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Nonlocal thermoelectricity in a topological Andreev interferometer
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We discuss the phase-dependent nonlocal thermoelectric effect in a topological Josephson junction in contact
with a normal-metal probe. We show that, due to the helical nature of topological edge states, nonlocal
thermoelectricity is generated by a purely Andreev interferometric mechanism. This response can be tuned by
imposing a Josephson phase difference, through the application of a dissipationless current between the two
superconductors, even without the need of applying an external magnetic field. We discuss in detail the origin of
this effect and we also provide a realistic estimation of the nonlocal Seebeck coefficient which turns out to be of
the order of a few μV/K at temperatures of a few kelvin.

DOI: 10.1103/PhysRevB.102.241302

Introduction. Prominent topics in hybrid superconduct-
ing quantum technologies concern thermal management
[1–3] and thermoelectricity [4–11]. These represent novel
functionalities for quantum sensing [12–14], entanglement
manipulation [15], and thermal engines [16–20].

Usually, finite thermoelectric response appears in hy-
brid superconducting systems only when the particle-hole
symmetry, encoded in the Bogoliubov–de Gennes (BdG)
Hamiltonian, is broken, e.g., by means of ferromagnetic cor-
relations [21–25] or by exploiting nonlinearities [10,11,26].
Recently, mechanisms able to generate nonlocal thermoelec-
tricity have been predicted in Cooper pair splitters [8,9] and
Andreev interferometers [27–30], and experimentally investi-
gated [31–34]. We have demonstrated [35] that a Josephson
junction based on a two-dimensional (2D) topological insula-
tor (TI) [36–40] threaded by a magnetic flux with one edge
attached to a normal metallic probe [41] presents nonlocal
thermoelectricity when a temperature difference is applied
between the two superconducting leads. The responsible
mechanism is the so-called Doppler shift induced by the mag-
netic flux in the junction, which has an effect akin to a Zeeman
splitting in the two spin-polarized members of the Kramer pair
of the 2D TI [42].

In this work, we show that a phase bias alone in a topologi-
cal Josephson junction is sufficient to establish finite nonlocal
thermoelectricity. This is very appealing since, differently
from the mechanism of Ref. [35], the present one takes place
without the necessity of a magnetic field. Its origin is the
helical property of edge states and solely relies on the super-
conducting Andreev interferometric effect. Importantly, such
thermoelectric response disappears when both edges are con-
nected to the probe or when the TI is replaced by normal
channels. Hence, it constitutes a peculiar feature of the he-
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lical nature of the 2D TI. We argue that, with state-of-the-art
technologies, the corresponding nonlocal Seebeck coefficient
turns out to be of the order of a few μV/K at temperatures of
a few kelvin.

Model. We consider the topological Josephson junction
depicted in Fig. 1, which consists of two superconducting
electrodes placed on top of a 2D TI at a distance L. The two
electrodes induce superconducting correlations on the edge
states via proximity effect [42,43]. The width of the TI strip is
assumed to be large enough such that upper and lower edges
are decoupled, and we focus only on the upper edge. The
system is described by the following BdG Hamiltonian:

H =
(

H (x) iσy�(x)

−iσy�(x)∗ −H (x)∗

)
, (1)

expressed in the Nambu basis (ψ↑, ψ↓, ψ∗
↑, ψ∗

↓ )T with spin ↑
and ↓ collinear with the natural spin-quantization axis of the
TI edge along the z direction, where H (x) = vF (−ih̄∂x )σz −
μσ0 with −H (x)∗ being its time-reversal partner. The Fermi
velocity is vF , μ is the chemical potential, and σi are the Pauli
matrices. We consider rigid boundary conditions with order
parameter �(x) = �0[�(−x)eiφSL + �(x − L)eiφSR ], where
�(x) is the step function, �0 is the proximity induced gap,
and φ ≡ φSR − φSL is the gauge invariant Josephson phase
difference between the two superconductors. A normal-metal
probe N , such as a scanning tunneling microscopy (STM) tip
[44–47], is directly contacted to the upper edge on the point x0

(see Fig. 1) and modeled by an energy- and spin-independent
transmission amplitude t .

Charge current at the probe. In the setup depicted in Fig. 1,
a voltage bias VN is applied between the probe N at the temper-
ature TN and the superconducting electrodes (grounded) [48].
In this configuration the only thermal bias that gives rise to
a nonlocal electric response in the probe is δT = TSL − TSR

imposed between the superconductors. By using the scattering
approach [49–51] one can write the charge current Jc

N flowing
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FIG. 1. A helical Kramers pair of edge states of the quantum
spin Hall effect is contacted by two superconductors at different
temperatures TSL = T + δT/2 and TSR = T − δT/2, and a phase
difference φ ≡ φSR − φSL . A bias voltage VN is applied to the normal-
metal probe at temperature TN and coupled to the edge at the point
0 � x0 � L, with L the length of the junction.

in the probe as follows:

Jc
N = 2

h

∑
j,α,β

∫ ∞

0
dε αe

[
f α
N (ε) − f β

j (ε)
]
Pα,β

N, j (ε, φ), (2)

where α, β = + stand for quasiparticle (QP), α, β = − for
quasihole (QH), and with j running over leads indices (SL,
SR, and N). In Eq. (2) we consider the chemical poten-
tials of the grounded superconductors as reference for the
energies. The current depends on the generalized Fermi dis-
tributions f α

j (ε) = {e(ε−αeVj )/kBTj + 1}−1, where Tj and Vj are,
respectively, the temperature and the voltage at the lead j.
Notice that when Vj = 0 (for the grounded superconductors
VSL = VSR = 0), f −

j (ε) = f +
j (ε). The scattering coefficients

Pα,β
i, j (ε, φ), with i, j = N, SL, SR, represent the reflection (i =

j) or transmission (i �= j) probabilities of a quasiparticle of
type β in lead j to a quasiparticle of type α in lead i [51].

Symmetries. As a consequence of the helical nature of
the edge states, the fact that the probe is not spin polarized
and for superconductors with equal gap, it is found that the
scattering coefficients Pα,β

i, j (ε, φ) do not depend on the probe
position. This is because each path taken by particles comes
in pairs with its symmetric one (obtained by exchanging left
and right). Hence, all the results discussed hereafter do not
depend on x0. Furthermore, it can be shown that peculiar
nonlocal symmetries hold for the scattering coefficients of
Eq. (2) between the probe and the left/right superconduc-
tors, namely, Pαβ

NSL/R
(ε, φ) = P−α−β

NSR/L
(ε, φ) and Pαβ

NSL/R
(ε, φ) =

P−α−β
NSL/R

(ε,−φ), while the reflection coefficients at the probe N

satisfy the relation Pαβ
NN (ε, φ) = P−α−β

NN (ε, φ) between QP and
QH states.

Nonlocal thermoelectric response. By exploiting the afore-
mentioned symmetry relations, one can write the charge
current at the probe Jc

N in the following form:

Jc
N = 2

h

∫ ∞

0
dε {F−

N (ε)A(ε, φ)

− F−
S (ε)[Q(ε, φ) − Q(ε,−φ)]}, (3)

where in the first term we recognize the Fermi function dif-
ferences for normal probe F−

N ≡ f +
N − f −

N weighted with a

FIG. 2. Resonant processes describing the transfer of the charge
Q from the superconducting leads SL, SR into the probe N . ẽ, h̃ label,
respectively, QP and QH at the superconducting leads. Solid and
dashed lines correspond to the trajectories traveled by electrons and
holes, respectively. Red (blue) corresponds to processes originated
at the hot (cold) lead SL (SR) whose Fermi distribution fSL = f ±

SL

( fSR = f ±
SR

) is sketched on the side. In (a) and (b) are depicted the
processes of QP and QH injected from SL and SR, respectively, and
corresponding to a transfer of the opposite amount of charge Q(ε, φ)
(a) and −Q(ε, φ) (b). In (c) and (d) are depicted the dual processes
obtained by inverting the lead of injection (SL � SR) and the sign of
φ → −φ.

scattering coefficient

A(ε, φ) = e(N+
N − P++

NN + P+−
NN ) = e(N−

N − P−−
NN + P−+

NN )
(4)

that represents the electronic charge transferred from the
probe N into the edge, being P±±

NN normal reflections, P±∓
NN

the Andreev ones, and N+(−)
N the number of open channels

for electrons (holes) at the probe. The second term instead
contains the Fermi function differences between the two su-
perconductors F−

S ≡ f ±
SL

− f ∓
SR

which are nonzero when a
thermal bias δT �= 0 is applied between the superconductors.
The function F−

S is weighted with the odd parity component,
with respect to φ, of the function

Q(ε, φ) = e
(
P++

NSL
− P−+

NSL

) = −e
(
P+−

NSR
− P−−

NSR

)
. (5)

A visualization of the meaning of the quantity Q is given in
Fig. 2 where we sketch the resonant processes where a QP
or QH is injected from right or left superconductors and is
transferred after multiple resonant Andreev processes to the
probe as an electron (solid) or a hole (dashed). In particular, Q
represents the net electronic charge transferred into the probe
N when a QP is injected from SL [see Fig. 2(a)]. The symme-
tries show that a QH injected from the right superconductor
SR brings exactly the same amount of charge, with opposite
sign [second identity of Eq. (5)] as represented in Fig. 2(b).
Alongside these processes [represented in Figs. 2(a) and 2(b)],
there are also dual processes, depicted in Figs. 2(c) and 2(d),
which correspond to the same amount of transferred charge
given in Eq. (5) obtained by exchanging the side of injection
(i.e., SL � SR) and inverting the sign of φ → −φ.

We now discuss the physical consequence of the result
reported in Eq. (3). When VN = 0 there is no contribution
from the Fermi functions of the normal probe (i.e., F−

N =
0) because f +

N (ε) = f −
N (ε). Since TN does not enter these

expressions, the possibility of inducing local thermoelectricity
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by means of a thermal bias between the TI and the probe is
ruled out. This is particularly important at the experimental
level since the temperature of the probe does not need to
be controlled during the measurement of nonlocal thermo-
electricity. The only thermoelectric response in the probe
is the nonlocal one when a thermal bias between the two
superconductors δT is applied, i.e., F−

S = f ±
SL

(ε) − f ∓
SR

(ε) �=
0. This nonlocal thermoelectric response [see Eq. (3)] is
determined by the integral over the energies of the odd par-
ity component in φ of the function Q(ε, φ), i.e., Q(ε, φ) −
Q(ε,−φ). If φ = 0, one cannot have nonlocal thermoelec-
tricity. The physical reason for this result comes from the

exact cancellation of the contributions of the processes rep-
resented in Fig. 2: in particular, (a) cancels with (d) and (b)
with (c).

Phase-dependent thermoelectricity. Here we concentrate
on the action of the Josephson phase bias φ showing that it
is responsible for the generation of nonlocal thermoelectricity
in the probe due to a peculiar Andreev interferometric effect
associated to the helical nature of the edge, as pictorially
sketched in Fig. 2. This can be rationalized looking at the
analytical expressions of the quantities A and Q of Eqs. (4)
and (5) [51]:

A(ε, φ) =
∑
σ=±

2e|t |4�(� − ε)

1 + |r|4 + 2|r|2 cos
[
2π Lε

ξ�
+ σφ + 2 arcsin

(
ε
�

)] +
∑
σ=±

e[g(ε) + 1][g(ε) − |r|2]|t |2�(ε − �)

g(ε)2 + |r|4 − 2g(ε)|r|2 cos
(
2π Lε

ξ�
+ σφ

) , (6)

Q(ε, φ) = e[g(ε) − 1][g(ε) − |r|2]|t |2�(ε − �)

g(ε)2 + |r|4 − 2g(ε)|r|2 cos
(
2π Lε

ξ�
− φ

) , (7)

where g(ε) = (ε/� +
√

ε2/�2 − 1)2, |r|2 = 1 − |t |2, and
ξ = h̄vF /π� is the superconducting coherence length. Notice
that Eq. (6) consists of two parts, each related to the sub-
gap (first term) and supragap (second term) processes, while
Eq. (7) contains only the supragap contribution. In partic-
ular, from Eq. (7), it emerges that Q(ε, φ) has no definite
symmetry in φ for L �= 0 so that one would expect a finite
nonlocal thermoelectric response. The interferential nature of
the phenomena can be better enlightened by investigating the
behavior of the Onsager coefficients in the linear response
regime as we discuss next.

Linear response regime. In the linear response regime, for
δT,VN → 0, the temperature of the probe can be chosen as
the average temperature of the superconducting leads, i.e.,
TN = (TSL + TSR )/2 = T . With this choice the heat current in
the probe is zero while it flows only between the two super-
conductors. So the relevant responses are the charge current
flowing in the probe Jc

N and the heat current flowing in one
(say the left) superconductor [49–51]

Jh
SL

= 2

h

∑
j,α,β

∫ ∞

0
dε ε

[
f α
SL

(ε) − f β
j (ε)

]
Pα,β

SL, j (ε, φ). (8)

The electric current flowing between the superconducting
leads is mainly dominated by the Josephson (equilibrium)
current determined by the superconducting phase difference,
unless it overcomes the value of the critical current of the
junction. Hence, no linear thermovoltage response can take
place between the two superconductors. Quantitatively, the
linear response regime is thus characterized by the following
relations [6,8,9,16,52,53]:

Jc
N = L11(VN/T ) + L12(δT/T 2),

Jh
SL

= L21(VN/T ) + L22(δT/T 2). (9)

Interestingly, although the configuration contains three termi-
nals, the relevant driving affinities for nonlocal thermoelectric
response of this setup are only two, namely, VN/T and δT/T 2.
Hence, the Onsager matrix, with entries Li j , is effectively
2 × 2 [16,52–55]. In this effective formulation one should

be reminded that L12 and L21 are nonlocal thermoelectrical
coefficients. In Fig. 3 the Onsager coefficients are plotted
as functions of φ/π and the length measured as L/ξ . In
Figs. 3(a), 3(b), and 3(c) we plot, respectively, the local

FIG. 3. Phase dependence of the Onsager coefficients. L11 (a),
L22 (b), and L12 = −L21 (c) as functions of φ/π and the junction
length L/ξ for |t |2 = 0.5. (d) L12 as a function of φ/π and coupling
parameter |t |2 with the junction length L/ξ = 0.25 (for which it
is maximal). Such quantities are taken at T/TC = 0.4 and normal-
ized as follows: L11/(G0T ), L22/(GT T 2), and L12/(

√
G0GT T 3), with

G0 = 2e2/h and GT = (π 2/3h)k2
BT being, respectively, the electrical

conductance quantum and the thermal conductance quantum.
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Onsager coefficients L11, L22, and the nonlocal thermoelec-
trical coefficient L12 setting the strength of the coupling with
the probe at an intermediate value [56] |t |2 = 0.5 and the
temperature fixed at T/TC = 0.4 (the highest temperature at
which the induced gap of the right and left superconductors
remain constant and equal to �0), where TC is the critical
temperature. Notice that, by exploiting the aforementioned
symmetries of the scattering coefficients, it can be shown that
the off-diagonal nonlocal coefficients satisfy a generalized
nonlocal Onsager symmetry relation L12(φ) = L21(−φ) =
−L21(φ), similarly to the case discussed in Ref. [35].

We observe that L11 (which is proportional to the conduc-
tance at the probe), is an even function [57] of φ and, for small
length L � ξ , presents a minimum for φ ≈ 0 and a maxi-
mum at φ ≈ ±π . Increasing the length L, the conductance
becomes featureless and flat due to an effective averaging
between the (increasing) number of available states involved
in the transport. More interesting, instead, is the behavior of
L22 and L12 which present a periodicity of one coherence
length ξ as functions of the length of the junction [43]. This
periodicity is determined by the oscillatory change of avail-
able states at energies ε � �, which dominate the spectral
contribution to the transport window, oscillating between a
maximum to a minimum when the junction length changes
by one ξ length. This effect is not present in L11 since it is
mostly determined by subgap states given by the Andreev
contributions. Remarkably, this oscillatory behavior affects
also the thermal conductance (∝ L22) which crucially differs
from the nonlocal thermoelectric coefficient (∝ L12) since the
first is even with the phase bias φ while the latter is odd
[57,58] [see Eq. (3)]. The different symmetry in φ is due to
the fact that QPs and QHs contribute with the same sign to
the heat transport but with opposite sign to the thermoelectric
current.

In Fig. 3(d) we show how L12 changes with the cou-
pling parameter |t |2, keeping the length of the junction fixed
to L/ξ = 0.25 [for which it is maximal; see Fig. 3(c)]. It
emerges that the absolute value of the nonlocal Onsager co-
efficient L12 reaches its maximum for an intermediate value
of the coupling parameter (i.e., |t |2 ≈ 0.5), while it is ei-
ther zero when |t |2 → 0 (when the probe is decoupled)
or |t |2 → 1 (when the two superconductors are mutually
decoupled).

We stress that the appearance of this nonlocal linear ther-
moelectric effect is a unique feature of our hybrid topological
Josephson junction when the probe is contacted with just one
helical edge of the TI. Such thermoelectric response, instead,
disappears when both edges are connected to the probe or
when the TI is replaced by normal spinful channels. More
precisely, we verified that in the case of a standard S-N-S
junction in contact with a normal-metal probe, L12 = L21 = 0.

As a final remark, it is important to give a realistic esti-
mation of the strength of the thermoelectrical effect we are
discussing. In this regard, we compute the nonlocal Seebeck
coefficient S = (1/T )L12/L11 [52] as a function of φ (see
Fig. 4). As a consequence of the latter relation, we notice
that S, being proportional to L12, stems from Andreev in-
terference effetcs. In order to make realistic predictions in a
wide temperature range, here we also include the temperature
dependence of the gap order parameter [59,60]. Figure 4(a)

FIG. 4. (a) Nonlocal Seebeck coefficient as a function of φ/π

versus T/TC for |t |2 = 10−2. (b) Nonlocal Seebeck coefficient as a
function of φ/π versus the probe coupling |t |2 for T/TC = 0.7. Both
(a) and (b) have been obtained for the same length L/ξ = 0.25.

shows that the nonlocal Seebeck coefficient grows with the
operating temperature and reaches a maximum of 3 μV/K
roughly at T/TC ≈ 0.7 for φ/π ≈ ±0.6. At higher temper-
atures the gap closes reducing the nonlocal thermoelectricity,
hence confirming the fundamental role of the superconducting
state. Figure 4(b) (obtained for T/TC = 0.7) shows how the
nonlocal Seebeck effect scales with the probe coupling |t |2 as
a result of the scaling of the ratio L12/L11. At small coupling
|t |2 ≈ 10−2 it returns highest values. Notably these values of
the phase-dependent nonlocal Seebeck coefficient are roughly
6% of the values determined by the Doppler shift mechanism
proposed in Ref. [35]. The advantage in the present case, is
that there is no need of any magnetic field since it is enough
to impose a dissipationless current between the two supercon-
ductors to induce the phase bias φ. This experimental protocol
seems quite attractive due to its simplicity and the absence of
any spurious Nernst effect [61–64].

In Fig. 4 we considered the length of the junction L/ξ =
0.25. This situation is reasonable assuming a STM tip with
state-of-the-art size of 100 nm and a coherence length ξ in
the proximized TI of the order of 600 nm [65,66]. Further,
this choice of the length assures that the transport along the
edge state is ballistic [67] at the operating temperatures for
our setup, typically of a few kelvin.

Conclusions. We investigated a phase-dependent nonlocal
thermoelectricity in a topological Josephson junction coupled
to a probe. We showed that an Andreev interferometric mech-
anism affects QPs and QHs differently resulting in a nonlocal
thermoelectric response. We discussed the dependence of this
mechanism over the junction length L and the coupling with
the probe |t |2. We estimated, with realistic parameters, a non-
local Seebeck coefficient of a few μV/K at temperatures of
a few kelvin. We underline that the provided estimations are
quite conservative since the critical temperature TC of the
induced proximized gap is given by the critical temperature
of the parent superconductors which is usually much higher,
further increasing the nonlocal Seebeck coefficient which is
proportional to the operating temperature. This thermoelectric
effect is a consequence of the helical nature of the edge states
[35] and can be used as evidence of the existence of these
states in TI systems. Some of the experimental conditions
for nonlocal Seebeck effect measurement are similar to the
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proposed measurements of heat conductance in topological
Josephson junctions [43,68], but here we discussed a mech-
anism which takes place in the absence of any magnetic field.
The investigation of the nonlocal character in thermoelectri-
cal coherent devices may open novel possibilities in thermal
management and quantum sensing.
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