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Phonons are fundamentally important for many materials properties, including thermal and electronic trans-
port, superconductivity, and structural stability. Here, we describe a method to compute phonons in correlated
materials using state-of-the-art density functional theory + dynamical mean-field theory (DFT + DMFT) cal-
culations. Our approach combines a robust DFT + DMFT implementation to calculate forces with the direct
method for lattice dynamics using nondiagonal supercells. The use of nondiagonal instead of diagonal supercells
drastically reduces the computational expense associated with the DFT + DMFT calculations. We benchmark
the method for typical correlated materials (Fe, NiO, MnO, SrVO3), testing for q-point grid convergence
and different computational parameters of the DFT + DMFT calculations. The efficiency of the nondiagonal
supercell method allows us to access q-point grids of up to 6 × 6 × 6. In addition, we discover that, for the
small displacements that atoms are subject to in the lattice dynamics calculation, fixing the self-energy to that
of the equilibrium configuration is in many cases an excellent approximation that further reduces the cost of
the DFT + DMFT calculations. This fixed self-energy approximation is expected to hold for materials that are
not close to a phase transition. Overall, our work provides an efficient and general method for the calculation
of phonons using DFT + DMFT, opening many possibilities for the study of lattice dynamics and associated
phenomena in correlated materials.
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I. INTRODUCTION

First-principles calculations of phonons in real materials
play an important role in explaining experimental observa-
tions and in predicting novel materials phenomena. Apart
from stand-alone calculations, lattice dynamics often form the
input for a wide variety of follow-up calculations of materi-
als properties, including thermodynamics, superconductivity,
thermal and electronic transport, and finite-temperature opti-
cal response.

The overwhelming majority of lattice dynamics calcula-
tions of materials employ density functional theory (DFT).
However, commonly employed exchange-correlation func-
tionals such as the local density approximation (LDA) and
Perdew-Burke-Ernzerhof (PBE) have severe shortcomings
when applied to materials with strongly correlated d or f
electrons. While these problems can be partially remedied by
DFT + U methods or hybrid functionals, dynamical mean-
field theory (DMFT) in combination with DFT generally leads
to a better description of the electronic structure of correlated
materials [1]. It is therefore desirable to extend the range of
applicability of DFT + DMFT calculations to study structural
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and vibrational properties of correlated materials. To this end,
DFT + DMFT implementations for total energies and forces
have been developed recently [2–5].

Phonon calculations are usually performed by one of
three methods: linear response, frozen phonons, or the direct
method. In the context of DMFT, early work by Savrasov and
Kotliar [6] described a linear-response method to calculate the
phonon spectra of MnO and NiO. The authors used the simple
Hubbard-I solver and neglected the change of the self-energy
with displacement, a term that involves the derivative of the
self-energy with respect to the Green’s function, δ�/δG. This
term is very difficult to compute by the current generation of
impurity solvers. The frozen-phonon method was used in the
work of Leonov et al. [7] to calculate lattice dynamics of para-
magnetic iron and more recently by Appelt et al. to compute
the phonons of palladium [8]. Frozen-phonon calculations
rely on a priori knowledge of the phonon eigenvectors so that
phonon frequencies are easily calculated from total-energy
differences without the need to evaluate forces. As such, the
method only applies to simple, highly symmetric structures.
The direct method is both simple and general, requiring only
the forces on atoms, and given the recent advances in force
implementations of DFT + DMFT, should be the method of
choice. A recent example of this is the study of phonons in
iron by Han et al. [9]. However, as it relies on the construction
of supercells to access phonons at points other than �, the
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computational cost can quickly become unmanageable for an
already expensive electronic structure method such as DMFT.

In this paper, we describe and benchmark a method to
compute vibrational properties of correlated materials from
DFT + DMFT. The method combines two ingredients: (1)
Forces from DFT + DMFT, efficiently obtained from a ro-
bust implementation based on the free-energy Luttinger-Ward
functional [3], and (2) the direct method for phonon calcu-
lations, using nondiagonal rather than diagonal supercells for
significant savings in computational expense [10]. In addition,
we discover that using a fixed self-energy obtained from the
equilibrium configuration for the configurations with atomic
displacements is an excellent approximation. Since the solu-
tion of the impurity problems is the most expensive step of
the calculations, this approximation results in additional large
savings of computational time.

The paper is organized as follows: In Sec. II, we describe
background theory and implementation for the DFT + DMFT
method and lattice dynamics calculations with nondiagonal
supercells. In Sec. III, results of the calculations for Fe,
NiO, MnO, and SrVO3 are described and discussed in turn,
including tests for q-point grid convergence, use of fixed
self-energies, and other computational parameters. We draw
conclusions and outline future work in Sec. IV.

II. METHODS

A. Density functional theory + dynamical mean-field theory

The DFT + DMFT calculations are based on the method
and implementation of Haule et al. [2,11–13], often referred
to as DFT + embedded DMFT (DFT + eDMFT). In this
method, the DFT + DMFT free energy is expressed in the
form of a Luttinger-Ward functional, which is stationary. This
stationarity is important because it allows reliable evaluation
of free energies and forces [3]. To connect the correlated
subspaces to the rest of the solid, projection operators P̂R

are defined such that GR
loc = P̂RG, where G and GR

loc are the
Green’s function of the solid and the local Green’s function of
the correlated atom at site R, respectively. On-site correlations
of d or f orbitals are treated exactly while more itinerant
degrees of freedom are treated on the DFT level. The pro-
jectors are fixed and consist of a set of quasi-atomic orbitals
φR

lm(r) that are solution to the Schrödinger equation inside
the muffin-tin sphere. The projection and embedding with
fixed projectors is required to preserve the stationary nature
of the functional. The DFT + DMFT calculation proceeds as
follows: (1) the Green’s function of the lattice G is projected
to the local orbital basis (d or f orbitals) to calculate the
local Green’s functions GR

loc for each independent correlated
atom at sites {R}, (2) the impurity problem for each inde-
pendent correlated atom is solved by using the continuous
time quantum Monte Carlo [14,15] (CTQMC) solver to obtain
the self-energy in the local orbital basis �αβ (ω), (3) the self-
energy is embedded into real space according to

�R(r, r′, ω) =
∑

α,β

〈r|φα〉�αβ (ω)〈φβ |r′〉 (1)

and is nonzero only within the muffin-tin spheres of the
correlated atoms. The self-energy then enters the Dyson

equation of the solid to obtain the lattice Green’s function.
Self-consistency is achieved when the local Green’s functions
obtained from lattice and impurity match.

The forces on atoms are defined as the derivatives of the
Luttinger-Ward free energy functional with respect to the
atomic positions, which includes the effects of electronic and
magnetic entropy [3]. Importantly, they are easily and reliably
evaluated in this implementation, being even more numeri-
cally precise to compute than the free energy. Accurate forces
are essential for calculating phonons from finite differences.
We note that other implementations of forces within DFT +
DMFT exist; for example, the work of Leonov et al. [5]. In
contrast with the force implementation used in our work, the
method in Ref. [5] uses a Wannier function basis and does not
define the force as the derivative of a stationary free-energy
functional. Despite these difference, the implementation of
Ref. [5] should in principle also be suited for lattice dynamics
calculations with the direct method.

All DFT + DMFT calculations were performed using the
code available in Ref. [12]. The DFT part of the calculation is
based on the WIEN2K code [16], using an all-electron LAPW
basis set. The LDA is used throughout as the exchange-
correlation functional for the DFT part. A window of 20 eV
around the Fermi level is used for the hybridization. The
DMFT calculations were performed by using exact double
counting [17]. Experimental lattice parameters were obtained
from Ref. [18] for Fe, Ref. [19] for MnO and NiO, and
Ref. [20] for SrVO3. The interaction parameters for Fe were
obtained from a previous study that performed constrained
DMFT calculations (U = 5.5 eV, J = 0.84 eV) [9]. For both
MnO and NiO, U = 9.0 eV was chosen for the correlated d
orbitals with JMn = 1.14 eV and JNi = 1.3 eV. For SrVO3,
U = 6.0 eV and J = 1.0 eV were used. Fine tuning of the
parameters is avoided in this study. Calculations for the prim-
itive cells of Fe, MnO, and NiO used k-point grids of size
12 × 12 × 12, and for SrVO3 a 10 × 10 × 10 grid was used.
Equally dense grids were used for all supercell calculations.

B. Lattice dynamics

The objective of lattice dynamics calculations in the har-
monic approximation is to determine the dynamical matrix at
a given q point in the irreducible Brillouin zone. For a crystal
with a primitive cell of i = 1, . . . , N atoms at positions {τ i},
the dynamical matrix at point q is defined as

Diα, jβ (q) = 1√
mimj

∑

R

	iα, jβ (R)eiq·(R+τ j−τi ), (2)

where α, β label Cartesian coordinates and i, j label the
atoms within a primitive cell. The masses of the atoms are
given by mi and mj , and

	iα, jβ (R − R′) = ∂2E

∂uiαR′∂u jβR
= −∂FjβR

∂uiαR′
(3)

is the matrix of interatomic force constants, which is a func-
tion of R − R′ only, due to the translational invariance of
the solid. The Born-Oppenheimer potential-energy surface E
is in this case given by the free energy as obtained from
the Luttinger-Ward functional of DFT + DMFT, while uiαR′

corresponds to the displacement of atom i in the primitive
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cell at position R′ along Cartesian direction α. In practice,
	iα, jβ is computed row by row through the derivatives of
the forces FjβR. The phonon frequencies and eigenvectors are
found by diagonalizing the dynamical matrix. We have used
atomic displacements of 0.02 bohr throughout, but tests with
0.01–0.04 bohr show almost identical results for Fe and NiO.

In the direct method of lattice dynamics calculations, the
force constant matrix is determined by constructing a super-
cell. Conventionally, to determine phonon frequencies and
eigenvectors on a N1 × N2 × N3 q-point grid, a supercell
of dimensions N1 × N2 × N3 would be constructed. In this
work, we use the nondiagonal supercell method of Monserrat
et al. [10], which allows a more efficient determination of the
force constant and dynamical matrices than the use of a diago-
nal supercell. The method relies on the fact that a perturbation
of the atomic positions that has a wave vector q is commensu-
rate with a supercell for which q is a reciprocal-lattice vector.
It can then be shown that for a N1 × N2 × N3 q-point grid, a
set of supercells, each of which contains at most a number of
primitive cells equal to the least common multiple of N1, N2,
N3, are sufficient to determine the dynamical matrix at every q
point in the grid. In particular, the method allows the sampling
of vibrational Brillouin zones with a uniform grid of size
N × N × N using supercells that contain at most N primitive
cells. In contrast, using only diagonal supercells, the largest of
these contains N3 primitive cells. Nondiagonal supercells are
solutions to the “minimum supercell problem” for computing
phonons, as recently described by Fu et al. [21], and are the
most efficient method (in terms of system size) to compute
phonons at a given q point. The ideas can be generalized to
interactions between phonons, as described in Ref. [21].

The true force constant matrix satisfies certain sum
rules [22]. In particular, Newton’s third law requires that the
sum of the forces on the atoms is zero for every calculation
(
∑

i Fi = 0). In terms of the force constant matrix, this means
that every row and column must sum to zero:

∑

j

	iα, jβ = 0. (4)

Stated differently, 	iα,iβ must be given by

	iα,iβ = −
∑

j �=i

	iα, jβ. (5)

The difference between 	iα,iβ as obtained from the calcula-
tion and calculated by Eq. (5) can be used as a measure to
judge the accuracy and numerical precision of the force eval-
uations in the ab initio calculation [23]. This is particularly
relevant for DFT + DMFT calculations because the forces
are affected by statistical noise. We have also observed that
the sum rule and symmetry violations tend to be larger with
DFT + DMFT-derived forces than for pure DFT calculations.
The sum rule and the point-group symmetry are therefore
applied to the force constant matrices.

In polar insulators, the longitudinal optical (LO) and trans-
verse optical (TO) phonon modes are split close to the � point
due to the interaction between LO phonons and macroscopic
electric fields. This LO-TO splitting needs to be taken into
account to accurately model the phonon spectra of MnO and
NiO. In DFT calculations, LO-TO splitting is included by

separately calculating the Born effective charge tensors Z∗
i and

the macroscopic dielectric tensor ε∞ and adding a nonanalytic
correction to the dynamical matrix [24]. Unfortunately, for
Green’s function based methods like DMFT, the calculations
of polarization (and hence Born effective charges) is still an
unsolved theoretical problem. In the limit q → 0, the frequen-
cies of the LO and TO phonon modes ωLO and ωTO are related
to Z∗ and ε∞ according to

ω2
LO − ω2

TO = e2

ε0μ�

|Z∗|2
ε∞

, (6)

where e is the elementary charge, � is the volume of the
primitive unit cell, ε0 is the vacuum permittivity, and μ is the
reduced mass of the two atoms in the unit cell. The phonon
frequencies ωLO and ωTO can be obtained from a nondiagonal
supercell representing a q point close to �, and the resulting
value of |Z∗|2/ε∞ is used for the nonanalytic correction to the
dynamical matrix.

III. RESULTS AND DISCUSSION

A. Fe

At ambient pressure, iron crystallizes in three different
polymorphs: the bcc-α phase (stable below 1185 K), the fcc-γ
phase (stable between 1185–1670 K), and the bcc-δ phase
(stable up to the melting point of 1811 K). The bcc-α phase is
ferromagnetic below the Curie temperature of 1043 K. DFT +
DMFT calculations are well suited for the ab initio simula-
tion of the interplay between metallicity and local moments
in iron [25]. Importantly, DFT + DMFT is able to capture
both the paramagnetic regime and the temperature-dependent
change in the local moment. Within DFT, describing these
temperature effects requires much additional work starting
from the actual first-principles calculations [26–28].

The temperature dependence of the phonon spectra of
elemental iron has been studied previously both experimen-
tally [29,30] and computationally [7,9]. In the ferromagnetic
bcc α phase, a pronounced softening of the phonon modes
is observed as the temperature increases. The phonon soft-
ening can be captured with a number of different simulation
methods [26–28]. A recent DFT + DMFT study by Han et al.
clearly attributed the phonon softening to the melting of the
ferromagnetic order [9].

Here we compute the phonons for iron at temperatures of
1160 and 1740 K at the experimental equilibrium volumes.
The convergence of the phonon dispersion of paramagnetic
δ-Fe (T = 1740 K) is shown in Fig. 1. While previous work
used a minimal 2 × 2 × 2 q-point grid [9], there are small
but visible differences between the results of a 2 × 2 × 2
and a 4 × 4 × 4 grid. The phonon dispersion is effectively
converged with a 4 × 4 × 4 grid, because the differences with
the 6 × 6 × 6 result are small. The advantage of nondiagonal
supercells is clear with the largest grid; while for nondiagonal
supercells, only supercells of up to six atoms are needed
(scaling linearly with grid size N), the diagonal supercell
would contain 216 atoms (scaling as N3). For the case of
iron, the DFT + DMFT force calculations are remarkably ro-
bust; the difference between the force computed directly by
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FIG. 1. Convergence of the phonon dispersion of paramagnetic
bcc δ-Fe (T = 1740 K) with q-point grid size. The gray dots corre-
spond to the experimental data from Ref. [30].

DFT + DMFT (Fi) and that required by the acoustic sum rule
(−∑

j �=i F j) is smaller than 0.1% (cf. Methods).
The agreement between the experimental data (gray dots in

Fig. 1, Ref. [30]) and the calculations is very good, although
there are small differences in the frequencies at certain q
points, and the splitting of the branches along � → H is much
smaller than in the experiment.

The phonon dispersion of the ferromagnetic α phase is
shown in Fig. 2 for a temperature of 1160 K. While the
experimental Curie temperature TC is 1043 K, it is overes-
timated by DFT + DMFT calculations. This is due to the
fact that DMFT is a mean-field theory and as such overes-
timates phase-transition temperatures. Within DFT + DMFT,
the transition temperature depends on the choice of Coulomb
interaction in the impurity solver [31,32]. The two options are
the density-density only (“Ising”) and rotationally invariant
(“Full”) Coulomb interaction. In the case of Fe, the choice
of Coulomb interaction has an effect on the magnetic prop-

FIG. 2. Phonon dispersion of ferromagnetic bcc α-Fe (T =
1160 K) computed with a 2 × 2 × 2 q-point grid. The phonon dis-
persion shows clear differences between density-density (Ising) and
rotationally invariant (Full) Coulomb interactions used in the impu-
rity solver. With Ising, the magnetic moment is larger than with Full,
and the phonons are consequently harder.

FIG. 3. Phonon dispersion of paramagnetic bcc δ-Fe (T =
1740 K, 2 × 2 × 2 q-point grid) with fixed and variable self-energy
(see text). The results match to within 0.1 THz.

erties; while the Curie temperature with the Ising Coulomb
interaction is 2500 K, using the Full interaction, the TC is
1550 K [9]. As a consequence, the magnetic moment for
the same physical temperature of 1160 K is larger for Ising
(2.38μB) than for Full (1.7μB). A comparison of the phonon
dispersions at 1160 K calculated with Ising and Full Coulomb
interactions demonstrates that the phonon frequencies with
Ising are larger (Fig. 2). This difference is expected given
the larger magnetic moment with Ising and the fact that the
phonons in Fe soften with decreasing ferromagnetic order. For
the paramagnetic case, no such difference between Ising and
Full is observed and the phonon dispersions computed with
the two methods are identical (not shown). This illustrates two
important points: (1) it is consistent with the interpretation
that the phonon softening is largely due to melting of the
ferromagnetic order [9], and (2) it suggests that phonons can
be sensitive to the choice of Coulomb interaction. If this is
the case, the approach used in Ref. [9] of scaling the physical
temperature with respect to TC is appropriate.

While the use of nondiagonal supercells significantly
speeds up the DFT + DMFT lattice dynamics calculations,
it is still very expensive compared with DFT. The cost of
the DFT + DMFT calculations increases with the number of
atoms Nat in the unit cell as aNat + bN3

at, where the linear
term is due to the solution of the quantum impurity problems,
which dominates the cost of the DFT calculation (cubic term,
small b) for reasonably sized systems [33]. The lattice dynam-
ics calculations use very small atomic displacements (0.02
bohr) and it is worth checking how much the solution of the
impurity problem is affected by the small changes in atomic
positions. Figure 3 shows the difference between phonon
dispersions obtained by (1) solving the impurity problem
separately for each correlated atom in the unit cell [variable
�(ω)], and (2) a calculation in which the self-energy for each
correlated Fe atom is fixed to be equal to that of a Fe atom in
the undisplaced equilibrium configuration [fixed �(ω)]. The
differences are very small; for example, at the N point the
phonon frequencies differ by at most 0.1 THz. Based on these
results, it seems that fixing the self-energy is an excellent
approximation for the case of iron. These differences are of
the same magnitude as those that would be deemed acceptable
when carrying out a convergence test of the phonon frequen-
cies with respect to the basis set size (RKmax), or the number of
k points in the calculation. This suggests that the hybridization
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and the impurity levels are not sensitive to the small displace-
ments that are involved in the lattice dynamics calculation,
and the impurity problem is hardly affected. Performing the
calculations with a fixed self-energy offers massive benefits: a
single DFT + DMFT calculation in the high-symmetry equi-
librium configuration is sufficient to obtain �(ω). After that,
the forces for structures with various displacements of atoms
can be calculated at the cost of a DFT calculation, since all that
is required is the calculation of the lattice Green’s function
with a fixed �(ω). Timing information shows that, for the
calculation of the 2 × 2 × 2 q-point grid shown in Fig. 3,
performing the calculations with a fixed self-energy is ten
times faster. In general, the speedup depends on the ratio of
the amount of time spent in the impurity solver to the time
spent in other steps of the calculation.

It is important to examine the validity of fixing the self-
energy in each individual case. As shown in the following
sections, for the materials studied in this work, a fixed self-
energy is an excellent approximation. Put differently, this
means that the change in the self-energy with respect to po-
sition is small and therefore the two-particle vertex function
is not important for computing forces. However, one might
expect that this approximation breaks down when the material
is close to a phase transition. At present, we recommend
testing this approximation in particular cases that are under
consideration. In the following, we have tested it for the
materials studied by comparing at least the �-point phonon
frequencies with a fixed self-energy to those of a nonapproxi-
mated calculation.

B. NiO and MnO

NiO and MnO are antiferromagnetic insulators with Néel
temperatures TN of 525 and 116 K, respectively. Above
TN , the compounds are paramagnetic insulators. Magnetic
ordering in NiO and MnO induces a change in crystal sym-
metry; while the high-temperature phases are cubic, the
low-temperature antiferromagnetic (AFM) phases are rhom-
bohedral. The phonon spectra of both NiO and MnO do
not depend sensitively on the presence of long-range mag-
netic order [34], but the change in crystal symmetry leads
to small changes in the phonon frequencies due to magnetic
anisotropy [35–37]. One of the advantages of using DFT +
DMFT over DFT for lattice dynamics calculations of NiO
and MnO is the ability to simulate the paramagnetic regime
directly. We therefore chose to perform the calculations for
the paramagnetic regime at room temperature. MnO is in
fact paramagnetic at room temperature, and for NiO this is
a commonly used simplification.

The cubic phase is also convenient because it simplifies
including LO-TO splitting for MnO and NiO. Since it is cur-
rently not possible to calculate Born effective charge tensors
with DFT + DMFT, the LO-TO splitting has to be calculated
by using elongated supercells that represent q points close
to �. It is much easier to do this for the cubic paramagnetic
phases than for the AFM phases. Unfortunately, elongated su-
percells [e.g., corresponding to q = (0, 0, 1

8 )] led to problems
with the DFT + DMFT force calculations. Specifically for
the binary crystal structures NiO and MnO, the nondiagonal
supercells showed nonzero forces on atoms even in the high-

FIG. 4. Convergence of the phonon dispersion of NiO with the
size of the q-point grid. The gray dots correspond to the data of
Reichardt et al. [34], and the green crosses to the data of Coy
et al. [38].

symmetry equilibrium configuration. The problems became
more severe with larger cell sizes, increasingly unequal lattice
parameters, and large deviations of unit-cell angles from 90◦.
While the computational expense of a 6 × 6 × 6 or 8 × 8 × 8
q-point grid would have been manageable, the systematic
issues with the forces prevented the use of larger grids. We
note that these issues were not due to statistical noise in the
impurity solver and seem to leave room for improvement of
the implementation. These problems were not encountered
in the case of Fe and therefore seem to be related to having
two atomic species present in the cell, one of which is being
treated as correlated while the other is not. Note that, while
this has an effect on lattice dynamics calculations, which
involve small atomic displacements, the force implementation
works very well for structural optimization of correlated mate-
rials [4,39,40]. Since we were unable to extract the LO and TO
mode frequencies, we instead use values of Z∗ and ε∞ from
Ref. [6] or experiment [41,42] for the LO-TO splitting. While
unsatisfactory, there is currently no other method of including
the LO-TO splitting using finite differences.

Phonon dispersions for NiO with different q-point grid
sizes are compared in Fig. 4. The differences between the
2 × 2 × 2 and 4 × 4 × 4 q-point grids are larger than for the
case of Fe, which can be attributed to the stronger screening
in the metal. Larger grids are not accessible due to stability
issues with the force implementation. For NiO, nondiagonal
supercells allow us to access a grid of 4 × 4 × 4 with super-
cells that contain at most four primitive cells (eight atoms).
A diagonal supercell would contain 64 primitive cells (128
atoms), which would be much more computationally expen-
sive. The DFT + DMFT phonon dispersions are compared
with two sets of experimental data from Refs. [34,38] in
Fig. 4. The agreement is generally good and is on the order
of the differences between the two experiments. The acoustic
branches show an overall better agreement with the experi-
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FIG. 5. Convergence of the phonon dispersion of MnO with the
size of the q-point grid. The gray dots correspond to the data of
Wagner et al. [43].

mental data than the optical branches. Using the self-energy of
the equilibrium configuration for the lattice dynamics calcula-
tion is also an excellent approximation for NiO; for example,
the TO mode frequency at � changes by less than 0.01 THz.
Depending on the shape of the nondiagonal supercell the dif-
ferences between the results obtained from a fixed vs variable
self-energy can be larger, but this is likely due to the issues
with the DFT + DMFT force calculations discussed above.

Phonon dispersions for MnO with grids of sizes 2 × 2 × 2
and 4 × 4 × 4 are shown in Fig. 5. As for NiO, there are
significant differences in the phonon dispersions obtained
with a larger q-point grid. The DFT + DMFT results for the
4 × 4 × 4 grid are compared with the experimental data of
Wagner et al. [43]. For MnO, the agreement with experiment
is not as good as for NiO. This is mostly due to a difference of
2.3 THz between the experimental and calculated TO phonon
mode frequency at �.

The vibrational properties of MnO and NiO have been
studied previously by DFT with different functionals, includ-
ing DFT + U and hybrid functionals [44–46]. The study by
Linnera et al. [46] used hybrid functionals and obtained good
agreement with the experimental phonon spectrum of NiO but
a strong underestimation of the optical phonons at � for MnO.
DFT + U was used in Refs. [44,45], obtaining good agree-
ment with experimental phonon frequencies for MnO when
choosing an appropriate U value. We have tested U values in
the range 8–10 eV in DFT + DMFT calculations for MnO,
but this did not improve agreement with the experimental
phonon frequencies (although tuning to much lower U values
might). Given the charge-transfer insulating nature of MnO an
insensitivity to the precise U value is expected.

C. SrVO3

The perovskite SrVO3 is often cited as a textbook example
of a strongly correlated metal. The vanadium atom nominally

has a d1 configuration with a single electron in its t2g subshell.
The SrVO3 spectral function shows a well-established three-
peak structure, with a quasiparticle peak around the Fermi
level, and pronounced lower and upper Hubbard bands below
and above [47,48]. We have calculated the phonons of SrVO3

at T = 293 K with DFT + DMFT to assess the effect of strong
correlations on the vibrational properties of the material. Note
that, due to the metallic nature of the material, there is no
LO-TO splitting.

For SrVO3, the violation of the acoustic sum rule is much
more severe than for Fe, NiO, or MnO. The condition of
Eq. (5) is satisfied only to within 5%–7% in the worst cases,
which is a significantly larger violation than for the previ-
ous materials. For displacements that involve the correlated
vanadium atom and its nearest neighbors the violation of the
acoustic sum rule is worse than for displacements that only
involve Sr. This issue likely arises due to contributions to the
forces from terms that depend on the correlated subspace. In
the case of Fe, all atoms are equivalent and this term cancels,
while for NiO, MnO, and SrVO3 these terms cannot cancel
because of the presence of different atomic species. Enforcing
the sum rule is essential to obtain useful results.

As for the other materials, reusing the self-energy of the
equilibrium configuration for the lattice dynamics calcula-
tion is an excellent approximation. For the modes at �, the
frequencies computed with a fixed vs variable self-energy
differ by less than 0.01 THz. We therefore performed the
calculations of a 2 × 2 × 2 q-point grid for SrVO3 with a
fixed self-energy. The resulting LDA + DMFT phonon dis-
persion is shown in Fig. 6 and compared with the LDA
�-point phonon frequencies, since experimental data for the
vibrational properties of SrVO3 are not available. The results
confirm the dynamical stability of the SrVO3 perovskite struc-
ture at the LDA + DMFT level of theory. Focusing on the
� point, there are five threefold degenerate phonon modes.
The frequencies of the modes are renormalized by correlation
effects by different amounts. The frequency of the highest
mode changes the most, while the frequency of the lowest

FIG. 6. Phonon dispersion of SrVO3 (T = 293 K) computed
with a 2 × 2 × 2 q-point grid, at the LDA + DMFT level of theory.
Frequencies of � point phonons calculated with LDA are marked in
red.
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mode, dominated by Sr moving against an almost rigid VO6

octahedron, is the same for LDA and LDA + DMFT. This is
expected since the correlated atom and its nearest neighbors
do not change their relative positions, and confirms the in-
ternal consistency of the LDA + DMFT phonon calculations;
if a phonon mode does not involve the motion of the corre-
lated atoms or their direct neighbors, the frequency should
be unchanged from the DFT value. On the other hand, if
a mode features large changes in the relative positions of a
correlated atom and its nearest neighbors, correlation effects
can be expected to strongly impact the frequency of that mode.
This is the case for the highest frequency �-point phonon,
which is more strongly affected by correlation effects because
the vanadium and oxygen atoms move relative to each other.
These observations indicate the most useful applications of
DMFT phonon calculations: phonon effects that depend on
correlations and temperature due to the involvement of corre-
lated atoms in the atomic motion.

IV. CONCLUSION

In this paper, we have described a method to efficiently
compute phonons in correlated materials using a DFT +
DMFT approach. The method combines a robust DFT +
DMFT force implementation with the use of nondiagonal
supercells for finite difference lattice dynamics calculations.
We have calculated phonons of multiple different correlated
materials, including metals and insulators, elemental, binary,
and ternary crystals. The efficiency of the method allowed
us to access q-point grids of very large size. The agreement
between the calculations and available experimental data is
generally good. Based on our tests, the self-energy obtained
from a DFT + DMFT calculation of the equilibrium config-
uration is accurate enough for lattice dynamics calculations,
which eliminates the need to solve a large number of im-
purities for configurations with displaced atoms. Finally, we

have discussed some issues with the DFT + DMFT force
implementation that should be solved to make the calculation
of phonons using finite differences more robust.

There are many problems in condensed-matter physics
of strongly correlated materials that would benefit from an
elucidation of the phonons with DFT + DMFT. Cases that
come to mind are the phase diagram of f elements such as
cerium and uranium, and the metal-insulator transitions in
vanadate materials. The method should be especially useful to
evaluate phonons close to phase transitions to clarify the role
they play in correlated materials, and for the interpretation
of temperature dependent diffuse scattering across structural
phase transitions [49,50]. More generally, finite-difference
approaches for lattice dynamics will also be useful for calcula-
tions of electron-phonon coupling and a variety of other phe-
nomena in strongly correlated materials that depend on atomic
vibrations.
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