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Exact solution of electronic transport in semiconductors dominated
by scattering on polaronic impurities
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1Institute of Physics, HR-10000 Zagreb, Croatia
2Department of Physics, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia

3Shell Global, Carel van Bylandtlaan 16, The Hague, The Netherlands

(Received 31 July 2020; revised 19 November 2020; accepted 30 November 2020; published 17 December 2020)

The scattering of electrons on impurities with internal degrees of freedom is bound to produce the sig-
natures of the scatterer’s own dynamics and results in nontrivial electronic transport properties. Previous
studies of polaronic impurities in low-dimensional structures, like molecular junctions and one-dimensional
nanowire models, have shown that perturbative treatments cannot account for a complex energy dependence of
the scattering cross section in such systems. Here we derive the exact solution of polaronic impurities shaping the
electronic transport in bulk (3D) systems. In the model with a short-ranged electron-phonon interaction, we solve
for and sum over all elastic and inelastic partial cross sections, abundant in resonant features. The temperature
dependence of the charge mobility shows the power-law dependence, μ(T ) ∝ T −ν , with ν being highly sensitive
to impurity parameters. The latter may explain nonuniversal power-law exponents observed experimentally, e.g.,
in high-quality organic molecular semiconductors.
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Effects of the electron-phonon interaction (EPI) in semi-
conductors [1] are frequently analyzed in the context of
polaron [2] formation. Namely, the itinerant charge couples to
crystalline phonons, moving as a dressed quasiparticle along
the crystal lattice [3]. In addition to these delocalized states,
localized polaron states may form when impurities are intro-
duced into the system [4–6]. Properties of the latter have been
successfully investigated by electron spin resonance, which
directly reveal microscopic details of the EPI, in semiconduc-
tor crystals and thin-film transistors [7,8].

Regarding transport properties, the polaronic coupling
to a phonon degree of freedom at the impurity site has
attracted great attention in the context of single-electron
tunneling across microscopic junctions, nanowires, and quan-
tum dots [9,10]. Steps in the I–V characteristic curves [11],
phonon-assisted tunneling [12], and effects of Franck-Condon
[13], Coulomb [14], and bipolaron [15] blockade have been
reported both experimentally and theoretically [16]. Surpris-
ingly, given the large number of interesting features found
in 1D systems, the role of polaronic impurities in systems
with D > 1 (e.g., D = 3) has not been investigated so far, to
the best of our knowledge. Therefore, our study concentrates
on the question of how the presence of polaronic impurities
affects the mobility of electrons. Indeed, in semiconductors
one may easily imagine such impurities as a strong source of
scattering for charge carriers. In particular, we find that the
scattering on polaronic impurities may explain transport prop-
erties observed in some transition-metal oxide systems [17]
and organic semiconductors [18–21]. Actually, very recently
[22], these impurities have been identified as strong phonon
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scatterers, responsible for a drastic suppression of the thermal
conductivity in anatase TiO2 single crystals.

Polaronic impurity problem. For a low concentration ni of
randomly distributed impurities, correlations between scatter-
ing events involving multiple different impurities may usually
be neglected. The scattering rate is then proportional to niσ ,
where σ is the single-impurity cross section. In this context,
we analyze the single-impurity model that involves a coupling
between the electron and the local lattice deformation at the
impurity site, in addition to a change of the electron orbital
energy. In the standard notation for the electron (c†, c) and
phonon (a†, a) operators, the Hamiltonian is given by

Ĥ =
∑

k

εkc†
kck + ω0 a†

l al + [ε0 + g(a†
l + al)]c

†
l cl. (1)

Here, k denotes the electron wave vector, c†
k = ∑

j eikjc†
j ,

whereas j = l denotes the impurity site that breaks the trans-
lational symmetry of the lattice. The model (1) allows for
an arbitrary system dimension and an electron dispersion εk,
while the (neutral) polaronic impurity is modeled by three pa-
rameters, the orbital energy ε0, the phonon energy ω0 (h̄ = 1),
and the strength of the short-range (Holstein) EPI g. For the
rest of the system, we assume that the EPI plays a minor role
in scattering processes in comparison to effects caused by the
scattering on polaronic impurities.

While the exact results of the single-electron problem (1)
have been obtained numerically for the 1D case [23], here we
derive its exact solution in the closed form for an arbitrary
dimension. The 3D case is in our focus in the present paper,
whereas the application of the same approach to 1D is pro-
vided for comparison in the Supplemental Material [24]. We
use the quantum field-theoretical technique that has its direct
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interpretation in terms of Feynman diagrams. In this sense,
our expressions are most general and may be applied to any
system with known unperturbed electron and phonon prop-
agators, including problems with impurities near surfaces.
As in exact treatments of 1D systems, we do not take into
the account a scenario when the electron finds the polaronic
impurity site being occupied by another electron. Indeed, for
small impurity concentrations or shallow localized states like
in rubrene [32], this situation is limited to low temperatures
only, similarly to ordinary semiconductors operating in the
extrinsic ionization regime [33]. In fact, we find very different
scattering regimes even when all impurity states lie above the
bottom of the conduction band.

Exact solution. In order to treat in a unifying manner
electron scattering processes that preserve (elastic) or change
(inelastic) the number of phonons in the system, we consider a
generalized unperturbed Green’s function (GF) operator Ĝ(0)

[34–36], which matrix elements in the real-space representa-
tion are given by

G(0)γ ,α
n,m (ω) = 〈0| (al)γ√

γ !
cn

1

ω − Ĥ0 + iη
c†

m
(a†

l )α√
α!

|0〉. (2)

Here, Ĥ0 corresponds to the first two terms in Eq. (1),
involving electron and phonon degrees of freedom. The exact
GF operator Ĝ is obtained by taking the full Hamiltonian
instead of Ĥ0 in Eq. (2). Ĝ(0) is diagonal in the number of
initial α and final γ phonons, γ = α, whereas Ĝ involves
transitions between different phonon states due to the EPI,
V γ ,α

l,l = ε0δγ ,α + g(
√

γ δγ+1,α + √
αδγ ,α−1), given by the third

term in Eq. (1). With V̂ involving the impurity site only, the
matrix elements of Ĝ satisfy

Gγ ,α
n,m = δγ ,αG(0)α,α

n,m + G(0)γ ,γ

n,l

∑
ζ

V γ ,ζ

l,l Gζ ,α

l,m . (3)

As shown in Supplemental Material [24], it is possible to
rewrite Eq. (3) in terms of an operator that acts at the impurity
site only, �

γ ,α
n,m = δn,lδm,l�

γ ,α , as

Gγ ,α
n,m = δγ ,αG(0)α,α

n,m + G(0)γ ,γ

n,l �γ ,αGα,α
l,m , (4)

which for the elastic part of the problem at the impurity site
gives rise to the Dyson form, [Gα,α

l,l ]−1 = [G(0)α,α
l,l ]−1 − �α,α .

Combination of this Dyson form and Eq. (4) yields

Gγ ,α
n,m = δγ ,αG(0)α,α

n,m + G(0)γ ,γ

n,l

�γ ,α

1 − G(0)α,α
l,l �α,α

G(0)α,α
l,m , (5)

where, as discussed below, the exact �γ ,α may be found in a
closed form.

A diagrammatic representation of the exact solution pro-
vides valuable insights on the frequency characteristics of
relevant scattering events. A typical diagram corresponding
to �α,α is shown in Fig. 1 for α = 0, when G(0)0,0

l,l is the
unperturbed local electron propagator and �0,0 is the electron
self-energy. In Fig. 1, G(0)0,0

l,l is represented by the horizontal
dotted lines, the vertical dashed lines correspond to the static
ε0 �= 0 scattering, whereas the wavy lines correspond to the
phonon propagators. For the current single-electron problem,
there is no renormalization of phonon lines.

x x

FIG. 1. �α,α diagram for α = 0, involving the static ε0 �= 0
scattering (vertical dashed lines) and the dynamic scattering on
phonons (wavy lines). Dotted lines represent the unperturbed elec-
tron propagator.

On the diagrammatic level, it is easy to see that the static
scattering may be summed up separately from the dynamic
EPI contribution. Namely, for g = 0, the effect of finite ε0 is
easily accounted for in the exact manner, since Gα,α

l,l (ω)|g=0 =
[G(0)α,α

l,l (ω)]−1 − ε0. Therefore, hereafter we assume that the
effect of finite ε0 is included in the g = 0 impurity propagator,
GI (ω − αω0) = Gα,α

l,l (ω)|g=0. This approach may be general-
ized to any distribution of static impurities (including changes
of hopping integrals) since this does not affect the structure of
the diagrammatic expansion in g. In particular, the diagonal
matrix elements, �α,α , giving rise to the elastic scattering,
may be expressed in the continued fraction form [35–38],
�α,α = gαAα + gBα , with Aα and Bα representing processes
with phonon absorption and emission respectively,

Aα (ω) = g

G−1
I (ω − (α − 1)ω0) − (α−1)g2

G−1
I (ω−(α−2)ω0 )−···

,

Bα (ω) = (α + 1)g

G−1
I (ω − (α + 1)ω0) − (α+2)g2

G−1
I (ω−(α+2)ω0 )−···

. (6)

The inelastic contributions are given by �γ ,α [24]:

�γ ,α =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g
√

α!
γ ! (γ + Bγ Bγ−1)

∏γ−2
i=α Bi, γ > α + 1,

g
√

α!
γ ! (γ + Bγ Bα ), γ = α + 1,

g
√

α!
γ ! (1 + γ Aγ Aα ), γ = α − 1,

g
√

α!
γ ! (1 + γ Aγ Aγ+1)

∏α
i=γ+2 Ai, γ < α − 1.

(7)
By inspecting the continued fraction expansion order by

order in g, these equations may be put in direct correspon-
dence with the Feynman diagrams. For example, up to g3, for
the inelastic processes with no phonons in the initial and one
phonon in the final state, one obtains

�1,0 = g(1 + B1B0) ≈ g + 2g3GI (ω − ω0)GI (ω − 2ω0).
(8)

In the expansion of the GF, the first term in Eq. (8) corre-
sponds to Fig. 2(a), while the second corresponds to the two
diagrams shown in Figs. 2(b) and 2(c), with equal contribu-
tions. In particular, Fig. 2(b) shows the leading correction of
the outgoing electron propagator, while Fig. 2(c) shows the
leading vertex correction of the phonon emission process. As
shown in Fig. 2(d), in the infinite order in g, �1,0 involves all
the corrections of the outgoing electron propagator and all the
vertex corrections of the phonon emission process.
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(a) (b)

(c) (d)

FIG. 2. GF diagrams. Single lines represent the electron propa-
gator with static scattering included; double lines represent the exact
one. The square in the fourth diagram is the exact electron-phonon
vertex function.

Local properties. We turn now to a 3D cubic lattice
problem, investigating the wide band regime. In all our cal-
culations, we fix the nearest-neighbor hopping, t = 1, as the
unit of energy. We fix the phonon energy, ω0 = 0.5, as well,
unless explicitly stated otherwise, and vary the impurity pa-
rameters, ε0 and g. With the exact form of GF in Eq. (5)
known, we evaluate the exact local density of states (LDOS) at
the impurity site, ρ(ω) = −π−1ImG0,0

l,l , shown in Fig. 3. The
dot-dashed curve represents the unperturbed LDOS, while the
LDOS given by the dashed curve is obtained by introducing
the static impurity, ε0 = −5.8, strong enough for a localized
bound state to appear below the continuum of delocalized
states. Namely, unlike for systems with reduced dimension-
ality, for g = 0 in 3D systems, a localized state exists only if
the static impurity is sufficiently strong, |ε0| � 3.96 for the
cubic lattice [6].

The case with a strong EPI, g = 1.7, ε0 = −1, is shown by
the full curve in Fig. 3, characterized by multiple resonances
below the continuum, corresponding to localized states. The
lowest resonance involves a large polaronic lattice defor-
mation, i.e., a heavily dressed electron. Consequently, the
corresponding electron spectral weight is strongly suppressed.
The dressing effect becomes weaker for resonances closer to
the continuum, associated with excitations of the polaronic
lattice deformation. These excitations are harmonic for deep
states and weakly softened in comparison to the bare phonon
energy ω0. As the localized states approach the contin-
uum, some anharmonicity in the excitation energies becomes

FIG. 3. Exact LDOS at the impurity site for different impurity
parameters, ρ(ω) = −π−1ImG0,0

l,l .

-6 -5 -4εα
10-3

103

σγ,
α
(ε

α
)[

a2 ]

γ = 1, α = 0
γ = 2, α = 0
γ = 1, α = 1
γ = 0, α = 0

ε0 = -2.85, g = 1
ω0 = 0.5

FIG. 4. Partial cross sections (10) for few elastic and inelastic
scattering channels as a function of the incoming electron energy εα .

apparent as well. For g = 1.7 in Fig. 3, the phonon nature
of excitations at the impurity site is also clearly observed
in the part of the LDOS belonging to the delocalized states.
Although broadened, being embedded in the continuum of
states, the resonances are still well defined, giving rise to the
resonant scattering of electrons on the impurity.

Mobility. The electron scattering is fully described by the
T -matrix operator, which sums over all scattering events to
the infinite order in V̂ [39], Ĝ = Ĝ(0) + Ĝ(0)T̂ Ĝ(0). For the
problem in Eq. (1), T̂ involves the impurity site only and its
matrix elements may simply be read from Eq. (5), T γ ,α =
�γ ,α/(1 − G(0)α,α

l,l �α,α ).

When T̂ is local, as in the present case, the anisotropy of
the scattering amplitude,

〈r, γ |ψ〉 = eikrδγ ,α + G(0)γ ,γ

r,l T γ ,α, (9)

is governed only by G(0)γ ,γ

r,l . However, since we are mostly
interested in the low-frequency electrons close to the bottom
of the conduction band, the exact form of G(0)γ ,γ

r,l [40,41] in
Eq. (9) may be approximated by its isotropic low-frequency
form, corresponding to the outgoing s wave. On the other
hand, for high-order diagrams contributing to T γ ,α in Eq. (9)
at large g and ε0, we preserve the exact form of the local
propagator G(0)α,α

l,l .
The partial cross sections for few elastic and inelastic

scattering channels are shown in Fig. 4 as a function of the
incoming electron energy εα ,

σγ ,α (εα ) = a2

4πt2

√
εγ

εα

|T γ ,α (εα + αω0)|2, (10)

with εγ = εα + (α − γ ) ω0, the energy of the outgoing elec-
tron, and a2 = 1 the area associated to a unit cell. For the
nearly resonant choice of parameters in Fig. 4, there are no
localized states below the continuum. The phonon frequency
scale, introduced in the LDOS by the EPI, has its strong reflec-
tion in Fig. 4. That is, ω0 characterizes the energy thresholds
for the inelastic scattering involving phonon emission (γ > α)
and governs to a great extent the energy dependence of all
σγ ,α , particularly for low energies εα of the incoming electron,
when σ 0,0 in Fig. 4 reaches very large values. Not shown in
Fig. 4 are the phonon absorption channels that are related to
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11.0 T1
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μ(
Τ)

/μ
0

g/ω0 << 1, ω0 = 0.5
g/ω0 = 1.45, ω0 = 0.5
g/ω0 = 1.45, ω0 = 2

ε0 = −1

ν = 2.48

ν = 0.5

ν = 1.61

FIG. 5. Mobility μ(T ) as a function of temperature for different
couplings g, shown in the log-log scale.

the phonon emission channels by the time-reversal symmetry,
T γ ,α (ω) = T α,γ (ω), i.e., εγ σ γ ,α (εα ) = εασα,γ (εγ ).

For the system in thermal equilibrium, the total cross sec-
tion 〈σ (εα )〉T , as a function of the incident electron energy
εα , is obtained simply by averaging over the phonon thermal
distribution for initial states (kB = 1),

〈σ (εα )〉T = (1 − e−ω0/T )
∑
α,γ

e−αω0/T σγ ,α (εα ). (11)

Thus, for nondegenerate electrons in semiconductors, the
electron mobility may be calculated from [24,42]

μ(T ) = 8|e|t
3
√

πT
5
2

∫
ε

3
2 τ (ε, T )e−ε/T dε, (12)

where τ (ε, T ) is the energy- and temperature-dependent
electron relaxation time, τ−1(εα, T ) = |vα| ni 〈σ (εα )〉T , with
|vα| = √

4tεα representing the electron velocity [43].
Hereafter, as the reference value for the mobility, we use

μ0 = lim|ε0|→∞ μ(T = ω0), when the impurity behaves as a
vacancy, with T (ω) = −[G(0)

l,l (ω)]−1. The impurity param-
eters may achieve very different values in real materials,
affecting the mobility over a wide temperature range. How-
ever, we focus our attention on the experimentally most
relevant temperatures, T � ω0, for which the effects of pola-
ronic impurities may be more easily detangled from thermally
activated scattering processes on lattice acoustic phonons that
frequently dominate on higher temperatures. In particular, for
T < ω0, we find in a broad range of impurity parameters
power-law behaviors of μ(T ). For three sets of parameters,
μ(T ) is shown in the log-log scale in Fig. 5. In the weak-
coupling limit, g/ω0 
 1, the power-law T −ν behavior spans
almost over the whole temperature range shown, with ν = 1/2
given by the curve slope. This behavior may easily be ratio-
nalized by noting that for a weak EPI τ (ε, T ) is characterized
by a nearly constant cross section for low incident energies εα .
ν = 1/2 for weak static (charge-neutral [44]) impurities may
be explained in the same way, T (ω) ≈ ε0. When frequencies
at which T (ω) deviates from the constant start to be thermally
relevant, a weak upturn of μ(T ) in Fig. 5 occurs. As seen
from Fig. 5, for a stronger EPI, g/ω0 = 1.45, μ(T ) is char-
acterized by a different power-law behavior, ν ≈ 1.61. For the
same ratio g/ω0 = 1.45, but the larger phonon energy, ω0 = 2,

-5 04- ε0

10-2

1

105

μ/
μ 0

T << ω0
T = 0.1ω0
T = ω0

1.5 2g
1

104ω0 = 0.5, g = 1 ε0 = 0

FIG. 6. μ(T ), shown in the log scale, as a function of g (inset)
and ε0.

the low-temperature maximum is followed by the power-law
behavior, with ν ≈ 2.48. The g/ω0 = 1.45 cases fall in the
essentially nonperturbative regime, as it implies contributions
from processes described by many high-order diagrams, with
many different scattering channels and partial cross sections
becoming increasingly important upon increasing the temper-
ature [24].

The sensitivity of μ on the impurity parameters and T
is investigated in Fig. 6. When the model parameters satisfy
resonant scattering conditions, μ drops sharply for T ≈ 0,
corresponding to a large residual resistivity due to a strong
relaxation of electron momenta. In the T → 0 limit, for some
parameters in Fig. 6 one observes a fully transparent behavior
of polaronic impurities as well. This behavior corresponds to
zeros of T 0,0 ∝ �0,0. In general, all singularities are sensitive
to the electron incident energy and get averaged out at elevated
T . In particular, as T approaches ω0 in Fig. 6, thermal aver-
ages in Eq. (12) over the electron and the phonon distributions
make μ a smooth function of impurity parameters.

Conclusions. We solve exactly the problem of electrons
in 3D semiconductor crystals strongly scattered by impuri-
ties with local deformation modes. The problem, formulated
through the minimal model in Eq. (1), is addressed within
the Green’s function approach and solved through the con-
tinued fraction expansion. The solution allows for the direct
interpretation in terms of the diagrammatic expansion to ar-
bitrary order. Valid for arbitrary values of model parameters,
system dimensionality, and geometry, it allows us to explore
the system’s local and transport properties. In particular, the
temperature dependence of the electron mobility is shown to
generally exhibit the power-law behavior, μ(T ) ∝ T −ν . The
exponent ν, starting at ν = 1/2 for the nonresonant scattering
and weak EPIs, changes rapidly upon increasing the EPI. The
scattering on polaronic impurities thus imposes as the possi-
ble explanation for the broad range of power-law exponents
observed experimentally in various organic crystals [18–21].
Our solution readily extends to various system of current
interest, including atomically thin crystalline films, where the
effects of impurities with internal degrees of freedom can
be experimentally accessed through energy-loss spectroscopy,
atom-probe tomography, and scanning tunneling microscopy
[45–47].
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K. Haule and J. Bonča, Phys. Rev. B 59, 13087 (1999).

[24] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.102.241111 for a detailed derivation and
additional results, which includes Refs. [25–31].

[25] L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York,
1968).

[26] T. Horiguchi and T. Morita, J. Phys. C: Solid State Phys. 8, L232
(1975).

[27] T. Morita and T. Horiguchi, J. Math. Phys. 12, 981 (1971).
[28] B. Y. Gelfand, S. Schmitt-Rink, and A. F. J. Levi, Phys. Rev.

Lett. 62, 1683 (1989).
[29] J. Loos, T. Koch, A. Alvermann, A. R. Bishop, and H. Fehske,

J. Phys.: Condens. Matter 21, 395601 (2009).
[30] J. Lu, R. Wang, J. Ren, M. Kulkarni, and J. H. Jiang, Phys. Rev.

B 99, 035129 (2019).
[31] R. Hartle and M. Thoss, Phys. Rev. B 83, 125419 (2011).
[32] C. Krellner, S. Haas, C. Goldmann, K. P. Pernstich, D. J.

Gundlach, and B. Batlogg, Phys. Rev. B 75, 245115 (2007).
[33] B. Sapoval and C. Herman, Physics of Semiconductors

(Springer, Berlin, 1995).
[34] G. L. Goodvin, M. Berciu, and G. A. Sawatzky, Phys. Rev. B

74, 245104 (2006).
[35] M. Cini and A. D’Andrea, J. Phys. C: Solid State Phys. 21, 193

(1998).
[36] A. S. Mishchenko, N. V. Prokof’ev, A. Sakamoto, and B. V.

Svistunov, Phys. Rev. B 62, 6317 (2000); T. Hahn, S. Klimin,
J. Tempere, J. T. Devreese, and C. Franchini, ibid. 97, 134305
(2018).

[37] M. Cini, Phys. Rev. B 29, 547 (1984); S. Ciuchi, F. de Pasquale,
S. Fratini, and D. Feinberg, ibid. 56, 4494 (1997); O. S. Barišić,
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