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Flat band quantum scar
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We show that a quantum scar state, an atypical eigenstate breaking eigenstate thermalization hypothesis
embedded in a many-body energy spectrum, can be constructed in flat band systems. The key idea of our
construction is to make use of orthogonal compact localized states. We concretely discuss our construction
scheme, taking a sawtooth flat lattice system as an example, and numerically demonstrate the presence of a
quantum scar state. Examples of higher-dimensional systems are also addressed. Our construction method of
quantum scar has broad applications to various flat band systems.
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Introduction. Violation of eigenstate thermalization hy-
pothesis (ETH) [1–4] now attracts great interest, being called
weak ETH [5,6]. The violation leads to area-law entanglement
entropy (EE) for some specific eigenstates, while almost all
eigenstates exhibit thermalization and volume-law EE. Re-
cently, a Rydberg cold-atom quantum simulator heuristically
accessed specific eigenstates inducing the violation of the
ETH through a quench dynamics [7]. A suitable nonentangled
state (charge density wave state) has not thermalized during a
long-time evolution and a recurrence occurs, indicating that
the initial information is not lost. Immediately, the theoretical
model describing the Rydberg cold-atom quantum simulator,
namely, the PXP model, has been studied in detail and the
study clarified that the series of nonthermalized eigenstates
with the area-law EE exists, but the system is nonintegrable
as a whole (there are no extensive numbers of the local
conserved quantities) and a quench dynamics exhibits a co-
herence, corresponding to very-slow thermalization and linear
(slow) growth of EE [8–13]. Such specific eigenstates not pos-
sessing the typical properties from the ETH are buried in most
thermal eigenstates [14]. They are now called quantum scars
(QSs), whose single-particle counterpart has been reported
four decades ago [15].

QSs can appear not only for the PXP model but also for
broad condensed-matter models. In fact, exact eigenstates
with long-range orders away from the ground states were
known in the literature, such as an η-pairing state in a Hub-
bard model [16,17], and indeed revisited as a candidate of
QSs [18–20]. Recently, a general construction has been pro-
posed [14] before the first Rydberg experiment [7]. Since
then, an increasing number of examples have been reported,
including the AKLT model [21,22], some S = 1 and 1/2 spin
models [23–26], topological models [27,28], frustrated spin
systems [29], a quantum dimer model [30], and disordered
systems [31,32]. Furthermore, a lattice supersymmetric lattice
model [33] and two-dimensional Rydberg-atom system [34]
has been theoretically expected to have QS states, and ro-
bust nonstationary dynamics related to QS has been reported
[35,36].

In this Rapid Communication, we propose a simple gen-
eral construction of QS states in flat band systems, where
the model has a spatially compact localized state (CLS)
[37–39] as eigenstates on the flat band, which does not spa-
tially overlap, and thus are orthogonal with each other. This
construction of the QS does not require implementation of
complex and artificial interactions. They are standard nearest-
neighbor density-density interactions. Therefore the scheme
we are proposing can be applicable to various flat band
systems. By making use of orthonormalized CLSs, we can
construct a low entangled many-body state violating the ETH,
which remains to be an exact eigenstate even in the presence
of conventional density-density interaction; other states obey
the ETH as the models themselves are generally noninte-
grable. In the following, we first present a generic argument
mentioned above, and then present a concrete example of the
sawtooth-lattice model. We numerically demonstrate the real-
ization of the QS state by showing the level statistics and time
evolution of the entanglement. In addition, some examples of
a two-dimensional model are presented.

General construction. We propose a general construction
for a unique QS. We start with considering the following
general flat band model with interactions for spinless fermions
[40]. Let us consider a lattice with Nt sites composed of a
periodic array of NL unit cells; there are Nt/NL sublattices per
unit cell. On this lattice, we consider the Hamiltonian

Htot = H0 + Hint, (1)

H0 =
∑

i j

f †
i hi j f j, Hint =

∑

|i− j|��

Vi jnin j . (2)

Here, H0 stands for the single-particle Hamiltonian hosting a
flat band with f (†)

i being an annihilation (creation) fermion
operator in real space, and Hint is a two-body finite-range
interaction with the maximum range �, Vi j is an interaction
strength, and n j = f †

j f j . It is to be emphasized that elaborate
turning of Hint is not needed to obtain the QS state. Hint is
a natural short-range density-density interaction. Rather, the
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FIG. 1. Schematic picture of sawtooth lattice. The yellow shaded
object is a CLS. The CLSs do not spatially overlap each other due
to the presence of a finite μ. The minimum distance between the
neighboring CLS is dm = 2.

key feature to obtain the QS state is encoded in H0, that is, we
assume that the flat band eigenstates are spanned by orthonor-
malized localized states which have a compact support and
do not spatially overlap each other; such states are referred
to as the CLSs (see yellow shaded objects in Fig. 1 as an
example). It is noteworthy that not all the flat band models
satisfy this assumption. In fact, in some models, such a set
of localized states either overlap each other or do not have a
compact support [41,42].

Let Lj be an annihilation operator of the CLS at the unit
cell j ∈ [0, NL − 1], and dm be the minimum of the distance
between the sites involved in the support of neighboring Lj’s,
assumed to satisfy dm > 1. Then, for the many-body system
with particle number being fixed to NL, we consider the fol-
lowing state:

|�L〉 =
NL−1∏

j=0

L†
j |0〉. (3)

This state is created by occupying all of the eigenstates on
the flat band. Notably, for a finite-ranged Hint, we can keep
the state |�L〉 an exact eigenstate due to the isolation of the
CLS state [43]. Namely, if the interaction Hint is a two-body
interaction under the condition � < dm, the state |�L〉 is still
an eigenstate for the interacting system, because Hint|�L〉 =
0, while Hint converts the total system into a nonintegrable
system. In the literature, exact many-body eigenstates with
vanishing interaction energy were considered in the context
of flat band ferromagnetism [44–46], and later in the Wigner
crystal [47]. As a result, |�L〉 is a unique QS, which originates
from the flat band nature, and we expect that |�L〉 satisfies
area-law scaling for the EE and is embedded in most thermal
eigenstates in a system with a translational invariance. Further,
the total system does not have extensive numbers of conserved
quantities, so the total system is nonintegrable.

It should be noted that our construction has a relation to
the recent general construction method by Shiraishi and Mori
[14] (see Supplemental Material [48]). Our construction is
also related to a toy model proposed in Eq. (7) in Ref. [10].
The first term of the toy model can be regarded as a trivial flat
band, and the QS belongs to the kernel of the second operator,
which also makes the toy model nonintegrable.

Example: Sawtooth lattice. By applying the above general
argument, we show a concrete construction of the QS from
CLSs, which is analytically very simple. We start with the
following model defined on the sawtooth lattice (Fig. 1), H0 =∑L−1

j=0 [t1 f †
j,A f j,C + t2 f †

j,A f j,B + t2 f †
j,B f j,C + t1 f †

j,C f j+1,A +

t2 f †
j,C f j,D + t2 f †

j,D f j+1,A + H.c.] + ∑L−1
j=0 μ f †

j,A f j,A, and Hint

is a nearest-neighbor interaction, given later [see Eq. (5)].
Note that the finite on-site potential, μ �= 0, leads to the in-
crease of the sublattice degrees of freedom from two to four.
Further, for t2 = √

2t1, one band out of the four becomes a flat
band (see Supplemental Material [48] for the single-particle
spectrum). The existence of the flat band can be inferred from
the molecular-orbital (MO) representation [48], which was de-
veloped to describe generic flat band models in the prior works
[49,50]. We can also straightforwardly find orthonormalized
CLSs as

L†
j = 1

2 [
√

2 f †
j,C − f †

j,B − f †
j,D], {Lj, L†

j′ } = δ j j′ , (4)

where Lj’s do not overlap each other, and satisfy [L†
j , H0] =

−2t1L†
j . In some ferromagnetic spin models, similar CLSs

were proposed but they are generically nonorthogonal [51,52].
Having these CLSs at hand, we now construct a many-body

state, which turns into a QS when switching on interactions.
We consider 1/4 filling, then can construct the many-body
state that occupies all the states of the flat band, given in the
form of Eq. (3). Clearly, this state is an exact eigenstate since
H0|�L〉 = −2t1L|�L〉 and Hint|�L〉 = 0. This fact is indepen-
dent of the value of μ and the profile of Vi j (|i − j| = 1).
Further, since Hint is a nearest-neighbor interaction and dm

for Lj’s is equal to two, |�L〉 is the eigenstate of Hint with
zero eigenvalue, thus, |�L〉 remains as a many-body eigenstate
of Htot. The Wigner-solidlike particle distribution of |�L〉
indicates that the state exhibits area-law EE. This state is
atypical because the other many-body eigenstates are thermal
delocalized, and are expected to obey the ETH and exhibit
volume-law EE. In the following, we numerically demonstrate
that |�L〉 is the QS embedded in this model.

Numerical demonstration. Let us numerically verify that
|�L〉 is the QS state [53]. For concreteness, we set the profile
of Hint as

Hint =
∑

j

V0
(
nA

j nB
j − nB

j nC
j + nC

j nD
j − nD

j nA
j+1

)
, (5)

where nα
j = f †

α, j fα, j (α = A, B, C, D). Hereafter we set
t1 = 1.

As a first step, we demonstrate the nonintegra-
bility from level spacing analysis. To be concrete,
we calculate the level spacing rs defined by rs =
[min(δ(s), δ(s+1))]/[max(δ(s), δ(s+1))] for all s, where
δ(s) = Es+1 − Es and {Es} is the set of energy eigenvalue
(in ascending order), and calculate the mean level spacing
〈r〉 which is obtained by averaging over rs by employing
all energy eigenvalues with fixed momentum space. By
introducing a parameter α as μ = −2α and V0 = 3α, we
observe nonintegrable behaviors of the system. Figure 2(a)
is the numerical result. As increasing α, 〈r〉 shows a clear
crossover from integrable (〈r〉 � 0.39, corresponding to
the Poisson distribution) to nonintegrable (〈r〉 � 0.53,
corresponding to the Wigner-Dyson distribution). Hence, the
term Hint makes the system nonintegrable. In what follows,
we focus on the nonintegrable parameter point α = 1.

To verify the presence of the QS state |�L〉, we next cal-
culate an overlap |〈Z4|��〉|, where |Z4〉 = ∏

j=0 f †
C, j |0〉 and

|��〉 is a many-body eigenstate for Htot. As a typical character,
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FIG. 2. Numerical results for the sawtooth lattice model.
(a) Mean level spacing 〈r〉 averaged over all energy eigenvalues in
the momentum sector k = 0 (see [8,55]). We set L = 5 with five
particles and L = 6 with six particles. (b) Overlap to |Z4〉 for all
eigenstates. The red circle indicates |�L〉. (c) Distribution of EE. The
EE is normalized by the number of sites in the subsystem. The red
circle indicates |�L〉. The EE for the red circle is very small because
the only single CLS is cut; the value is smin = 1

2L (2 ln 2 − 3
4 ln 3) ≈

0.056 23. For (b) and (c), we set μ = −2, V0 = 3, and L = 5 with
five particles. (d) Single-shot quench dynamics of EE: the disorder is
μA, j , μB, j ∈ [−w0, w0] with V0 = 3. We set L = 5 with five particles
and two initial states, |�L〉 and |Z4〉.

we expect that |�L〉 has large overlap compared to the other
eigenstates. The result is shown in Fig. 2(b). We find an
atypical state with a large overlap, which is nothing but |�L〉.

Next, we divide the system into two parts where both parts
include 2L lattice sites and calculate the EEs of all eigenstates
for the subsystem [54]. The result is shown in Fig. 2(c). We
find that the QS state |�L〉 embedded in the energy excitation
band exhibits very low-valued EE while other eigenstates have
large value of the EE and show an arched distribution, which
is a typical character of thermalized states in various systems
[27,28,30]. Actually, the value of the EE for |�L〉 can be easily
obtained from cutting the single CLS. The simple calculation
is shown in the Supplemental Material [48]. The numerical
result of the EE for the QS agrees with the analytical result.

Additionally, we investigate the effects of static disorders
for the system. Through observing EE in the quench dynamics
of the system, we investigate the following: (i) How robust is
the QS for clean system |�L〉 to disorders? (ii) Whether or not
a weakly disordered system has a similar QS state in the clean
limit. In dynamics, we set two initial states |�L〉 and |Z4〉 and
calculate the unitary dynamics by using exact diagonalization.
Here we introduce a random on-site potential, i.e., adding the
following term: Hrand = ∑

j,α μα
j nα

j with μα
j ∈ [−w0,w0]. We

fix μ = 0 and V0 = 3. In the presence of Hrand, |�L〉 is no
longer an exact eigenstate. The result is presented in Fig. 2(d),
where we see the EE of the initial |Z4〉 suddenly increases
and reaches a saturation value. On the other hand, the growth
of EE for the initial |�L〉 is very slow. This implies that
for the disordered system, there exists a QS which is very
close to |�L〉. We also investigate another type of disorder
that keeps |�L〉 an exact eigenstate (see the Supplemental
Material [48]).

Extension to higher dimensions. The construction of the
QS is applicable in higher dimensions. Here we present three
concrete examples in two dimensions.

The first example is the real hopping model on a kagome
lattice [Fig. 3(a)]. Here we set the nearest-neighbor hopping
t , being real, and the on-site potentials are set as μ1 for red
dots, μ2 for blue dots, μ3 for green dots, and 0 otherwise.
Due to the modulation of the on-site potential, the unit cell
is enlarged compared with the conventional kagome model,
resulting in nine sublattice degrees of freedom. In this model,
the CLSs reside on hexagons denoted by yellow shades in
Fig. 3(a), whose wave function has a staggered sign structure
[42,56–58]. Clearly, dm is equal to two, and thus the CLSs
do not overlap each other. This is a sharp contrast to the
kagome model without on-site potentials, where CLSs live
on all the hexagons and thus they overlap each other. The
band structure is depicted in Fig. 3(b). We see an isolated flat
band at E = −2t . Thus, when including the nearest-neighbor
interaction and considering the 1/9-filled system, we obtained
the QS in the form of Eq. (3).

The second example is the pure imaginary hopping model
on a kagome lattice [Fig. 3(c)]. The model without the on-site
potential is investigated in the context of topological phase
[59,60]. In fact, the CLSs again reside on the hexagons but
the wave function has a uniform sign structure. Then, we
again find a flat band, as shown in Fig. 3(d). Moreover, the
dispersive bands possess finite Chern number, which may lead
to additional intriguing physics due to topology. Due to the
CLSs, we can again construct the scar state at 1/9-filling. Note
that the flat band touches the dispersive band at the � point,
resulting in additional degeneracy for the noninteracting case.
Nevertheless, this additional degeneracy will be lifted when
introducing the interaction, as the additional state is extended
thus the many-body states occupying this state cost interaction
energy.

The third example is the square kagome model [Fig. 3(e)].
The model has two hopping parameters, t1 and t2. Remarkably,
in this model, the CLSs with dm = 2 appear without incor-
porating the on-site potential. To be concrete, the CLSs are
on the square plaquettes, and have a staggered sign structure
[61]. The band structure is shown in Fig. 3(f). We find a flat
band corresponding to the CLSs, indicating the existence of
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FIG. 3. (a) Schematic figure of the kagome model with real hop-
pings. The CLSs are located at the hexagons on which the yellow
shaded balls are placed. (b) The band structure for (t, μ1, μ2, μ3) =
(1, 0.5, 0.75, −0.8). The high-symmetry points in the Brillouin zone
are � = (0, 0), K = ( 2π√

3a0
, 2π

3a0
), and M = ( π√

3a0
, π

a0
), with a0 be-

ing the lattice constant. The blue line represents the flat band.
(c) Schematic figure of the kagome model with pure imaginary
hoppings. The CLSs are located at the hexagons on which the yellow
shaded balls are placed. (d) The band structure for (t, μ1, μ2, μ3) =
(1, 0.5, 0.75, −0.8). The blue line represents the flat band. The
Chern number is shown beside each band. (e) Schematic figure of the
square kagome model. The CLSs are located at the square plaquettes
on which the yellow shaded balls are placed. (f) The band structure
for (t1, t2) = (1, 1.2). The blue line represents the flat band.

the QS at 1/6-filling. Again, the flat band is degenerated with
the dispersive band but it does not affect the emergence of

the QS. It would also be interesting to remark that the QS is
found in the localized spin model on the square kagome lattice
as well [29].

Multiple QS. Although we have discussed a unique QS, one
can also construct multiple QSs by reducing the number of
CLSs in Eq. (3), and also the sawtooth lattice and the kagome
lattice without on-site potentials.

We further remark that our construction is extensible to
systems with multiple flat bands (i.e., with different types
of CLS), if we can fill CLSs spatially separated from each
other. In such a case, possible patterns of filling CLSs become
abundant, which results in multiple QSs. Candidates for such
systems include metal organic frameworks (MOFs) [62–64]
and covalent organic frameworks (COFs) [65–67], where the
tuning of electron filling may be feasible by using gate tuning
or chemical doping.

Conclusion. We propose a general construction scheme of
flat band QSs, making use of the orthonormalized CLSs. As
a simple example, we numerically demonstrate the presence
of the unique QS for a sawtooth lattice model, which can be
implemented in cold-atom optical lattice systems [68,69]. We
also present some examples of higher dimensions, namely,
kagome and square kagome lattice systems. We expect that
our construction of the unique QS for nonoverlapping CLSs
has very wide-range applications for a Wigner-crystal state
on a px−y-orbital honeycomb lattice system [47], and not
only for fermions but also for hard-core bosons, which is
related to the recent experiments on Rydberg atoms [70]. In
our construction of the QS, elaborate tuning of interactions
is not needed to obtain the QS state, and a natural form of
interactions is allowed. This is the advantage for experimental
implementation.

Further, as we have mentioned above, searching QSs in
chemical systems such as MOFs and COFs will be another
interesting direction. Thus, our work will open up a way for
realizing QSs in a broader class of systems. Needless to say,
based on flat band models, the construction of multiple scar
states and finding athermal revival dynamics are interesting
future problems.
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H. Aoki, Phys. Rev. B 94, 081102(R) (2016).

[64] A. Kumar, K. Banerjee, A. S. Foster, and P. Liljeroth, Nano
Lett. 18, 5596 (2018).

[65] Y. Shuku, A. Mizuno, R. Ushiroguchi, C. S. Hyun, Y. J. Ryu,
B.-K. An, J. E. Kwon, S. Y. Park, M. Tsuchiizu, and K. Awaga,
Chem. Commun. 54, 3815 (2018).

[66] Y. Fujii, M. Maruyama, and S. Okada, Jpn. J. Appl. Phys. 57,
125203 (2018).

[67] T. Mizoguchi, M. Maruyama, S. Okada, and Y. Hatsugai, Phys.
Rev. Mater. 3, 114201 (2019).

[68] T. Zhang and G.-B. Jo, Sci. Rep. 5, 16044 (2015).
[69] P. Wang, L. Chen, C. Mi, Z. Meng, L. Huang, K. S. Nawaz, H.

Cai, D.-W. Wang, S.-Y. Zhu, and J. Zhang, npj Quantum Inf. 6,
18 (2020).

[70] S. De Léséleuc, V. Lienhard, P. Scholl, D. Barredo, S. Weber,
N. Lang, H. P. Büchler, T. Lahaye, and A. Browaeys, Science
365, 775 (2019).

241115-5

https://doi.org/10.1103/PhysRevLett.119.030601
https://doi.org/10.1103/PhysRevLett.53.1515
https://doi.org/10.1103/PhysRevLett.63.2144
https://doi.org/10.1103/PhysRevLett.65.120
https://doi.org/10.21468/SciPostPhys.3.6.043
https://doi.org/10.1103/PhysRevB.102.075132
https://doi.org/10.1103/PhysRevB.102.085140
https://doi.org/10.1103/PhysRevB.98.235156
https://doi.org/10.1103/PhysRevB.98.235155
https://doi.org/10.1103/PhysRevLett.123.147201
https://doi.org/10.1103/PhysRevB.101.174308
https://doi.org/10.1103/PhysRevB.101.241111
https://doi.org/10.1103/PhysRevB.101.220305
https://doi.org/10.1103/PhysRevResearch.1.033144
https://doi.org/10.1103/PhysRevB.102.235106
https://doi.org/10.1103/PhysRevB.102.224303
http://arxiv.org/abs/arXiv:2009.00022
https://doi.org/10.1103/PhysRevResearch.2.043267
https://doi.org/10.1103/PhysRevLett.124.180604
https://doi.org/10.22331/q-2020-10-07-339
https://doi.org/10.1103/PhysRevResearch.2.022065
http://arxiv.org/abs/arXiv:2008.11166
https://doi.org/10.1103/PhysRevB.102.041117
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1038/s41598-020-60975-7
http://arxiv.org/abs/arXiv:2008.05528
https://doi.org/10.1103/PhysRevB.78.125104
https://doi.org/10.1103/PhysRevB.82.184502
https://doi.org/10.1088/0305-4470/24/2/005
https://doi.org/10.1088/0305-4470/24/14/018
https://doi.org/10.1103/PhysRevLett.69.1608
https://doi.org/10.1143/PTP.99.489
https://doi.org/10.1103/PhysRevLett.99.070401
http://link.aps.org/supplemental/10.1103/PhysRevB.102.241115
https://doi.org/10.1209/0295-5075/95/20003
https://doi.org/10.1209/0295-5075/127/47001
https://doi.org/10.1103/PhysRevLett.88.167207
https://doi.org/10.1140/epjb/e2020-10224-1
https://doi.org/10.21468/SciPostPhys.7.2.020
https://doi.org/10.21468/SciPostPhys.2.1.003
https://doi.org/10.1103/PhysRevE.81.036206
https://doi.org/10.1103/PhysRevB.70.100403
https://doi.org/10.1103/PhysRevB.98.235109
https://doi.org/10.1103/PhysRevB.99.045107
https://doi.org/10.1103/PhysRevB.62.R6065
https://doi.org/10.1103/PhysRevB.99.125122
https://doi.org/10.1140/epjb/e2006-00273-y
https://doi.org/10.1021/ja507619d
https://doi.org/10.1103/PhysRevB.94.081102
https://doi.org/10.1021/acs.nanolett.8b02062
https://doi.org/10.1039/C8CC00753E
https://doi.org/10.7567/JJAP.57.125203
https://doi.org/10.1103/PhysRevMaterials.3.114201
https://doi.org/10.1038/srep16044
https://doi.org/10.1038/s41534-020-0246-8
https://doi.org/10.1126/science.aav9105

