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We implement and benchmark tensor network algorithms with SU(2) symmetry for systems in two spatial
dimensions and in the thermodynamic limit. Specifically, we implement SU (2)-invariant versions of the infinite
projected entangled pair states and infinite projected entangled simplex states methods. Our implementation of
SU (2) symmetry follows the formalism based on fusion trees from Schmoll et al. [Ann. Phys. 419, 168232
(2020)]. In order to assess the utility of implementing SU(2) symmetry, the algorithms are benchmarked for
three models with different local spin: the spin-1 bilinear-biquadratic model on the square lattice, and the kagome
Heisenberg antiferromagnets (KHAFs) for spin-1/2 and spin-2. We observe that the implementation of SU (2)
symmetry provides better energies in general than nonsymmetric simulations, with smooth scalings with respect
to the number of parameters in the ansatz, and with the actual improvement depending on the specifics of the
model. In particular, for the spin-2 KHAF model, our SU (2) simulations are compatible with a quantum spin-

liquid ground state.
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Introduction. Tensor networks [1] (TNs) are mathematical
objects tailored to describe highly correlated structures in an
efficient way. In condensed matter physics they can describe
low-energy states of quantum matter. The success of TN meth-
ods has been particularly impressive for one-dimensional (1D)
systems [2], with the matrix product state (MPS) as the driving
force. On top of that, many applications of TN methods have
also been developed to tackle strongly correlated systems
in two spatial dimensions (2D). Here, projected entangled
pair states (PEPS) [3] are widely used, and the infinite-PEPS
(iPEPS) algorithm [4] is nowadays a standard tool for simu-
lations in the thermodynamic limit. Alternative methods such
as the infinite projected entangled simplex states (iPESS) [5]
have been applied with success to the kagome lattice [6].

An important problem in tensor networks, especially in
2D algorithms such as iPEPS and iPESS, is how to deal
with global non-Abelian symmetries, SU (2) being a common
example. For instance, numerical simulations of the spin-1/2
kagome Heisenberg antiferromagnet (KHAF) seem to indi-
cate [7] that its ground state is a quantum spin liquid and
therefore an SU(2) singlet. One would therefore expect, a
priori, that the study of such a ground state with a TN algo-
rithm would benefit from the explicit preservation of SU(2)
symmetry. While this has been done already using an SU (2)-
invariant implementation of density matrix renormalization
group (DMRG) [8], the generalization to true 2D TN algo-
rithms has been achieved only in a very few cases [9].

In this Rapid Communication we implement SU (2) sym-
metry in iPEPS and iPESS algorithms using the formalism
from Ref. [10], which is based on fusion trees. We benchmark
our implementation by computing the ground state properties
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of three 2D models: the spin-1 bilinear-biquadratic model
on a square lattice, and the spin-1/2 and spin-2 KHAF. We
observe that the implementation of SU(2) in 2D simulations
in general allows us to produce lower energies than the ones
obtained using nonsymmetric TN algorithms. However, since
SU (2)-invariant tensors are highly constrained, we find that
the actual improvement depends a lot on the specifics of the
model. In particular, for the spin-2 KHAF model, the SU(2)
simulations produce a ground state structure compatible with
that of a quantum spin liquid to the best of our computational
power.

Methods. We implemented SU (2)-invariant versions of
iPEPS and iPESS algorithms. We refer the interested reader
to Ref. [4] for details about iPEPS, and to Ref. [5] about
iPESS. Let us just mention that, in this Rapid Communication,
we employ the so-called simple update [11], which provides
an efficient tensor update for an imaginary-time evolution
algorithm, also when combined with SU (2) symmetry. The
accuracy of our calculations could always be improved by
more precise tensor optimization schemes [4,9,12,13], but at
the cost of extra computational expense. Expectation values
in all cases are approximated using the well-known corner
transfer matrix (CTM) techniques [14], which can also be
easily adapted to deal with SU (2).

Concerning SU (2) itself, we work here with the implemen-
tation from Ref. [10]. Under the action of the group, both the
physical and the virtual vector spaces of the tensors can be
described in terms of basis states |j,¢;, m;). Here, j are the
irreducible representations of SU(2), i.e., the spin quantum
numbers j =0,1/2,1,..., t; labels the multiple copies of
irrep j, and m; labels the states within the vector space of
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FIG. 1. (a) Decomposition of an SU (2)-symmetric 2 x 2 iPEPS
unit cell on a square lattice, in terms of degeneracy tensors and
a network of fusion trees. The fusion tree structure of every ten-
sor is shown on the right-hand side, where arrows correspond to
incoming/outgoing indices. Every three-index node in the fusion
trees is an intertwiner of SU(2), i.e., a tensor of Clebsch-Gordan
coefficients. (b) Decomposition of an SU (2)-symmetric iPESS unit
cell on the honeycomb lattice, which is used to simulate its dual
kagome lattice.
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spin j (m; = [—], ..., +j]). Due to the action of the group,
a symmetric tensor generally consists of various symmetric
blocks, each of which factorizes into a degeneracy part and
a structural part according to the Wigner-Eckard theorem.
The degeneracy part contains the remaining variational pa-
rameters, and the structural part is completely determined
by the underlying symmetry and describes the coupling of
the spins on the tensor indices in terms of Clebsch-Gordan
coefficients. In our implementation the structural part of the
symmetric tensors is codified in the form of fusion trees
decorated by quantum numbers. They are a memory-efficient
analytic representation of the group structure, so that no actual
Clebsch-Gordan coefficients for the structural tensors have to
be stored. In Fig. 1 we show the decomposition of a network
of iPEPS and iPESS tensors in terms of degeneracy parts
and structural parts. This implementation allows for clean,
accurate calculations, which is of particular importance when
dealing with 2D TN algorithms. Concerning notation, in the
following we call D the effective bond dimension of the
PEPS or PESS, i.e., Desr = D for nonsymmetric TNs (with
D the usual bond dimension) and Der = Y _; #, x |m;,| for
symmetric ones [with ¢, the degeneracy of symmetry sector
Jjiand |m;| = 2j; + 1 for an index i = (ji, tj, m;,) [10]]. The
symmetric bond dimension is Dgym =) jtj, and N is the
number of variational parameters in the ansatz.

Results. Let us now discuss the performance of SU(2)-
invariant iPEPS and iPESS. We focus first on the spin-1
bilinear-biquadratic (BLBQ) model on the square lattice. Its
Hamiltonian is given by

H =) [cos(0)(S; - S;) +sin(®)(S; - S)°L, (1)
(i,

where (i, j) are nearest-neighbor interactions, S; is the vector
of spin-1 matrices, and 6 tunes the relative coupling strength
of the bilinear and biquadratic terms. The phase diagram of
this model has already been computed previously with iPEPS,
both without symmetries but also including U (1) symmetry
[15]. Here, we tune the coupling parameter to 6 = 0.21w. At
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FIG. 2. Ground state energy of the spin-1 BLBQ model on the
square lattice at & = 0.217, as a function of 1/Deg. U(1) results are
from Ref. [15] and replotted with permission.

this angle the magnetization of the ground state vanishes, so
that the system is believed to be in the middle of an SU (2)-
symmetric Haldane phase existing for 6 < [0.189,0.217].
This phase is reminiscent of coupled spin-1 chains [15]. Thus,
the point 8 = 0.21x is a nontrivial benchmark for a 2D
SU (2)-invariant gapped phase. In our simulation, we choose
to work with the simple update and a 2 x 2 unit cell. The
ground state energy of the system is shown in Fig. 2 as a func-
tion 1/Deg, and in Fig. 3 as a function of 1 /N and as a function
of the discarded weight in the truncations § [16]. The plots
show the performance for SU (2)-iPEPS as well as for iPEPS
with no symmetry, and we also compare with the results from
Ref. [15] using U (1)-iPEPS in Fig. 2 (results replotted with
permission). In the figures, for the SU(2) simulations we
include results obtained by using a CTM environment to com-
pute expectation values, as well as using a mean-field (MF)
environment estimation. This last option does not provide
variational energies, but allows us to see the overall tendency
for a large bond dimension (for which the calculations using
SU (2)-CTM algorithms are computationally costly). We see
that the extrapolation 1/N — 0 is better behaved than the
one for 1/De — 0, and is actually comparable for SU(2)
to the extrapolation in the discarded weight. In this last ex-
trapolation one can also clearly see that the nonsymmetric
simulation is far from being converged. Our extrapolated
data for the ground state energy eop are eo(l/Des — 0) =
0.309 £0.003, e¢o(1/N — 0) = 0.311 £ 0.004, and ez(6 —
0) = 0.310 £ 0.002.

We notice from our plots that the simulations without sym-
metry yield the lowest ground state energy for small bond
dimensions and the data points with SU(2) symmetry are
considerably higher than those with lower or no symmetry.
We take this as a first indication that the SU (2)-symmetric
ansatz in 2D may sometimes be too restrictive, which is
especially true for small bond dimensions. However, for
large bond dimension the situation is the opposite, and the
SU(2) simulation produces lower energies. It is interesting,
though, that the SU (2) numbers computed by CTM (which are
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FIG. 3. Ground state energy of the spin-1 BLBQ model on the square lattice at & = 0.21, as a function of 1/N (left) and as a function of

the discarded weight § (right).

variational, since the CTM bond dimension is converged [14])
tend to be always slightly above those obtained with a U (1)-
symmetric ansatz. We will comment on the restrictiveness and
expressiveness of our simulations in the following. For the
record, the obtained extrapolated energy with U (1) symmetry
in Fig. 2 is eg(1/Desr — 0) = 0.307 £ 0.001, and therefore
very close to the SU(2) number. Finally, in order to under-
stand better the nature of the SU (2)-invariant ground state
that we obtain, we also plot its energy on each link of the
iPEPS unit cell in Fig. 4. The ground state cultivates differ-
ent energies in the x and y directions, thus breaking lattice
rotation symmetry. This is, however, compatible with vertical
coupled Haldane 1D chains, in accordance with the results
from Ref. [15]. This difference in bond energies is caused by
converging to half-integer spin representations on the vertical
bonds, and integer ones on the horizontal bonds, leading to
different effective bond dimensions.

These findings point towards an interesting fact: SU(2)
symmetry in 2D, even if generically useful, can be highly
restrictive in some cases. The variational space is highly con-
strained, and in some situations this could be too limited to
find a good approximation to the ground state with “simple”
tensor updates. In order to get an idea of the effect of the
symmetry on the size of the variational space, we evaluated
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FIG. 4. Ground state energy per link in the iPEPS unit cell.
The structure is compatible with vertical Haldane chains coupled
in the horizontal direction. The differences in the fourth relevant
digit between the upper and lower horizontal link energies are due
to truncation effects.

the ratio between the remaining variational parameters in
the SU(2)-iPEPS and the number of variational parameters
in the corresponding unconstrained TN for different bond
dimensions. This is shown in Fig. 5, alongside the same in-
formation for an SU(2)-symmetric infinite MPS simulation
of a critical spin-1/2 ladder system [17]. The comparison
between both cases allows us to understand better the effect
of dimensionality in the reduction of variational parameters
in an SU (2)-invariant TN ansatz. What we conclude from the
plot is that the SU (2)-invariant ansatz becomes very restrictive
with the bond dimension, as expected, but at a much faster
rate in 2D than in 1D. In other words, SU(2) in 2D restricts
the variational space faster than in 1D. A priori, this could
be good news, since the number of parameters to optimize is
much more drastically reduced in 2D than in 1D. However,
this needs to be taken into account with care when assessing
symmetric TN simulations since the optimization space may
actually be too constrained in some cases for finding low
variational energies. The systematically higher SU(2) ener-
gies could also hint at the fact that the ground state weakly
breaks the symmetry, albeit predicted to be symmetric. In this
scenario, a manifestly SU (2)-invariant TN ansatz is expected
to yield higher energies than an ansatz with a lower symmetry.

0.06

.9

s

= 0.04 ¢

—

g

2

< 0.02 1

g -e—-iPEPS

-e-iDMRG
0 L L L
10° 10! 10° 10°
Xeff/Deff

FIG. 5. Ratio of ansatz variational parameters between SU (2)-
symmetric and nonsymmetric simulations, for iPEPS and iMPS, as a
function of their respective bond dimensions Deg and xeg.

241101-3



PHILIPP SCHMOLL AND ROMAN ORUS

PHYSICAL REVIEW B 102, 241101(R) (2020)

The next model that we considered was the spin-1/2
KHAF. The Hamiltonian is given by

H=>)"5;-S;. ©)
(@.j)

where (i, j) denotes nearest-neighbor interactions between
sites of the kagome lattice, and S; is the spin-1/2 (vector)
operator at site i. The kagome lattice exhibits corner-sharing
triangles resulting in huge quantum fluctuations around the
ground state due to strong geometric frustration, with many
states very close in energy and competing to be the true
ground state. This makes the simulation of the model very
challenging. For the sake of this study, our goal here is not
to provide better ground state numbers than those obtained
by other simulations [7], but rather to benchmark the utility
of SU(2) symmetry in 2D TN algorithms, and in particular
in iPESS. Previous results have shown that using three-site
iPESS without symmetries produces reasonably good num-
bers for the ground state energy [5]. For the SU (2)-symmetric
simulations, however, we need to resort to the six-site unit
cell in order to accommodate consistently the SU (2) quantum
numbers on all the indices of the symmetric TN ansatz. Since
the physical sites carry spin-1/2, the geometry and the unit
cell force us to use mixed spins (integer and half integer) on
the bond indices of the iPESS.

We computed the ground state energy of the model for
a three-site and a six-site unit cell without symmetry, and
for a six-site unit cell with SU(2) symmetry. The results are
shown in Fig. 6. The symmetric results are compatible with
those obtained without symmetries, with an algebraic conver-
gence of the ground state energy as a function of 1/D.g [see
Fig. 6(a)], in turn reinforcing the observation that the ground
state is a quantum spin liquid and therefore SU (2) invariant.
However, one can see again that the limit of infinite bond di-
mension is better achieved by the SU (2)-invariant simulations
as a function of 1/N [see Fig. 6(b)], with extrapolated val-
ues eg(1/Desr — 0) = —0.435 £ 0.004 and e¢o(1/N — 0) =
—0.435 £ 0.002. The infinite DMRG (iDMRG) comparison
shows the current energetically lowest ground state energy
[7]. Let us mention that for all the iPESS simulations that
we performed, the extrapolation in the discarded weight was
not possible because the discarded weight was always too
small. The spin-spin correlators for each link of the unit
cell are shown in Fig. 7, for the nonsymmetric 3-PESS, the
nonsymmetric 6-PESS, and the SU (2)-invariant 6-PESS re-
spectively. While the three-site unit cell produces a state
that seems compatible with a quantum spin liquid, the six-site
unit cells seem to produce valence-bond crystal structures
with strong and weak links, thus breaking invariance under
translations and lattice rotations. We observe, in any case,
that the valence bond crystal tends to melt when we increase
the bond dimension of the iPESS ansatz, both for the non-
symmetric and the SU (2)-invariant simulations, thus slowly
recovering translation invariance (see Fig. 8 for plots of the
correlator skewness as Degr increases). Interestingly, we also
observe in the figure that the nonsymmetric simulations tend
to melt faster than the SU (2)-symmetric ones. The observed
pattern of local correlations for the nonsymmetric six-site
iPESS in Fig. 7 is expected, since TN simulations tend to trade
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FIG. 6. Ground state energy of the spin-1/2 KHAF, as a function
of 1/D¢ and 1/N, with the yellow line denoting the extrapolation to
infinite bond dimension.

symmetry for injectivity of the target state. For the symmetric
six-site iPESS the correlators are even more skewed presum-
ably due to nonuniform effective bond dimensions caused
by the mixture of integer and half-integer representations.
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FIG. 7. Spin-spin correlation (S;S;) on each link of the unit cell
for the nonsymmetric 3-PESS, the nonsymmetric 6-PESS, and the
SU (2)-invariant 6-PESS (from left to right).
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This effect is expected to vanish in the limit of large bond
dimensions, and also explains the slower melting in Fig. 8.
Finally, we computed the ground state energy of the spin-
2 KHAF for a three-site unit cell without and with SU (2)
symmetry. Unlike in the spin-1/2 case, the fact that we have
spin-2 in the physical indices allows us to use the three-site
unit cell (this, in fact, is true for all integer-spin Heisenberg
models on the kagome lattice). The results are shown in Fig. 9.
This time, due to the large dimension of the physical spin
at every site, we cannot reach values of Dy, as large as for
the spin-1/2 case. However, the effective bond dimension is
larger for the spin-2 KHAF, as shown in Table I. We see
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% —6-3-PESS no symmetry
¢ ., —3PESSSUQ)CTM /e/
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= 48
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in Figs. 9(a) and 9(b) that the SU(2)-invariant simulations
can handle larger D.g and produce lower variational energy
than the nonsymmetric simulations. Moreover, both in the
nonsymmetric and symmetric cases we observe in Figs. 9(c)
and 9(d) a structure of spin-spin correlators in the unit cell
that seems compatible with that of a quantum spin liquid,
which is also compatible with the algebraic behavior of the
ground state energy with Deg in Fig. 9(a). The energies are,
however, difficult to extrapolate to infinite bond dimension,
and hence we cannot be sure whether this is the true nature
of the ground state. But we can claim that, to the best of our
calculations, here the SU (2)-invariant iPESS with a three-site
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FIG. 9. Ground state energy of the spin-2 KHAF, as a function of (a) 1/Deg and (b) 1/N, with the red line denoting the extrapolation to
infinite bond dimension. Notice that in this case, this extrapolation is just for completeness since the numbers still do not show convergence
for the achievable bond dimensions due to the large local spin at every site. (c), (d) Spin-spin correlation (S;S;) on each link of the unit cell for

the nonsymmetric and the SU (2)-invariant 3-PESS, respectively.
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TABLE 1. Ground state energies obtained for the maximum
achievable bond dimension for the bilinear-biquadratic (BLBQ) and
KHAF models that we considered. We show (D, ¢y) for nonsymmet-
ric simulations and (Dgyp, Det, €9) for SU(2)-invariant ones, with
D the nonsymmetric bond dimension, Dy, the symmetric bond
dimension, and D, the effective bond dimension when using SU (2)
averaged for all bonds, which can be integer or fractional.

Model No symmetry SU(Q2)

s =1BLBQ (7,0.3188) (6,19.5,0.3108)
s = 1/2 KHAF (10, —0.4348) (7,17.75, —0.4349)
s = 2 KHAF (10, —4.7975) (5,19, —4.8227)

unit cell produces the best variational energy for the ground
state, which seems compatible with a quantum spin liquid.
Moreover, we computed the expectation value of the chiral
correlators S; - (S x Si) on all triangles, and obtained exactly

0 everywhere, in turn also compatible with the structure of a
nonchiral quantum spin liquid.

Conclusions. In Table I we make a comparison of the
computed ground state energies for the maximum achiev-
able bond dimensions, for the three models considered here,
and for nonsymmetric and SU (2)-symmetric simulations. We
conclude that implementing SU(2) symmetry in 2D TN al-
gorithms usually produces better energies than nonsymmetric
simulations, but the performance depends on the specifics
of the model and in particular on the gap of the phase be-
ing targeted. For the spin-2 model, the SU(2) simulations
point towards a quantum spin liquid as a plausible ground
state.
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