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Calculations of electronic excitation by protons and α particles in silicon
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This paper presents a method of calculating the valence electron contribution to the stopping and interaction
cross sections of swift ions in matter using linear response calculations of the dielectric function in crystals. The
ab initio response function is used to calculate excitations at low energy and momentum transfers to account
for material-specific effects, while higher energy and momentum transfers use a free electron gas response for
increased computational efficiency. The ECPSSR method for computing core cross sections is modified to allow
predictions of the core contribution to electronic stopping. The charge distribution by entrained electrons is
explicitly modeled to account for the additional screening beyond linear response. We use the methods developed
to predict the electronic stopping of protons and α particles in silicon and compare to measured values.
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I. INTRODUCTION

The response of condensed matter to the passage of
charged particles has been a subject of interest to the physics
community for more than a century. In the current age of
Monte Carlo codes for simulating radiation transport [1,2],
certain processes—nuclear interactions, some deep elec-
tronic core excitations, Rutherford scattering—are handled as
discrete events, while others—valence and shallow electronic
core interactions, phonon excitation—are approximated as
continuous processes that slow the particle down as it tra-
verses the sample. The latter type of process is often referred
to as “stopping.” These processes are traditionally handled
with some variation of the Bethe formula [3], which is valid
at relatively high particle energies and requires a single em-
pirical material parameter, the mean atomic excitation energy,
in addition to known values of the ion nuclear charge and
material electron density. At lower ion speeds, below approx-
imately one atomic unit of speed v0, the Bethe formula loses
validity and the Lindhard-Sharff-Schiott (or LSS) formula [4]
is used, which requires a single empirical scaling parameter.
In recent decades, Bethe and LSS stopping has been extended
and combined with empirical data to give relatively accurate
descriptions of energy loss, range, and straggling of ions in
matter [5,6].

More recently, many attempts have been made to under-
stand stopping using ab initio calculations in real materials.
Among the earliest, Campillo, Pitarke, and their coworkers
described using linear response calculations to predict the
stopping of protons in aluminum [7,8] and silicon [9]. Later,
Shukri et al. [10] similarly calculated the stopping of protons
in aluminum and silicon under the linear response formalism,
showing good agreement with data. They noted the challenges
of converging the calculations with respect to the number of
bands included in the calculation and the k-point grid, and the
importance of including core states in the calculations, as well
as mentioning the significant additional computational cost to
including them.

Linear response calculations are known to work well
at high projectile ion speeds but are less accurate at low
speeds—particularly for heavier ions, where entrained elec-
trons (electrons that move with the ion in bound states) are not
well represented. Previous work has investigated the stopping
of ions in an electron gas at low speeds to all orders in the
projectile nuclear charge, Z [11–14]. These works calculate
the friction coefficient (stopping divided by ion speed) in
the limit of vanishing projectile speed. These works re-
port agreement with the variation in friction coefficient with
changing Z . Their limitations are that they do not reproduce
stopping at higher speeds and they rely on an electron gas de-
scription which can miss the effects of material properties. For
example, attempts to extend the stopping theory to simulate
radiation track structure will fail to reproduce the track ioniza-
tion density in an insulator or semiconductor with an electron
gas model, which lacks a band gap and will thus result in large
numbers of unphysical excitations present within the material
band gap.

An alternative approach uses real-time time-dependent
density functional theory (RT-TDDFT) to explicitly simu-
late the time evolution of the electronic state as a charged
projectile is moved through a lattice at constant speed. This
method was used by Pruneda et al. [15] to calculate stopping
of protons and antiprotons in lithium fluoride, by Yost and
Kanai [16] to calculate stopping of protons and α particles
in silicon carbide, and by Yost et al. [17] for protons in
silicon. The RT-TDDFT method gives contributions to all
orders, including those beyond linear response. However, it
is computationally expensive, particularly if a representative
sample of trajectories is to be averaged over.

This paper seeks to overcome some of the limitations of
linear response calculations, while using much of the same
computational machinery. We attempt to overcome the slow
convergence by noting that at high energy or momentum
transfer from the ion to the material, the forces of the ma-
terial on its electrons can be neglected and an electron gas
model will suffice for these kinds of excitations, reserving the
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computationally more expensive integrations over the ab initio
response function for low energy and low momentum transfer
excitations. Core excitations will be dealt with using ECPSSR
theory [18], which has proved successful in reproducing core-
level cross sections but has not yet been applied to stopping.
ECPSSR is much less computationally expensive than plane-
wave calculations for atomic cores. Finally, we attempt to
explore whether the limitations of linear response on stopping
of slow ions with Z > 1 can be handled with an explicit model
of the screening cloud of entrained electrons captured by the
ion. This is conceptually similar to the “effective Z” model
commonly used to estimate stopping [19,20]. This attempts
to fill a need for rapid preliminary calculations of electronic
excitations across a wide range of energies needed for radia-
tion track structure simulations [21–23]. Because silicon has
a wealth of experimental data associated with it, we choose to
perform initial simulations on this material, using proton and
α-particle projectiles.

Unless explicitly specified otherwise, throughout this doc-
ument we use atomic units (e = h̄ = me = 1) for calculations
and to develop theory. Results are presented in more accessi-
ble and familiar units.

II. THEORY

In this paper, we consider an ion moving through a crys-
talline and nonmetallic material. The temperature is low
enough that the material can be approximated in its electronic
ground state. The electrons occupy Bloch orbitals in band n
and wave vector k denoted ψn,k(r) with eigenenergies εn(k).
Modern plane-wave electronic structure codes can efficiently
calculate ψn,k(r) and εn(k) [24–26].

We will pursue the following strategy. At high energy
and momentum transfer between the ion and the material,
the detailed nature of the bonding of the valence electron
to the material does not matter much. Under these conditions,
the electronic system can be treated to a good approximation
as a free electron gas, allowing calculations to be performed
rapidly and efficiently. At momentum transfer smaller than a
given momentum cutoff magnitude qcrit and energy transfers
smaller than an energy threshold ωcrit, the full nature of the
material’s electronic response will be required to describe the

interaction, including the material band gap and interband
transitions. To keep the calculations tractable, excitons and
other effects beyond the random phase approximation (RPA)
will be neglected. We will thus require separate descriptions of
the screening and interaction in the high momentum or energy
limit and the low energy and momentum limit.

A. Screening

Electronic losses arise from dynamical effects of the
screening, which is the electronic response of the material to
a perturbing charge.

1. Ab initio screening

Adler and Wiser [27,28] independently derived the dielec-
tric function of a crystal in the RPA, in a form that can
be calculated with the Bloch orbitals and eigenenergies. The
dielectric response εK,K ′ (qB, ω) is a 3-tensor valued function
that is also a matrix in the space of reciprocal lattice vectors
K, K ′. (Here, qB is the wave number confined to the first
Brillouin zone and ω is the energy transfer. In order to make
the notation more compact, we use q = qB + K elsewhere in
this paper for the total momentum transfer.) The functional
form of ε is reviewed in Appendix A. For isotropic materials,
the spatial tensor aspect of the function can be neglected but
finding the inverse dielectric function still requires a matrix
inverse in the space of inverse lattice vectors.

2. Free electron gas screening

Lindhard [29,30] has developed the dielectric response of
the homogeneous free electron gas. Because the material is
assumed homogeneous and isotropic, the dielectric function
is scalar and diagonal in the lattice vectors K. The response is
described with a single momentum transfer variable spanning
all possible momenta ε(q, ω), where q is no longer restricted
to the first Brillouin zone. The inverse dielectric function is a
simple reciprocal rather than a matrix inverse.

B. Rate of loss

As detailed in Appendix B, the interaction rate can be
found by

�(v) = 2
∫ ∞

0
dω

∑
K

∫
d3qB

8π3

4π

|q|2 |ρa(q)|2LKK (qB, ω) δ

(
ω − q · v + |q|2

2M

)
, (1)

where ρa(q) is the Fourier transform of the atom’s charge distribution and LKK ′ (qB, ω) is the loss function of the material
[−i times the anti-Hermitian part of ε−1

K,K ′ (qB, ω)]. The energy loss rate is given by a similar equation, differing only by weighting
the integrand by a factor of the energy transfer ω:

Ė (v) = 2
∫ ∞

0
dω ω

∑
K

∫
d3qB

8π3

4π

|q|2 |ρa(q)|2LKK (qB, ω) δ

(
ω − q · v + |q|2

2M

)
. (2)

For a spherically symmetric charge distribution in an isotropic homogeneous material, the expression for the scattering rate
and rate of energy loss simplify

�(v) = 2

πv

∫ 2Mv

0

dq

q
|ρa(q)|2

∫ ω+

0
dω

∣∣Im ε−1(q, ω)
∣∣, (3)

Ė (v) = 2

πv

∫ 2Mv

0

dq

q
|ρa(q)|2

∫ ω+

0
dω ω

∣∣Im ε−1(q, ω)
∣∣, (4)
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where ω+ = qv − q2/2M, which can be exploited when using
free electron gas representations of the response.

These expressions [Eqs. (1)–(4)] for the scattering and
energy loss rates are valid in the nonrelativistic limit. To find
the stopping of ions moving at a significant fraction of the
speed of light, relativistic corrections will need to be included.

To convert from rates to interactions (or energy loss) per
distance traveled, divide by the ion’s speed. The inverse mean
free path between interaction events is thus

λ−1(v) = �(v)

v
(5)

and the stopping (energy loss per distance traveled) [31] is

S(v) = Ė

v
. (6)

The inverse mean free path is related to the cross section for
interaction σ through the density of interaction centers N/V

λ−1(v) = σ (v)N/V. (7)

Thus, we obtain the formula for electronic excitation cross
sections

σ (v) = �(v)

v

V

N
. (8)

It should be noted that some ambiguity may occur in the
natural choice of what constitutes an interaction center. For
core shell ionization, the clear choice is an individual atom.
The valence electrons, however, are much more delocalized
throughout the material to the extent that the free electron
gas approximation has no natural choice for an interaction
center. The cross section can be chosen to be per atom, per
crystallographic unit cell, or per chemical unit (e.g., one stron-
tium atom and two iodine atoms for SrI2). This is merely a
convention, as the choice of how to conceptually divide up
the lattice can have no effect on observables. In this work, we
chose to use the crystallographic unit cell of the silicon lattice
as the interaction center for defining valence cross sections.

C. Core-level excitations

In principle, the above methods for finding the mate-
rial screening could be used to compute the excitations
of core electronic states to conduction states. In practice,
core states are prohibitively expensive to compute using
plane-wave electronic structure codes. We assume that the
electronic bands can be separated into core and valence
states. The scattering and loss rates of the valence states can
be handled as above. Core excitation cross sections by
light ions have been found to be accurately modeled us-
ing the ECPSSR (stands for (E) Energy-loss effect, (C)
Coulomb repulsion, (PSS) Perturbed Stationary States, and
(R) Relativistic) method [18], which adds corrections to the
plane-wave Born approximation (PWBA) scattering cross
sections of screened hydrogenic states of the target atoms.
These corrections account for the curved trajectory of the
projectile in the field of the atomic nucleus and deep core
states, screening by core electronic states, and the increased
binding energy of the core state when the projectile nucleus is
very close to the target nucleus.

ECPSSR is usually used for the calculation of core ion-
ization cross sections. With a small modification, it can also
produce the stopping due to core excitations. A review of
ECPSSR theory and the modification to allow stopping cal-
culations is given in Appendix C. It must be noted that if the
material contains heavy atoms with N , O, or P core shells, ad-
ditional work will need to be done to parametrize the PWBA
expressions for those shells.

III. CALCULATIONS

The integrals in Eqs. (3), (4), and (C6) are evaluated using
Gauss three-point quadrature over an adaptive grid, subdivid-
ing portions of the grid until the integral in each section is
converged. In all cases, the numerical effort to evaluate the
integrals was negligible compared to the integration of the
valence loss rates and cross sections (below).

The ground-state wave function of silicon was calculated
using the ABINIT plane-wave electronic structure code [24].
A lattice parameter of 10.217 Bohr radii was used, and the
orbitals calculated on a 10 × 10 × 10 k-point grid in the first
Brillouin zone. The 3s and 3p valence electrons were in-
cluded in the calculations; the silicon core was represented
with a norm-conserving pseudopotential generated with the
ONCVPSP code [32] available from the ABINIT website. The
electronic structure was converged with a 20-Hartree plane-
wave cutoff.

The ab initio dielectric response of Eq. (A1) was cal-
culated using the Kohn-Sham orbitals and eigenvalues from
the ground-state results, integrated on the k-point grid of the
ground-state calculation using the tetrahedron method [33].
The response was tabulated from 0 to 100 eV at 0.1-eV steps,
with q points on the 10 × 10 × 10 grid from the ground-state
calculations. A cutoff of 10 Hartree was chosen for cutoff of
reciprocal lattice vector energies to represent the exchange
and correlation contributions; off-diagonal (local field) plane
waves were calculated for the dielectric matrix with a plane-
wave energy cutoff of 1 Hartree. A scissors operator was
chosen to enforce a band gap of 1.125 eV.

The ion charge distribution ρa(q) is estimated using the
Brandt and Kitagawa model [19], with the energy stripping
criterion of Mathar and Posselt [20]. Because previous work
reported that linear response calculations are in agreement
with commonly accepted stopping values for protons in matter
[10], it is likely that the polarization cloud around a proton
as calculated by linear response is similar to the actual cloud
of entrained electrons carried by the proton as bound states.
If this is the case, the relevant screening charge distribu-
tion will be the ion charge distribution as calculated by the
Brandt-Kitagawa model minus Z times the electron charge
distribution of a Brandt-Kitagawa proton, which will give the
excess screening charge beyond what is produced by linear re-
sponse. This is referred to as the “corrected screening” model
in this paper.

For momentum transfer magnitudes above approximately
q = 2 a−1

0 , with a0 as the Bohr radius, the calculated ab
initio response function for silicon is reasonably well approx-
imated by the electron gas response function, as shown in
Fig. 1. For momentum transfers below approximately q =
2 a−1

0 , the response function becomes negligibly small above
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FIG. 1. The ab initio calculated diagonal loss function (solid lines) compared to the free electron gas approximation (dashed lines).

approximately 80 eV. The “cutoff” q = 2 a−1
0 and ω = 80 eV

chosen by eye will need to be adjusted to reach adequate
numerical convergence. We therefore choose the following
method to separate integration over an electron gas response
function from that over the ab initio response function. For
momentum transfers of less than qcrit = 3.5 a−1

0 and energy
transfers of less than ωcrit = 100 eV, tetrahedron integration
is used to evaluate the scattering rate integral Eq. (1) and
energy loss rate integral Eq. (2) on a grid spacing given by
the dielectric response calculation grid. These choices for qcrit

and ωcrit were found to be well converged. Where it has been
calculated, the ab initio calculated response function for the
silicon crystal was used in these integrals; outside of this
region, the free electron gas response was used to fill in the
space between the filled cube in reciprocal space of tabulated
ab initio response and the momentum space cut-off sphere at
qcrit. For energy or momentum transfers outside of the cut-off
thresholds, Eqs. (3) and (4) are used with the free electron
gas form of the response. This procedure avoids the slow
convergence with respect to bands and dielectric matrix cutoff
energies mentioned in Ref. [10].

It is useful to compare our methods with commonly used
approximations. For comparison of our predictions with the
widely used Bethe formula, we used the following function:

SBethe(v) = 4πZ2e4ρe

mev2
ln

[
2mev

2

I

]
, (9)

where me is the electron mass, e is the elementary charge,
and I is the mean excitation energy of the material (taken

as 173 eV for Si). At high ion speeds, our calculations
should converge with the Bethe formula. The form of the
Bethe equation shown here, and used in this work, is valid at
nonrelativistic speeds and neglects the Barkas-Anderson cor-
rections, Bloch corrections, and shell corrections. Although
these corrections and the inclusion of relativistic effects can
be important for accurate comparisons in some speed ranges,
they will not qualitatively affect our results where it is used
for comparison in the high but not relativistic ion speed range.

IV. RESULTS

Core excitation cross sections are compared to previously
published data in Fig. 2. The K-shell cross sections are in good
agreement with measurements; the predicted L-shell cross
sections lie at the upper range of the data error bars. It is not
clear if the L-shell measurements are low, or if the ECPSSR
theory over-predicts the cross sections by about 20%. Archubi
and Arista [34] have also calculated core cross sections for
protons in silicon using a separate method; ECPSSR provides
a better match to the measured data of silicon core excitation
cross sections by protons than the EWPM method of these
authors. That the core shell cross sections can be adequately
calculated is not surprising, because the ECPSSR theory is
already well established for this purpose and not novel to
this study. Our results merely demonstrate this theory on
silicon to illustrate how core excitations can be handled and
accounted for.

Figure 3 shows our predictions for the valence stopping
of protons in silicon compared to similar calculations made
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FIG. 2. Core excitation cross sections of protons in silicon, comparing the ECPSSR theory (purple solid line) to data (green × symbols,
with error bars) and the EWPM calculations of Archubi and Arista [34] (blue dashed line). Left: K-shell cross sections, with data from Tawara
et al. [35] Right: combined L-shell cross sections, with data from Ariyasinghe et al. [36].

by others. It is notable that the real-time TDDFT approach
of Yost et al. [17] lies close to the linear response calcula-
tions of Shukri et al. [10] and those of this work that treat
the proton as a point particle. Meanwhile, our model, which
explicitly includes the charge cloud of entrained electrons
using the Brandt-Kitagawa model, gives results significantly
below the other predictions. It is noteworthy that the RT-
TDDFT calculations, which take screening at all orders into
account, already include the cloud of entrained electrons
around the proton. This offers some evidence that, as previ-
ously suggested, linear response already does an adequate job
of approximating the screening of protons at typical material
electron densities.

The calculated stopping of protons is compared to mea-
sured data in Fig. 4. For α particles, our predictions are
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FIG. 3. A comparison of theoretical studies. Valence stopping
from linear response only (dashed line) and with Brant-Kitagawa
screening (full line), compared to RT-TDDFT valence stopping from
Yost et al. [17] (green stars with error bars) and to the valence RPA
(red dots) and ALDA (red dash-dots) results of Shukri et al. [10].

compared to measured data in Fig. 5. Note that only the data
from Grahmann and Kalbitzer [39] is for electronic stopping
alone; the rest also has contributions from nuclear stopping.
At high speeds, the stopping of an ion is expected to be mostly
electronic in nature. Thus, for high-energy particles, the total
stopping should be a good measure of the electronic stopping.
Although at lower speeds nuclear stopping becomes more
significant, the effect of nuclear stopping is expected to be
small over the range of energies for which we have data, on
the order of 1% for protons in silicon [45] and 20% for α

particles in silicon [46] at 10 keV and decreasing at higher
energies. For the data shown in Fig. 4, this small discrepancy
means that nuclear stopping alone cannot explain the differ-
ence between the trends seen in the total stopping data of
Kührt et al. or that of Mertens and Bauwer compared to the
electronic-only stopping of Grahmann and Kalbitzer. Given
that the linear response calculations of this work for electronic
stopping of protons give good agreement with calculations of
other authors that take screening of all orders into account, as
shown in Fig. 3, and that our linear response calculations also
show good agreement with the total stopping measurements
at energy ranges where nuclear stopping is expected to be
negligible, it is likely that the agreement of our screened
calculations with the data of Grahmann and Kalbitzer is a
coincidence.

The contributions of valence, L-shell core states, and K-
shell core states to the electronic cross sections and stopping
of protons and α particles are shown in Fig. 6. Over most
of the energy range studied, the valence electrons have the
dominant effect. At high energies, L-shell excitations come to
dominate the stopping if not the cross sections. This can be
understood because each individual L-shell excitation trans-
fers significantly more energy to the excited electron than the
valence excitations. Over the energy range simulated here, the
K-shell contributions of silicon are negligible.

The general behavior of the total cross sections and stop-
ping curves in Fig. 6 are similar. They vanish at low energies
where kinematic constraints force high-energy transfers to
occur at high-momentum transfers where the loss function
is very small. The presence of the band gap disallows small
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energy-transfer interactions, thus explaining the low stopping
and cross sections at these energies. At slightly higher en-
ergies, the cross section and stopping increase with energy
before rising to go through a maximum and then begin de-
creasing with increasing energy.

V. DISCUSSION

The development of a generally applicable theory that
describes both fast and slow projectile ions in a material is
challenging. Our approach relies on a simplified model of
screening to represent the additional charge around an ion
beyond that given by linear screening. The results suggest
that this simple screening distribution improves the stopping
calculations for α particles. In principle, this method could
be applied to heavier ions to model the effect of their bound
electrons on their electronic screening. However, further vali-
dation of entrained screening models is needed against heavier
ions than α particles before it can be fully accepted. Clearly,
the accuracy of the charge distribution model will also af-
fect the calculated stopping. A more sophisticated model
using first-principles calculations of the electronic structure
of atoms in various charge states could produce improved
performance.

An alternate method for simulating the stopping across
large energy ranges and nuclear charges would be to extend
the friction coefficient calculations mentioned in the intro-
duction [11–14] to cover higher energies. Although beyond

the scope of this paper, it is worth noting that if Eq. (2) is
modified to sum over local fields (that is, including K and
K ′ in the sum and including off-diagonal elements of the loss
function), it can be reworked to be identical to Eq. (10) of the
paper by Nazarov et al. [14] in the limit of low ω. Thus, using
the same density functional as was used to obtain the friction
coefficients would return the same low-energy behavior in
stopping calculations if local fields are included, while the
high-energy behavior would be expected to remain relatively
accurate; consequently, it is possible that such an approach
would give a good prediction of the stopping over all energies
and nuclear charges.

At sufficiently high energies, all methods of calculating
electronic stopping or cross sections converge. The energies
of atomic binding become small compared to the energies
transferred to the electrons by the projectile and free electron-
like gases become an increasingly good approximation. Even
more generally, the fact that the f -sum rule conserves oscil-
lator strength in the loss function means that when you are
integrating over all kinematically allowed dynamic variables
(ω, q), any reasonable high-energy loss function contains most
of its weight in a peak with most of the oscillator strength
and the integration over this function erases the details of its
structure, such that even plasmon pole models give similar
values at high projectile energies. Thus, at speeds above a
few atomic units (v0), any calculations for the cross sections
or stopping should be fairly reliable, with errors perhaps
on the order of a few percent. This is consistent with our
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FIG. 6. Calculated contributions from valence (dashed line), L-shell (dotted line), and K-shell (dash-dot line) electrons, and the total of all
electronic processes (solid line), to the electronic cross sections (above) and stopping (below) of protons (left) and α particles (right) in silicon.
Proton valence results are from linear response, α particle valence results use the corrected screening method.
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results, which approach the well-known Bethe stopping for-
mula at high speeds, and generally are close to or within the
available measured data. However, it must also be mentioned
that the scattering and energy loss rate expressions were de-
rived using a pure Coulomb potential and a longitudinal loss
function and thus cannot be expected to hold at relativistic
energies (at or above roughly the GeV scale for the light ions
considered here).

The agreement of our predicted stopping with the data
at high energies where L-shell excitations are expected to
become important illustrates the applicability of the ECPSSR
theory to stopping as well as to cross-section calculations
and suggests that it gives a good overall description of the
core excitation process by light ions. Using ECPSSR for
core stopping can help ease the computational burdens of
high-speed stopping calculations in general, including those
using significantly different methods than the linear response
used here.

This reasoning no longer holds as the projectile speed
decreases and the material’s electronic structure becomes
increasingly reflected in the loss function. In addition, the
screening of the ion by its entrained electrons reduces the
response of the surrounding material. For protons, neglecting
the entrained electrons gives results that are within a few
percent of those of theories that allow bound states to form
around the proton and take into account the electronic screen-
ing to all orders. In addition, the linear response stopping for
a bare proton calculated using the ab initio loss function at
lower energies and momentum transfers is in general agree-
ment with the available experimental data on proton stopping
in silicon, at between a few to roughly 20% deviation de-
pending on the data set, with the exception of one data set
which shows a deviation on the order of a factor of 2 from
the theory and the other data at energies where they overlap.
Consequently, we expect the accuracy of our method for cal-
culating electronic loss rates, stopping, and cross sections to
be within a few percent, at least for materials whose electronic
properties are straightforward to calculate using modern elec-
tronic structure codes.

The situation with α particles is more complicated. A
corrected screening model seems to be within a few percent
accuracy at speeds above roughly 4 v0 for the same reasons
as for protons, before rising through a region of maximum
discrepancy of about 20% error near 2 v0 and then again
approaching the experimental data at around 1 v0 and below.
As discussed, this model corrects linear response by explicitly
adding a distributed charge cloud around the ion representing
its bound electrons. But because the screening of a proton
is well modeled by linear response, we need to remove the
screening charge due to linear response from the charge cloud
model. We do so by assuming that the linear response elec-
tronic screening distribution of a proton is similar to that of
the modeled proton bound charge at the same speed, and sub-
tracting off Z times the electron charge cloud of a proton. The
other screening models considered for α particles in this paper
cannot be recommended, as they either over- or underscreen
the nucleus.

Silicon is a useful test material for models of this nature
because of the ease of ab initio electronic structure calcula-
tions on silicon and the abundance of data on this material.
Other materials made of light to midweight atoms would
also be expected to work with this model if the material is
amenable to DFT electronic structure methods. The model
may break down for materials known to be strongly corre-
lated, for example, at lower projectile energies, and materials
with complicated structures may find the necessary electronic
structure calculations to be time and computer resource inten-
sive. As mentioned, the ECPSSR method for core excitations
has only been developed for K , L, and M core shells. Heavier
atoms with more core levels than this will require either ad-
ditional work to derive the parameters for those shells or will
need to represent the core states using the electronic structure
method employed for the valence states.

The ability to simulate ion tracks will allow the under-
standing of material response to α decay as well as neutrons
and the energetic ions their interactions produce. Such sim-
ulations can lead to increased understanding of the radiation
track process and improved materials for radiation detection,
including neutron-γ discrimination, or optimizing for speed
or brightness in response to neutron interactions. It also may
provide understanding of the signal produced by the recoil of
atoms from other massive neutral particles and as such could
be important to modeling the detector response in direct-
detection searches for dark matter (see, e.g., Ref. [47]).

In summary, we have demonstrated a method that speeds
up convergence of stopping calculations at high projectile en-
ergies, we have modified the computationally cheap ECPSSR
method to obtain stopping due to core levels, and we present
some preliminary evidence that a static model of entrained
electrons of the projectile ion can include phenomena beyond
linear response for ion stopping.
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APPENDIX A: REVIEW OF SCREENING IN A
CRYSTALLINE MATERIAL

Adler and Wiser [27,28] derived the longitudinal dielectric
function of a crystalline material in the RPA to be
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εK,K ′ (qB, ω) = δK,K ′ − 4π

|q||q′|
un∑
c

occ∑
v

∫
d3k

8π3

[
ρcv (k, q)ρ∗

cv (k, q′)
ω − εc(k) + εv (k − q) + iη

− ρvc(k, q)ρ∗
vc(k, q′)

ω + εc(k) − εv (k − q) + iη

]
. (A1)

Here, η is a positive infinitesimal, K and K ′ are reciprocal
lattice vectors, the wave vector qB is restricted to the first Bril-
louin zone, the summations are over unoccupied and occupied
states, respectively, the integral is taken over the first Brillouin
zone, and the density matrix elements are defined as

ρnn′ (k, q) =
∫

d3r ψn,k(r) ψ∗
n′,k−q(r) e−iq·r. (A2)

In order to make the notation more compact, we use q = qB +
K and q′ = qB + K ′.

APPENDIX B: RATE OF LOSS DERIVATION

Consider an ion in a material. The ion moves with velocity
v and has mass M and nuclear charge Z . The ion’s position is
R = vt . Assume the ion has n bound electrons with a charge
density ρa(r − vt ). If the Fourier transform of the static ion
charge density is

ρa(q) =
∫

d3r ρa(r)e−iq·r, (B1)

then the Fourier transform of the moving ion charge density is
found to be

ρa(q, ω) = 2π ρa(q) δ(q · v − ω), M → ∞. (B2)

This result only holds in the limit of infinite ion mass, where
the ion truly has a constant velocity. For finite mass, the
energy-conserving δ function will need to include the effect
of ion recoil

ρa(q, ω) = 2π ρa(q) δ

(
q · v − q2

2M
− ω

)
. (B3)

The material is assumed to initially be in a product state
|�i〉 of its electronic ground state |�0〉, a plane-wave state
of the ion’s center of mass |p〉 with energy |p|2/(2M ), and
the electronic state of the ion |�a〉. This section primarily
focuses on excitations of the material electronic state with
corresponding decreases in the kinetic energy of the ion;
consequently, excitations of the ion electronic state will be
neglected and the ion’s charge can be treated as a classical
quantity; 〈�a|ρ̌a(r)|�a〉 = ρa(r), where ρ̌a is the charge den-
sity operator for the ion. The final states |� f 〉 are likewise a
product state of the final material electronic state with one or
more particle-hole type excitations |�e〉, of a plane-wave state
of the ion’s center of mass |p′〉 = |p − q〉, and of the ion’s
charge distribution:

|�i〉 = |�0〉|p〉|�a〉,
|� f 〉 = |�e〉|p′〉|�a〉.

(B4)

The rate at which the system leaves its initial state and
transitions to possible final states is given by Fermi’s golden

rule [48]

�(v) = 2π
∑

f

|〈� f |Hint|�i〉|2δ(ωi f ), (B5)

where ωi f is the energy difference between the state i and state
f :

ωi f = ω0e + |p′|2
2M

− |p|2
2M

= ω0e − q · v + |q|2
2M

. (B6)

The interaction Hamiltonian is taken as the Coulomb interac-
tion between the charge density of the ion and the material

Hint =
∑
pp′

∑
K

∫
d3qB

8π3

4π

|q|2 ρ∗
a (q)ρ̌(q)c†

pcp′ δ(q − p + p′),

(B7)

where cp (c†
p) is the destruction (creation) operator for the ion

with momentum p and ρ̌ is the charge density operator for the
electrons of the material

ρ̌(q) = −
∑
nn′

∫
d3k

8π3
ρnn′ (k, q) a†

n′,k−q an,k. (B8)

Expanding the expression for the scattering rate obtains

�(v) = 2π
∑

e

∑
K

∫
d3qB

8π3

[
4π

|q|2
]2

|ρa(q)|2〈�0|ρ̌†(q)|�e〉

× 〈�e|ρ̌(q)|�0〉 δ

(
ω0e − q · v + |q|2

2M

)
. (B9)

To make sense of this, we define a loss function LKK ′ (qB, ω)
proportional to the anti-Hermitian component of the inverse
dielectric function ε

−1(A)
KK ′ (qB, ω)

LKK ′ (qB, ω) = −iε−1(A)
KK ′ (qB, ω)

= ε−1
KK ′ (qB, ω) − ε

−1†
KK ′ (qB, ω)

2i
,

(B10)

which describes the strength of the different loss channels
in the material for a given q and ω. In the free electron ap-
proximation, the loss function reduces to the scalar L(q, ω) =
Im ε−1(q, ω). The normal methods of finding the inverse
dielectric function using linear response of time-dependent
perturbation theory [30,49] then gives

ε
−1(A)
KK ′ (qB, ω) = −4iπ2

|q||q′|
∑

e

[〈�0|ρ̌(q)|�e〉〈�e|ρ̌†(q′)|�0〉

× δ(ω − ω0e) − 〈�0|ρ̌†(q′)|
× �e〉〈�e|ρ̌(q)|�0〉δ(ω + ω0e)] (B11)

so that

�(v) = 2
∫ ∞

0
dω

∑
K

∫
d3qB

8π3

4π

|q|2 |ρa(q)|2LKK (qB, ω) δ
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×
(

ω − q · v + |q|2
2M

)
. (B12)

The rate of energy transfer from the projectile ion to the
material is easily found by weighting the integrand in the
scattering rate expression by the energy transfer ω

Ė (v) = 2
∫ ∞

0
dω ω

∑
K

∫
d3qB

8π3

4π

|q|2 |ρa(q)|2LKK (qB, ω) δ

×
(

ω − q · v + |q|2
2M

)
. (B13)

In other words, the rate of excitations is a sum over the rates
of individual energy and momentum transfers, given by the
Coulomb interaction of the radiation particle with the avail-
able loss channels of the material.

APPENDIX C: REVIEW OF ECPSSR METHOD

The PWBA expression for the cross section is traditionally
written as

σJ = σ0J θ−1
J FJ (ηJ/θ

2
J , θJ ), (C1)

where J = K , L1, L2, L3, M1, . . . references the core state
being ionized,

σ0J = 8πZ2Z−4
J , (C2)

ZJ is the charge of the target ion modified for the electronic
screening of other core shells using the method of Slater [50],

θJ = 2 ωJ

Z2
J

, (C3)

ωJ is the core shell binding energy, and

ηJ =
( v

ZJ

)2
. (C4)

The quantity FJ (ηJ/θ
2
J , θJ ) is a universal core cross-section

integral, which can be computed using

FJ (ηJ/θ
2
J , θJ ) = θJ

ηJ
fJ , (C5)

fJ =
∫ Wmax

Wmin

dW
∫ Qmax

Qmin

dQ|GW,J |2. (C6)

The integration variable W is the scaled energy transfer and Q
is the scaled momentum transfer

W = 2 ω

Z2
J

, (C7)

Q = q2

Z2
J

. (C8)

The functional form of GW,J depends on the core shell being
ionized [51,52]; the interested reader can find the specifics in
the referenced literature. For our purposes, it suffices to note
that the rate of energy loss of the ion to excitations of the
specific core level can be calculated under the same approx-
imation by weighting the scaled energy integral by Z2

J W/2.
This allows us to calculate the stopping of core levels using
Eq. (6). The ECPSSR corrections used for the cross sections
can just as well be used for stopping calculations.

At this time, the authors are only aware of published forms
of GW,J for K , L, and M shells. If this method is to be used for
materials containing atoms heavier than Kr, additional work
will be required to determine the expression of PWBA cross
sections for N , O, and P shells.
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