxiliary field) transformation, and the algorithm used
to update the auxiliary field variables. This freedom can be
exploited to optimize the algorithm with respect to a partic-
ular computational feature. These pertain to the scaling of
the computational effort with system (lattice) size L, inverse
temperature 8, number of time slices N, = /4§, interaction
strength U/k, and electron number density (for simulations
away from half filling). Hamiltonian theories are often sim-
ulated with an exponential (or compact) form of both the
kinetic and potential energy contributions to the partition
function (or Euclidean time projection amplitude), and with
random Metropolis updates of the auxiliary fields (which
may be either discrete or continuous). In condensed mat-
ter and atomic physics, such methods are referred to as the
Blankenbecler-Sugar-Scalapino (BSS) algorithm [34].

In Lattice QCD, the high dimensionality of the theory and
the need to precisely approach the continuum limit have led
to the development of specialized algorithms which optimize
the computational scaling with L. These efforts have culmi-
nated in the HMC algorithm, which combines elements of the
Langevin, molecular dynamics (MD), and METROPOLIS algo-
rithms [35]. The application of HMC to the Hubbard model
(1) has proven to be surprisingly difficult, due to problems
related to ergodicity, symmetries of the Hamiltonian, and the
correct approach to the (temporal) continuum limit. For a
thorough treatment of these from the point of view of HMC,
see Refs. [31,36,37]. In order to realize the expected ~V /4
computational scaling (where V = 2L?), a suitable conjugate
gradient (CG) method has to be found for the numerical in-
tegration of the MD equations of motion. The Hasenbusch

preconditioner [38] from Lattice QCD has recently been
found to work for the Hubbard model as well [39]. The result-
ing combination of HMC with the Hubbard model is referred
to as the Brower-Rebbi-Schaich (BRS) algorithm [40,41],
which is closely related to the BSS algorithm. The main dif-
ferences are the linearized kinetic energy (or nearest-neighbor
hopping) term, and the purely imaginary auxiliary field, which
is updated using HMC moves in the BRS algorithm.

The BSS algorithm has preferentially been used within
the canonical ensemble [20,21,23]. This entails a projection
Monte Carlo (PMC) calculation, where particle number is
conserved and one is restricted to specific many-body Hilbert
spaces. PMC is highly efficient at accessing zero-temperature
(or ground state) properties, especially when the number of
particles is constant, for instance the A nucleons in an atomic
nucleus. For the Hubbard model on the honeycomb lattice at
half-filling, the fully antisymmetric trial wave function en-
codes a basis of 2L? electrons to be propagated in Euclidean
time. Due to this scaling of the number of trial wave functions,
PMC and grand canonical versions of the BSS algorithm both
exhibit ~V3 scaling (with random, local Metropolis updates).
In contrast to PMC, the grand canonical formalism resides
in the full Fock space, and no trial wave function is used.
Instead, Boltzmann-weighted thermal expectation values of
observables are extracted. At low temperatures and large
Euclidean times, spectral observables are measured relative
to the ground state of the Fock space, which is the half-
filling state (an explicit example is given in Sec. III). With
HMC updates, such an algorithm has been found to scale
as ~V>3/4 [39,42]. A drawback of the grand canonical en-
semble is the explicit inverse temperature . Thus, the limit
B — oo is taken by extrapolation, or more specifically by
finite-size scaling. This B-dependence may be considerable,
though observable-dependent. While PMC simulations are not
free of similar effects (due to contamination from excited
state contributions), they are typically less severe due to the
absence of backwards-propagating states in Euclidean time.

For a number of reasons, HMC updates have proven dif-
ficult for the BSS algorithm. First, the exponential form of
the fermion operator M causes det M to factorize into regions
of positive and negative sign. Though this does not imply
a sign problem at half filling (the action S ~ |det M|?), it
does introduce boundaries in the energy landscape of the the-
ory, which HMC trajectories in general cannot cross without
special and computationally very expensive methods [43,44].
For B — o0, this fragmentation effect increases dramatically,
and causes an ergodicity problem with HMC. Second, while
this problem can be circumvented by a complex-valued auxil-
iary field, the resulting “complexified” HMC algorithm shows
poor (roughly cubic) scaling with V' [33]. It is interesting to
note how the BRS algorithm avoids this ergodicity problem.
Due to the linearization of the hopping term in the fermion
operator (with imaginary auxiliary field), the boundaries im-
passable to HMC are reduced in dimension and can be avoided
[36]. Naturally, the BSS and BRS formulations become equiv-
alent in the temporal continuum limit. Then, the ergodicity
problem would eventually be recovered when § — 0 (where
MC simulations are in any case not practical). A drawback
specific to BRS is that spin symmetry is explicitly broken
for § # 0, due to the linearization of the hopping term [26].
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Hence, the choice of BSS versus BRS represents a tradeoff
between the retention of more symmetries at finite §, and
faster convergence to the continuum limit (BSS), or improved
ergodicity and computational scaling with V (BRS).

Here, we apply the BRS algorithm with HMC updates to
the Hubbard model (1). This entails the stochastic evaluation
of a path integral over a Hubbard-Stratonovich field ¢. The
exact form of the fermion operator M depends on the choice of
discretization for time derivatives. We adopt the conventions
of Ref. [31], which used a “mixed differencing” operator,
with forward differencing in time for A sites, and backward
for B sites. For reference, we note that this scheme does not
introduce a fermion doubling problem. For the noninteracting
theory, mixed differencing gives (O(8?) discretization errors
(per time step). Numerically, mixed differencing has been
shown to approach the limit § — O faster than pure forward
or backward differencing when U > 0. The explicit form of
M is

AA .7
M(x,t)(y,t’) = axy((StJrl,t’ - 8[,1’ exp(—zd)x’,)),
MEE oy = 8,81 — 8110 exp(—igh, ), )
AB BA ~
My = Mgy = =K 8iybirs

where the dependence on A and B sites has been written out.
All quantities multiplied by § have been denoted by a tilde.
While the hopping term in Eq. (2) has been linearized, the
auxiliary field ¢ enters through exponential “gauge links”
familiar from Lattice QCD. As first discussed in Refs. [40,41],
such gauge links contain a “seagull term,” which needs to be
correctly handled in order to recover the physical § — 0 limit.
This condition is satisfied by Eq. (2), and further details are
given in Appendix A.

III. THE GAP

A. The single-particle correlator

We shall now describe the procedure of obtaining the
single-particle gap A as a function of U/« and 8, from a given
ensemble of auxiliary-field configurations. We recall that a
and a' are annihilation and creation operators for quasipar-
ticles, and similarly b and b* for (quasi)holes. For instance,
by creating and destroying quasiparticles at different locations
and times, we obtain the correlator

1
Cot) = aal) = = / D MIP1,) .0, €XP(—SIH])

= (MI$15.0.0)- 3)

as an ensemble average, where S[¢] is the Euclidean action
and Z is the partition function—the integral without M. We
have used Wick contraction to replace the operators with the
fermion propagator.

We now move to the Heisenberg picture and express the
correlator as a thermal trace

. 1
Cy(t) = (a,,a}y) = ETr{aX’ta;Oexp(—ﬂH)}

1 .
zTr{exp(—H(ﬂ —1))a, exp(—Ht)a}’.}, “4)

and by inserting the identity (resolved in the interacting basis),
we find the spectral decomposition

1
Y, exp(—BE)

X eXP(—(En - Em )t) ZmXHZ:W’Z’ (5)

Z exp(_IBEm)

m,n

ny (t) = (ax,ta;,o)

= (mla|n), (6)

men

where the summation indices m and n denote interacting
eigenstates with energies E,, and E, , respectively, and the z; ik
are referred to as “overlap factors.” At large 8 and in the limit
of large Euclidean time, the correlator decays exponentially,

Jim ﬁlirgo C,(t) >~ exp(—(E1 — Eo)t) 291201, (1)
where the energy E, is measured relative to the energy Ey of
ground state of the Fock space, assuming that the associated
overlap factors are nonzero.

To continue it is convenient to Fourier transform the
fermion propagator, which is a function of the lattice co-
ordinates x and y, to a function of the (lattice) momenta k
and p,'

1
Cop0) = 73 D_exp(—ikx —ipy) Cy @) (§)

X,y

Repetition of this procedure yields an ensemble of “measure-
ments,” the average of which is our MC estimate of Cy, (). As
there are two Dirac points K and K’, by symmetry we have?

CKK(t) = C](/[(f (t), (9)

which holds for the expectation values, but not on a
configuration-by-configuration basis. By choosing to Fourier
transform x and y to the Dirac momenta K or K’, we adjust the
overlap factors so that we can take E; to refer to the energy at
the Dirac point. We define the “effective mass”

metr = E| — Ej, (10)
which can be extracted from the correlator according to

Mefi(t) = — ﬁli_glo O InCrp(t), mey = ;l_lglo megr(t), (11)

such that the single-particle gap is given by
A = 2meff, (12)

for a specific value of L and §. We discuss the extrapolations
in these variables in Sec. III D.

By symmetry, the two Dirac points are indistinguishable,
and the correlator expectation values are symmetric in time
around B/2 (or N,/2 in units of 7 =1¢/§). We therefore

"We note that under the ensemble average the correlators are diag-
onal in k and p due to translational invariance.

’Because of the underlying sublattices A and B, there are in
principle two independent correlators for each momentum k [31].
However, these two correlators are degenerate at each Dirac point K
and K'; we average them to construct Cxx and Cx g, respectively.
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FIG. 1. Examples of effective mass determinations from the single-particle correlators, extracted from ensembles of auxiliary field
configurations. The blue line with error band gives m.; with statistical error, obtained from a hyperbolic cosine effective mass (15). The
length of the blue band indicates the fitting region. For comparison, a constant fit to the effective mass (11) is shown by the dashed orange line.
The dot-dashed red line shows the estimation of the systematic error, as explained in Appendix B. Note that the red and orange lines have been
extended outside of the fitting region, for clearer visibility. (Left) k8 = 8, L = 15, N, = 64,and U /k = 3.5. (Right) k§ = 12, L = 6, N, = 72,
and U/k = 3.85. The time slice index t is integer-valued. The effective mass mg is given in units of «.

average and fold the correlator according to

C(t) := 1 (Cxx(t) + Crg (1) + Cx (B — 1) + Cior (B — 1)),
13)

on a configuration-by-configuration basis, which increases
our numerical precision without the need for generating ad-
ditional MC configurations. In most cases, thermal effects
due to backwards-propagating states cannot be completely
neglected, and the isolation of an unambiguous exponential
decay is difficult. Instead of obtaining A from

C(t)
C(t+1)

we use the symmetry of the correlator at the Dirac point about
T = B/2 and calculate

Megr(T) 8 = In (14)

mes(7) 8 = cosh™! (C(T +D+C( — 1)>

2C(7) (15

where C(7) is the folded and symmetrized correlator (13).
This hyperbolic cosine form (15) is found to be more accurate
than the exponential form (14), as the quasiparticle masses
are rather small, and the backward-propagating contributions
non-negligible (due to the finite extent in ). Once the optimal
region from which to extract the effective mass has been found
(for details, see Appendix B), we fit the correlator in this
region to the form

C(t) = acosh (mei 8§(t — N, /2)), (16)

with a and meg as fit parameters. In Fig. 1, we show the
difference between the hyperbolic cosine fit and a direct fit
of meg (7). The former is shown by a blue line and band (sta-
tistical error), and the latter by an orange dashed line. While

the results are in general agreement, the direct fit of meg(7)
tends to overestimate the gap for small effective masses and
high statistical noise levels. The estimated systematic error
due to the choice of the fit range (as explained in Appendix B)
is shown by the red dot-dashed line. The statistical errors
are obtained by a bootstrap procedure, and the total error
has been estimated by adding the statistical and systematic
uncertainties in quadrature. The data analysis described in this
and the following sections has mostly been performed in the R
language [45], in particular using the HADRON package [46].

B. Lattice artifacts

Once we have determined the single-particle gap A, we
still need to consider the limits § — 0, L — oo, and 8 — oo.
We shall discuss the first two limits here, and return to the
issue of finite-size scaling in S later.

In general, grand canonical MC simulations of the Hubbard
model are expected to show very mild finite-size effects which
vanish exponentially with L, as found by Ref. [47]. This
situation is more favourable than in canonical simulations,
where observables typically scale as a power-law in L~! [47].
Let us briefly consider the findings of other recent MC stud-
ies. For the extrapolation in L, Refs. [20,21] (for A and the
squared staggered magnetic moment m?), Ref. [23] (for m?)
and Ref. [27] (for the square of the total spin per sublattice),
find a power-law dependence of the form a + bL™! 4 cL™2.
On the other hand, Ref. [48] found little or no dependence
on L for the conductivity. A side effect of a polynomial
dependence on L~! is that (manifestly positive) extrapolated
quantities may become negative in the limit L — oo.

The continuous time limit § — O was taken very care-
fully in Ref. [23], by simulations at successively smaller §
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FIG. 2. Simultaneous two-dimensional fit of A(N,, L) (in units of k) using Eq. (21), for k8 = 8 and U/x = 3.5. Note that Eq. (21) only
incorporates effects of O(L~3) and O(N,~?). Data points for L < 9 have been omitted from the fit, but not from the plot. Very small lattices
lead to large values of A, which are not visible on the scale of the plot. This fit has x2/d.o.f. > 1.1, corresponding to a p-value of ~0.34.

until the numerical results stabilized. With the exponential (or
compact) kinetic energy term used in Ref. [23], the Trotter
error of observables should scale as O(82). As shown, for
instance in Ref. [36], discretization errors of observables for
our linearised kinetic energy operator are in general of O(38).
Even with an exponential kinetic energy operator, some ex-
trapolation in § is usually required [36]. For further details
concerning the limit § — 0, see Appendix A.

In Appendix C, we argue that the residual modification of
A due to the finite lattice extent L should be proportional to
L3, This is not expected for all observables, but only for
those that satisfy two conditions. First, the observable should
not (for single MC configurations) have errors proportional
to L~2, which are not canceled by an ensemble average. This
condition is satisfied by the correlation functions at the Dirac
points, but not in general for (squared) magnetic or other
locally defined quantities. For example, m? exhibits ~L~>
fluctuations which are positive for every MC configuration. As
the average of these positive contributions does not vanish, the
error is effectively proportional to L~2. Second, the correlation
length & has to fulfill £ < L, such that the error contribution
~exp(—L/&) as in Ref. [47] remains suppressed. While we
expect L3 scaling to hold far from phase transitions, this may
break down close to criticality, where £ — co. We find that
deviations from inverse cubic scaling are small when

L>»>— an

kP
x
where /8 is the minimum Matsubara frequency dominating
the correlation length (xB/7m 2 &). We employed «f8 < 12
implying the requirement L 3> 4. Numerically, we find that
for L > 9 our observed dependence on L is entirely governed
by inverse cubic scaling (see Figs. 2 and 7).

C. Extrapolation method

In this study, we have chosen to perform a simultaneous
extrapolation in § and L, by a two-dimensional chi-square
minimization. We use the extrapolation formula

O(L,N,) =9 +a, L% +a,N?, (18)

where ) is an observable with expected Trotter error of
O(8?), and a, a, are fit parameters. This is similar to the
procedure of Ref. [49] for expectation values of the Hamilto-
nian. Before we describe our fitting procedure in detail, let us
note some advantages of Eq. (18) relative to a method where
observables are extracted at fixed (U, B) by first taking the
temporal continuum limit § — O,

O(L,N,) = O(L) + a,(L)N,, (19)

where each value of O(L) and a, (L) is obtained from a sepa-
rate chi-square fit, where L is held fixed. This is followed by

O(L) =9 +a, L3, (20)

as the final step. Clearly, a two-dimensional chi-square fit
using Eq. (18) involves a much larger number of degrees of
freedom relative to the number of adjustable parameters. This
feature makes it easier to judge the quality of the fit and
to identify outliers, which is especially significant when the
fit is to be used for extrapolation. While we have presented
arguments for the expected scaling of A as a function of L and
8, in general the true functional dependence on these variables
is not a priori known. Thus the only unbiased check on the
extrapolation is the quality of each individual fit. This criterion
is less stringent, if the data for each value of L is individually
extrapolated to § — 0.

The uncertainties of the fitted parameters have been calcu-
lated via parametric bootstrap, which means that the bootstrap
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samples have been generated by drawing from indepen-
dent normal distributions, defined by every single value of
A(L, N,) and its individual error.

D. Results

Given the fermion operator described in Sec. II, we have
used Hasenbusch-accelerated HMC [38,39] to generate a large
number of ensembles at different values of L, U/k, k8, and
k& = kB/N;,. We have used six inverse temperatures k3 €
{3,4,6,8,10, 12}3 and a number of couplings in the range
U/k €[1.0,5.5], which is expected to bracket the critical
coupling U, /k of the AFMI transition. For each temperature
and coupling, we scanned a large range in L and «§, to
provide reliable extrapolations to the physical limits. These
are L € [3,102]* and « 8 from 1/4 down to 1/40. Our values
of L were chosen to be 0 (mod 3) so that the noninteracting
dispersion has momentum modes exactly at the Dirac points.
In other words, we select the lattice geometry to ensure that
E, — Ey = 0 in the absence of an interaction-induced (Mott)
gap.

Let us briefly summarize our procedure for computing
A. We have calculated the single-particle correlator C(t) as
an expectation value of the inverse fermion matrix, at both
independent Dirac-points K, K’, and averaged over them to
increase our statistics. For each set of parameters simulated,
those correlators have been fitted with an effective mass in
order to extract A. We are then in a position to take the limits
8 — 0 and L — oo, which we accomplish by a simultaneous
fit to the functional form

A*(L,N,) = A§+ N> +¢,L 77, (21)

where the fitted quantities are the (infinite-volume, temporal
continuum) gap Ay, and the leading corrections proportional
to ¢, and ¢,. Around § = 0, we find the leading L dependence

AL) = Ag+ L L3 + O, 22)
27,

where ¢, is numerically found to be very small. Also, around
L = oo, we have

AN) = Ay + %N;z +O(N). (23)
0

It should be noted that inclusion of a term of order N,”' did
not improve the quality of the fit. This observation can be
justified by the expected suppression of the linear term due
to our mixed differencing scheme. Though the term of O(§)
is not removed analytically, it appears small enough to be
numerically unresolvable.

3These correspond to a highest temperature of T &~ 1.04 x 10* K
and a lowest temperature of T ~ 2.6 x 10° K. According to
Ref. [50] this range is well below the critical temperature 7, ~
1.3 x 10* K, above which the sublattice symmetry is restored.

“We generated several very large lattices for a few sets of pa-
rameters to check the convergence. As we observed a nearly flat
dependence of A on L 2 12, we did most of the analysis with
medium-sized lattices (L < 21) in order to conserve computation
time.
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FIG. 3. The single-particle gap Ao(U, B), with all quantities in
units of «, after the thermodynamic and continuum limit extrapola-
tions. We also show Ag(U, B — 00) as a solid black line with error
band (see Sec. IV A). For U < U, =~ 3.834(14) the zero-temperature
gap vanishes.

An example of such a fit is shown in Fig. 2. We find that
Eq. (21) describes our data well with only a minimal set of
parameters for large L and small §. Lattices with L < 6 have
been omitted from the fit, as such data does not always lie in
the scaling region where the data shows O(L~?) convergence,
as explained in Sec. III B. Our results for Ay are shown in
Fig. 3 for all values of U/x and «f, along with an extrap-
olation (with error band) to zero temperature (8 — o0). For
details as to the zero-temperature gap, see Sec. [V.

IV. ANALYSIS

We now analyze the single-particle gap Ag as a function
of coupling U — U, and inverse temperature B, in order to
determine the critical coupling U, /« of the quantum (AFMI)
phase transition, along with some of the associated critical
exponents. Our MC results for Ay as a function of U are
shown in Fig. 3. We make use of the standard finite-size
scaling (FSS) method [51-53], whereby a given observable
£ is described by

O =U —-U)'Fp L/, B/E). (24)

in the vicinity of U,, where ¢ is the relevant critical exponent.

The scaling function F accounts for the effects of finite spatial

system size L and inverse temperature B. The spatial and

temporal correlation lengths £ and &, are

E~U-U)™" §~U-U)"=U-U)™~§,
(25)

such that in the thermodynamic limit we can express the FSS
relation as

O = B VM FL (B U - U,)), (26)

which is analogous to Refs. [21,23], apart from the scaling
argument here being g instead of L, and the correlation length
exponent zv picked up a factor of the dynamical exponent z.
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We assume the standard scaling behavior [54] for the
single-particle gap

Ay~ &~ (U -U), 27

as extracted from the asymptotic behavior of the correlator
C(t). Therefore Eq. (26) gives

Ay =B'F(BY™(WU - 1)), (28)

as the FSS relation for Ag. Our treatment of Eq. (28) is similar
to the data-collapsing procedure of Refs. [55,56]. We define
a universal (not explicitly B-dependent), smooth function F
such that

w:=prWU —-U,), p:=1/(v), 29)
f = BAy, (30)
f=F), 31)

and by adjusting the parameters © and U,, we seek to mini-
mize the dependence of the observable A on the system size
[56,57], in our case the inverse temperature §. In practice,
these parameters are determined such that all points of the
(appropriately scaled) gap A lie on a single line in a u-f plot.

In this work, we have not computed the AFMI order pa-
rameter (staggered magnetization) m,. However, we can make
use of the findings of Ref. [21] to provide a first estimate of
the associated critical exponent 8 (which we denote by f, to
avoid confusion with the inverse temperature ). Specifically,
Ref. [21] found that describing Ay/U according to the FSS
relation

AU = ﬂ—ﬁ/(ZV)G(’BI/(zv)(U _ Uc))’ (32)

produced a scaling function G which was indistinguishable
from the true scaling function for my, in spite of the ansatz
mg ~ A/U being a mean-field result. In our notation, this
corresponds to

g:=F AU =Gw), ¢:=p/@) (3
similarly to Eq. (31).

It should be noted that Refs. [23,58] also considered sub-
leading corrections to the FSS relation for m,. Here, data
points outside of the scaling region have been omitted instead.
When taken together with additional fit parameters, they do
not increase the significance of the fit. On the contrary, they
reduce its stability. As a cutoff, we take BU < 8 for Eq. (31)
and BU < 10 for Eq. (33). The reason for this limited scaling
region can be understood as follows. The gap vanishes at U =
0 regardless of B, thus Ag(u = —p"*U,;) = 0, and therefore
data points with small 8 and U no longer collapse onto F (u).
Similarly, as we show in Appendix C, for U <« U, we have
Ay ~ U B2, which implies g ~ B5~2 ~ 7!, and represents
a strong deviation from the expected scaling. With decreasing
B, the effect increases and materialises at larger U. We shall
revisit the issue of sub-leading corrections in a future MC
study of m;.

We perform the data-collapse analysis by first interpolating
the data using a smoothed cubic spline for each value of

B. Next we calculate the squared differences between the
interpolations for each pair of two different temperatures and
integrate over these squared differences. Last the sum over
all the integrals is minimised. The resulting optimal data col-
lapse plots are shown in Fig. 4. The optimization of Eq. (31)
is performed first (see Fig. 4, left panel). This yields u =
0.844(31), therefore zv = 1.185(43), and U,./x = 3.834(14),
where the errors have been determined using parametric boot-
strap. Second, the data collapse is performed for Eq. (33)
(see Fig. 4, right panel) which gives ¢ = 0.924(17), such
that B = 1.095(37). While the u-f collapse is satisfactory,
the u-g collapse does not materialize for u < 0. This is not
surprising, because our scaling ansatz does not account for
the thermal gap, which we discuss in Appendix C. Moreover,
these findings are consistent with the notion that the AFMI
state predicted by mean-field theory is destroyed by quantum
fluctuations at weak coupling, at which point the relation
mg ~ A /U ceases to be valid. Also, note that in Ref. [21] the

plot corresponding to our Fig. 4 starts at u = —2, a region
where our u-g collapse works out as well (for sufficiently
large B).

We briefly describe our method for determining the errors
of the fitted quantities and their correlation matrix. We use a
mixed error propagation scheme, consisting of a parametric
bootstrap part as before, and an additional influence due to a
direct propagation of the bootstrap samples of p and U,. For
every (u, U.) sample, we generate a new data set, following
the parametric sampling system. Then, the variation of the
composite samples should mirror the total uncertainty of the
results. The correlation matrix’

1.0000 —0.0199 —0.2331
corr(U,, zv, B) = | —0.0199 1.0000 0.8649
—0.2331 0.8649 1.0000

(34)

clearly shows a strong correlation between zv and B (due to
the influence of p on both of them), whereas U, is weakly
correlated.

From the definitions of the scaling functions F and G, one
finds that they become independent of 8 at U = U.,. Therefore
all lines in a U-f and U-g plot should cross at U = U,.
The average of all the crossing points (between pairs of lines
with different 8) yields an estimate of U, as well. We obtain
ULf//c = 3.877(46) from the crossings in the U-f plot (see
Fig. 5, left panel) and Uf/k = 3.876(79) from the U-g plot
(see Fig. 5, right panel). The errors are estimated from the
standard deviation of all the crossings o, and the number of
crossings n. as o.//n.. We find that all three results for U,
are compatible within errors. However, the result from the
data collapse analysis is much more precise than the crossing
analysis because the data collapse analysis performs a global
fit over all the MC data points, not just the points in the
immediate vicinity of U.,.

SWe give enough digits to yield percent-level matching to our full
numerical results when inverting the correlation matrix.
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FIG. 4. f = BA, (left) and g = B°A,/U (right) as a function of u = B*(U — U.) according to Egs. (31) and (33), respectively. All
quantities are plotted with the parameters for optimal data collapse, and expressed in units of k.

A. Zero-temperature extrapolation

Let us first consider the scaling properties as a function of
B for U = U,. As the scaling function reduces to a constant,
we have

Ay B (35)

For U > U, and B — oo, we have O ~ (U — U,)? by con-
struction and therefore

U<U,

, 36
U>U. (36)

0
By = v
cy(U —=U,)
where ¢;; is a constant of proportionality.
We are now in a position to perform a simple extrapolation
of Ag to f — 00, in order to visualize the quantum phase
transition. Let us assume that the scaling in Eq. (35) holds

BAo

28 3 32 34 36

U

Ul 4 42 44 46

approximately for U slightly above U,, up to a constant shift
Af’, the zero-temperature gap. Thus we fit

Ag=AF +cB, (37)

at a chosen value of U /k = 4. The resulting value of AF°/k =
0.057(11) then allows us to determine the coefficient ¢y =
0.479(93) (in units of «) of Eq. (36). This allows us to plot
the solid black line with error bands in Fig. 3. Such an ex-
trapolation should be regarded as valid only in the immediate
vicinity of the phase transition. For U > U, the data seem
to approach the mean-field result 8 = 1/2 [59]. Furthermore,
we note that an inflection point has been observed in Ref. [21]
at U/k =~ 4.1, though this effect is thought to be an artifact
of the extrapolation of the MC data in the Trotter error §.
The error estimation for the extrapolation § — oo follows the
same scheme as the one for the u-g data collapse. We obtain

1.4 ‘ ‘
56
12 P=3
B=10 )

)
= /
5] 0.8 |
% i

0.6 %/X/%/

0.4 ey

O —

28 3 32 34 36 Uf4 42 44 46
U

FIG. 5. Single-particle gap A, scaled by B (left panel) and by B¢ /U (right panel), as a function of U. Note that A, has been extrapolated
to infinite volume and 6 — 0 (continuum limit). Each line represents a given inverse temperature 8. Here, { = 0.924(17) as obtained from the
data collapse fit. The averages of all the crossing points U/ and U# have been marked by vertical lines. For U$, data with 8 < 4 have been
omitted due to the thermal gap discussed in Appendix C. All quantities are given in units of k.
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TABLE 1. Summary of critical couplings U,/ and critical exponents v and g (called B in the rest of this work) obtained by recent MC
calculations of various Hubbard models in the Gross-Neveu (GN) Heisenberg universality class, and with other methods for direct calculations
of the GN Heisenberg model. We include brief comments of special features of each calculation. Note the abbreviations HMC (hybrid Monte
Carlo), AF (Auxiliary Field), BSS (Blankenbecler-Sugar-Scalapino) and BRS (Brower-Rebbi-Schaich). These concepts are explained in the
main text. Furthermore, we denote FRG (functional renormalization group). Our value of v () is given for z = 1 [60]. Our estimate of 8 is
based on the mean-field result m; ~ A/U (%) [21]. The asterisk (¥) indicates that the 4 — € exponents of Ref. [61] were used as input in the
MC calculation of U, in Ref. [21]. Also, note the ambiguities [23] as to the correct number of fermion components in the 4 — € expansion of
Ref. [62].

Method U./x v B
Grand canonical BRS HMC (present work) 3.834(14) 1.185(43)" 1.095(37)*
Grand canonical BSS HMC, complex AF [27] 3.90(5) 1.162 1.08(2)
Grand canonical BSS QMC [63] 3.94 0.93 0.75
Projection BSS QMC [23] 3.85(2) 1.02(1) 0.76(2)
Projection BSS QMC, d-wave pairing field [64] 1.05(5)

Projection BSS QMC [58] 3.80(1) 0.84(4) 0.71(8)
Projection BSS QMC, spin-Hall transition [65] 0.88(7)

Projection BSS QMC, pinning field [21] 3.78 0.882* 0.794*
GN 4 — € expansion, first order [23,61] 0.882* 0.794*
GN 4 — € expansion, first order [23,62] 0.851 0.824
GN 4 — € expansion, second order [23,62] 1.01 0.995
GN 4 — € expansion, v second order [5,62] 1.08 1.06
GN 4 — € expansion, 1/v second order [5,62] 1.20 1.17
GN 4 — € expansion, v fourth order [66] 1.2352

GN 4 — € expansion, 1/v fourth order [66] 1.5511

GN FRG [5] 1.31 1.32
GN FRG [67] 1.26

GN Large N [68] 1.1823

the error band in Fig. 3 as the area enclosed by the two lines
corresponding to the lower bound of U, and the upper bound
of zv (on the left) and vice versa (on the right). This method
conservatively captures any correlation between the different
parameters.

V. CONCLUSIONS

Our work represents the first instance where the grand
canonical BRS algorithm has been applied to the hexago-
nal Hubbard model (beyond mere proofs of principle), and
we have found highly promising results. We emphasize that
previously encountered issues related to the computational
scaling and ergodicity of the HMC updates have been solved
[36]. We have primarily investigated the single-particle gap
A (which we assume to be due to the semimetal-AFMI
transition) as a function of U/k, along with a comprehen-
sive analysis of the temporal continuum, thermodynamic and
zero-temperature limits. The favorable scaling of the HMC
enabled us to simulate lattices with L > 100 and to perform
a highly systematic treatment of all three limits. The latter
limit was taken by means of a finite-size scaling analysis,
which determines the critical coupling U, /k = 3.834(14) and
the critical exponent zv = 1.185(43). While we have not
yet performed a direct MC calculation of the AFMI order
parameter m;, our scaling analysis of A/U has enabled an
estimate of the critical exponent B = 1.095(37). Depending
on which symmetry is broken, the critical exponents of the
hexagonal Hubbard model are expected to fall into one of the
Gross-Neveu (GN) universality classes [60]. The semimetal-
AFMI transition should fall into the GN-Heisenberg SU(2)

universality class, as my is described by a vector with three
components.

The GN-Heisenberg critical exponents have been studied
by means of PMC simulations of the hexagonal Hubbard
model, by the d = 4 — ¢ expansion around the upper criti-
cal dimension d, by large N calculations, and by functional
renormalization group (FRG) methods. In Table I, we give an
up-to-date comparison with our results. Our value for U,/x
is in overall agreement with previous MC simulations. For
the critical exponents v and 3, the situation is less clear.
Our results for v (assuming z = 1 due to Lorentz invariance
[60]) and B agree best with the HMC calculation (in the BSS
formulation) of Ref. [27], followed by the FRG and large N
calculations. On the other hand, our critical exponents are
systematically larger than most PMC calculations and first-
order 4 — € expansion results. The agreement appears to be
significantly improved when the 4 — € expansion is taken to
higher orders, although the discrepancy between expansions
for v and 1/v persists.

Our results show that the BRS algorithm is now applicable
to problems of a realistic size in the field of carbon-based
nanomaterials. There are several future directions in which
our present work can be developed. For instance, while the
AFMI phase may not be directly observable in graphene, we
note that tentative empirical evidence for such a phase exists
in carbon nanotubes [69], along with preliminary theoretical
evidence from MC simulations presented in Ref. [31]. The
MC calculation of the single-particle Mott gap in a (metallic)
carbon nanotube is expected to be much easier, since the
lattice dimension L is determined by the physical nanotube
radius used in the experiment (and by the number of unit cells
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in the longitudinal direction of the tube). As electron-electron
interaction (or correlation) effects are expected to be more
pronounced in the (one-dimensional) nanotubes, the treatment
of flat graphene as the limiting case of an infinite-radius
nanotube would be especially interesting. Strong correlation
effects could be even more pronounced in the (zero-
dimensional) carbon fullerenes (buckyballs), where we are
also faced with a fermion sign problem due to the admixture
of pentagons into the otherwise-bipartite honeycomb structure
[70]. This sign problem has the unusual property of vanishing
as the system size becomes large, as the number of pentagons
in a buckyball is fixed by its Euler characteristic to be exactly
12, independent of the number of hexagons. The mild scaling
of HMC with system size gives access to very large physical
systems (~10* sites or more), so it may be plausible to put a
particular experimental system (a nanotube, a graphene patch,
or a topological insulator, for instance) into software, for a
direct, first-principles Hubbard model calculation.
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APPENDIX A: SUBTLETIES OF THE MIXED
DIFFERENCING SCHEME

Asin Ref. [31], we have used a mixed-differencing scheme
for the A and B sublattices, which was first suggested by
Brower et al. in Ref. [41]. While mixed differencing does
not cancel the linear Trotter error completely, it does diminish
it significantly, as shown in Ref. [31]. We shall now discuss
some fine points related to the correct continuum limit when
mixed differencing is used.

1. Seagull term

Let us consider the forward differencing used in Ref. [31]
for the AA contribution to fermion operator,

My = 8,(=8, 1 + [exp(id, ) —

with the gauge links and an explicit staggered mass 7z, (not to
be confused with the AFMI order parameter) on the time-off-
diagonal. We recall that a tilde means that the corresponding
quantity is multiplied by § = /N,. An expansion in § gives

‘X‘]8f+],f’}’ (Al)

72
.z N3 .
M(/ft)(y,t’) = Bxy{_af»f’ + [1 +ip,, — ; - ms':| 6t+1,t’}

+ 0%, (A2)

T
:(Sxy Siq1p — Oy + |1 T — 6l+1.l/

+0(8%), (A3)
82812 -7 ¢Z)%t ~
= (SX),{ , 5 |:l¢x’[ -5 ms]
x (8,  + aa,)} + 08, (A4)
=8,,{80, + (id,, — m})8, » — 81,0, } + O(8),
(A5)

where terms proportional to § remain the continuum limit. In
the last step, we defined

¢, 897
2 2

. = iy (A6)

- 8¢x13r7

as the “effective” staggered mass at finite §. The same calcu-
lation can be performed for the BB contribution of Ref. [31].
This gives

Mgcr)(yr) =34, {88, + (i, + )8 — 810, } + O(8),
(A7)

where the effective staggered mass has the opposite sign, as
expected.

Let us discuss the behavior of 7, when m; — 0 and § —
0. First, 97 is negative semi- deﬁnlte q)f, is positive semi-

definite, and i¢, ,d, is indefinite, but one typically finds that
i, > ;. For a vanishing bare staggered mass i, — 0, this
creates a nonvanishing bias between the sublattices at § # 0,
which is due to the mixed differencing scheme. Numerically,
we find that this effect prefers (m4 — mp) > 0. Second, the
“seagull term” 2, is not suppressed in the continuum limit,
as first noted in Ref. [41]. This happens because, in the
vicinity of continuum limit, the Gaussian part of the action
becomes narrow, and ¢> is approximately distributed as ¢ ~
N0, VU ). Because ¢ scales as /8, the seagull term is
not in (O(8%) but effectively linear in 8, denoted as O.(8).
The seagull term contains important physics, and should be
correctly generated by the gauge links.

2. Field redefinition

Following Brower er al. in Ref. [41], the seagull term
can be absorbed by means of a redefinition of the Hubbard-
Stratonovich field, at the price of generating the so-called
“normal-ordering term” of Ref. [41], which is of physical
significance. Let us briefly consider how this works in our
case. The field redefinition of Ref. [41] is

) *
b= 0= Vo R UiV, (A8)
in terms of the field ¥ on which the fermion matrix M acts.
For backward differencing of M, the full Hamiltonian includes
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the terms

| =

t t,t

2

=5 [arovsio,+ [arvsow +i [ arviow +m [arviw +3 [arvietv, + 0.6

Z é‘x,tvx;l(ﬁy,t + Z w:,t[(st,t’ - exp(_i‘i)‘x,t)‘st—l,t’ + ﬁust—l,t’]wx,t’

(A9)

where the Gaussian term generated by the Hubbard-Stratonovich transformation is included, and 7 is left unspecified for the
moment. If we apply the redefinition (AS8) to the Gaussian term, we find

1 _ 1 _ b _ .
E/dt ¢xny'¢y = 5/dt goXny‘soy - E/dt goXVXZ]VZy(/)ydfy ¥y + Oe(9),

1 é
=5 [arovte -5 [ drvicv+ 06

(A10)

and along the lines of Ref. [41], we note that the ¢? seagull term cancels the ¢? seagull term of Eq. (A9) to leading order in
8. As we are performing a path integral over the Hubbard-Stratonovich field, we need to account for the Jacobian of the field

- 5 a9, 5 s
/'D¢ = /DQD det |:3{ZJ ’t:| = /DQD exp |:TI‘ log (5xy51,t’ - vayl/fy,twy,z‘sz,z/)}
i’

redefinition, which is

~ /Dgp exp (—%/dthxl/ffl/fx)

where in the last step we used log(1 + 8z) = 6z + O(8?) be-
fore taking the continuum limit. We conclude that the seagull
term in the expansion of the gauge links has the correspon-
dence

%/dt VreiY, < %/dt V Vi, (A12)
which is exactly the normal-ordering term proportional to
V../2 of Ref. [25]. Hence, as argued in Ref. [41], the normal-
ordering term should be omitted when gauge links are used,
as an equivalent term is dynamically generated by the gauge
links. This statement is valid when backward differencing is
used for both sublattices. In Appendix A 3, we discuss how
this argument carries over to the case of forward and mixed
differencing.

3. Alternative forward difference

In case the backward differencing of Eq. (A9) is used for
both sublattices as in Ref. [25], then simply taking the usual
staggered mass term

m=rn; (xe€A), m=—ms; (x€B), (A13)
suffices to get the correct Hubbard Hamiltonian, as both sub-
lattices receive a dynamically generated normal-ordering term
with coefficient V., /2. However, the mixed-difference lattice
action in Ref. [31] produces a “staggered” normal-ordering
term, with —V, /2 for sublattice A and V, /2 for sublattice B.
Hence, with the mixed-difference operator of Ref. [31] (for-
ward for sublattice A, backward for sublattice B), we should

instead take

i=Vy+ity, (x€A), m=—im; (xeB), (Al4)

in order to again obtain the physical Hubbard Hamiltonian
with normal-ordering and staggered mass terms. Therefore,

(Al1)

(

in our current work, we adopt the alternative forward differ-
encing

Mé:‘t)(y’t,) = 5)@,{3”17, — [exp(—ig, )+ iis]5, .}, (A15)

instead of Eq. (Al), which again yields a normal-ordering
term V, /2 for sublattice A. As in Ref. [25], we thus retain
the desirable feature of a completely dynamically generated
normal-ordering term. In our actual numerical simulations,
we set the bare staggered mass 772, = 0. In our CG solver with
Hasenbusch preconditioning, we work with finite 72, [38]. The
spectrum of the operator (A15) lacks conjugate reciprocity,
which causes an ergodicity problem [36].

APPENDIX B: FINDING A PLATEAU

Here we present an automatized, deterministic method that
reliably finds the optimal plateau in a given data set [such as
the effective mass m(t)]. Specifically, our method finds the
region of least slope and fluctuations, and checks whether this
region is a genuine plateau without significant drift. If a given
time series does not exhibit an acceptable plateau, our method
returns an explicit error message.

Apart from the time series m(t) expected to exhibit a
plateau, the algorithm requires two parameters to be chosen
in advance. The first is the minimal length A a plateau should
have. The second is an “analysis window” of width u < A.
This controls how many data points are considered in the
analysis of local fluctuations. We find that

. (B1)
=2
u =log,(N,), (B2)

are in most cases good choices.
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Algorithm 1: Finding a fit range for a plateau in a time series.

input : Ny, m[0,..., Ny — 1], A\, p
output: 71, ™

for ' =pu—1,..., Ny —1do
forr=0,...,7 do

| mr; 7] = mean(m]r, ...
end

fort=0,....,7 —u+1do
| olmr]=sdmlr,....,7+p—1L7]);

7))

end
i7" = argmin (o[r;7']);
7€{0,..., 7" —pu}
end

A ={(nr) |7 =[] 7 =7 > Ak
Ao ={(7,7") € A|m]r,...,7'] has no significant drift};
if Ao # @ then

(11, 72) = argmin (o[r;7']);

(r,7")€ENo
else
| No acceptable plateau of requested length found.
end

Algorithm 1 describes the procedure in detail. The idea
is to find a balance between least statistical and systematic
fluctuations. Statistical fluctuations decrease with increasing
plateau length. This is why we seek to choose the plateau
as long as possible, without running into a region with large
systematic deviations. This property can also be used to our
advantage. If we calculate the mean from a given time 1, to all
the previous times, the influence of another point compatible
with the mean will decrease with the distance from t,. Thus
the local fluctuation of the running mean decreases, until it
reaches a point with significant systematic deviation. This
local fluctuation minimum marks the optimal t;. The plateau
then ranges from t; to 7. We check that it does not exhibit
significant drift, by fitting a linear function and checking if
the first order term deviates from zero within twice its error.
By repeating the analysis for all possible values of 1,, the
globally best plateau can be found, as determined by least
local fluctuations of the running mean.

As every range in the set Ay from algorithm 1 is a valid
plateau, it allows us to estimate the systematic error due to
the choice of plateau. We simply repeat the calculation of
the relevant observable for all ranges in Ag, and interpret the
standard deviation of the resulting set of values as a systematic
uncertainty.

APPENDIX C: THERMAL GAP

It is useful to consider the influence of the inverse temper-
ature § on the single-particle gap, in order to provide a better
understanding of the scaling of A with 8. Naturally, we are
not able to solve the entire problem analytically, so we shall
consider small perturbations in the coupling U, and assume
that the dispersion relation of graphene is not significantly
perturbed by the interaction (which is expected to be the case
when U is small). Let us now compute the expectation value
of the number of electrons excited from the ground state. As

we consider exclusively the conduction band, we assume that
the particle density follows Fermi-Dirac statistics. We take the
positive-energy part of

Wy = k@2,

@ = 3+ 4cos(3ak,/2)cos(v3ak,/2) + 2 cos(+/3ak,),
(&)

where a ~ 1.42 A is the nearest-neighbor lattice spacing and
we assume that every excited electron contributes an energy
E(U) to a “thermal gap” A(B). These considerations yield
the gap equation

A(B) = E(U)a*f, / @k !
- B2 Jeenz Q)2 1+ exp(Bw,)’
33

>
where the factor f, is due to the hexagonal geometry of
the first Brillouin zone (BZ). It should be emphasized that
the thermal gap is not the interaction-driven Mott gap we
are studying here, even though it is not numerically distin-
guishable from the latter. A thermal gap can occur even if the
conduction and valence bands touch or overlap. The physical
interpretation of the thermal gap (as explained above) is a
measure of the degree of excitation above the ground state,
based on the number of excited states that are already occu-
pied in thermal equilibrium.

Sz = (C2)

1. Finite temperature

Let us evaluate Eq. (C2) under the assumption that § is
large. Then, the integrand only contributes in the region where
w, ~ 0, in other words near the Dirac points K and K’ located
at momenta kj,. In the vicinity of a Dirac point, the dispersion
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FIG. 6. Illustration of the thermal gap in the weakly coupled
regime, as given by Eq. (C5). Our MC data for the single-particle gap
A from Fig. 3 is shown multiplied by 2. All quantities are expressed
in appropriate units of «.

relation reduced to the well-known Dirac cone

w, = vplk —kpl, vp = 3ka/2, (C3)
with Fermi velocity vg. Within this approximation, we may
sum over the two Dirac points and perform the angular inte-

gral, which gives

A(B) ~2EU)a’ f, / ak :
B2 Jiere (202 1+ exp(Bug |k])
= EWU)d*f, /wﬁ+ (C4)
N B2 o 1+exp(Bugk)’
= EU)a oy % 75(Bup)
= “%” EWU)(Br)2~ 03023 E(U)(Br)~2, (C5)

where the Fermi-Dirac integral has been evaluated in terms
of the polylogarithm function. We expect the error of this
approximation to be exponentially suppressed in S.

In Fig. 6, we validate Eq. (C5) using our data for A shown
in Fig. 3. We find that the prediction of quadratic scaling in
and the linear approximation in U are quite accurate. A fit of
Eq. (C5) to our MC data for A in the weak-coupling regime
U/k < 2 gives

EWU)=595(15)U, (C6)

under the (perturbative) assumption E(U) o« U. This fit is
shown in Fig. 6, where we plot 82A as a function of U (in
proper units of ). In the weakly coupled regime, the MC data
for B2A coincide and fall on a straight line. Once the critical
coupling U, is approached, the points for various 8 separate.
As expected, the linear dependence on U persists longest for
small B, as temperature effects are dominant over interaction
effects. The quadratic scaling with 8 is most accurate for large
B, which is in line with the expected exponential convergence
stated above.

2. Finite lattice size

Let us also consider the leading correction to the ther-
mal gap due to finite lattice size L. The discretized form of
Eq. (C2)is

EU 1
A(L, B) = EZ)Z

(C7)
keBZ 1+ exp(Boy)

which in general has a very complicated convergence be-
havior. Because of periodic boundary conditions, Eq. (C7) is
an effective trapezoidal approximation to Eq. (C2), thus the
convergence is a priori expected to scale as O(L~?).

We shall now obtain a precise leading-order error esti-
mation. Let us discretize the first BZ is discretized into a
regular triangular lattice, with lattice spacing & oc L™!. We
integrate a function f(x, y) over a single triangle, spanned by
the coordinates (£4/2, 0) and (O, \/§h/2),

h/2 b(x)
I:= / dx/ dy f(x,y), b(x) := v/3h/2 — V/3x],
0

—h/2
(C8)

and subtract the average of f(x,y) over the corner points
multiplied by the area of the triangle,

2
f= ‘/ih x %[f(—h/Z, 0) + f(h/2,0) + £(0,~/31/2)],

(€9
which gives the (local) error

. . 3[of 2f 4 s
Sl :=1—1= —a[—(w 0) + 7 (0)}]1 + OWm),
(C10)

due to discretization. The global error is obtained by summing
over the complete BZ,

V3 [azf 92 f } . S
8I(k) = —— — (k) + — (k) [n* + O@L*1),
kezw 64 keBZ 0x* 9y?
(C11)
1 02 f 92f ~
x 73 > [—(k)+ 8—y2(k)} +O(L7?), (C12)

0x?
keBZ

1 , [0%f 02f 73
<) d k[ﬁ(k)+ a—yz(k)] +0OIL),

(C13)

which equals

1
Z SI1(k) o E?g

keBZ kedBZ

Vfk)-dk+OL™), (Cl14)

x O(L™3), (C15)

where Gauss’s theorem has been applied in Eq. (C14). Hence,
the projection of V f onto the normal of the BZ is integrated
over the boundary of the BZ. As every momentum-periodic
function takes the same values on the opposite edges of the
BZ, the result sums up to zero. Surprisingly, one then finds
that the second order error term in L vanishes. For the special
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FIG. 7. Simultaneous two-dimensional fit of A(N,, L) (in units of «) using Eq. (21), for « = 10 and U /k = 3.9 (left) and k8 = 4 and
U/x = 5.0 (right). Only the extrapolations in L are shown. Data points for L < 9 have been omitted from the fits, but not from the plots. These
fits have x2/d.o.f. ~~ 0.83 and p value of =~ 0.62 (left), and x?/d.o.f. 2 1.1 and p value of ~ 0.36 (right).

case of f(k) oc 1/(1 + exp(Bw,)), the gradient in BZ-normal
direction vanishes everywhere on the boundary, and the inte-
gral in Eq. (C14) is trivially zero.

Higher orders in U influencing the thermal gap are not
as easy to calculate, but can in principle be dealt with using
diagrammatic techniques in a finite-temperature Matsubara
formalism [73]. As an example, we know from Ref. [74]

that v is influenced (at weak coupling) only at O(U 2). Let
us finally provide some further numerical evidence for the
expected cubic finite-size effects in L. In Fig. 2, we have
already shown that cubic finite-size effects are a good ap-
proximation for U < U,, as expected for states with small
correlation lengths. In Fig. 7, we show that the cubic behavior
in L still holds for U ~ U, and U > U..
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