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Specific heat of thin 4He films on graphite
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The specific heat of a two-layer 4He film adsorbed on a graphite substrate is estimated as a function of
temperature by quantum Monte Carlo simulations. The results are consistent with recent experimental obser-
vations [S. Nakamura, K. Matsui, T. Matsui, and H. Fukuyama, Phys. Rev. B 94, 180501(R) (2016)] in that they
broadly reproduce their most important features. However, neither the “supersolid” nor the “superfluid hexatic”
phases, of which experimental data are claimed to be evidence, are observed. It is contended that heat capacity
measurements alone may not be a good predictor of structural and superfluid transitions in this system, as their
interpretation is often ambiguous.
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I. INTRODUCTION

The experimental investigation of the phase diagram of a
thin (i.e., few layers) film of helium adsorbed on graphite
has been pursued for half a century [1–9], motivated by the
dazzling variety of phases that this system displays. In spite
of such an impressive effort, the subject remains marred in
controversy, mainly centered on the possible existence of a
“supersolid”[10] phase in the second adsorbed layer of 4He.

It was first suggested by Greywall and Busch [8,9] that a
commensurate crystalline phase may exist in the second 4He
adlayer, with a
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7 partial registry with respect to the
first layer (this phase is henceforth referred to as 4/7). Crowell
and Reppy [12,13] subsequently proposed that such a phase
may turn superfluid at sufficiently low temperature, making it
a rare example of a phase of matter simultaneously displaying
structural and superfluid order.

The existence of the 4/7 commensurate phase is a con-
jecture put forth to account for heat capacity measurements
whose interpretation is not univocal; no direct, conclusive ex-
perimental evidence of such a phase has been reported to date.
Theoretical studies based on first-principle quantum Monte
Carlo (QMC) simulations, making use of realistic microscopic
atom-atom and atom-surface potentials [14–17], lend no sup-
port to the scenario of a commensurate solid in the phase
diagram of the second layer; rather, the system is predicted
to display only superfluid and incommensurate crystalline
phases. Assuming a two-dimensional (2D) first-layer density
between 0.118 and 0.122 Å−2 [7,18], one ends up with a 2D
upper-layer density for the hypothetical 4/7 phase between
0.067 and 0.070 Å−2; at or near that density, a noncrystalline
superfluid phase is predicted by the most reliable theoretical
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calculations, all the way to zero temperature, with a phase
transition between a superfluid and an incommensurate crystal
taking place at an ∼10% higher second-layer density.

However, recent heat capacity measurements [18] have
again been interpreted as signaling the occurrence of a
commensurate (not 4/7) “supersolid” phase. Specifically, an
observed broad peak in the specific heat of a 4He film, reach-
ing its maximum height at a temperature of ∼1.4 K for a
two-layer film of total coverage θA = 0.1973 Å−2 (a very
similar peak was observed in previous work [8]), is attributed
to the 2D melting of a commensurate top layer crystal. It
is speculated that (a) such a crystal should ostensibly melt
into a quasi-2D superfluid and (b) the intermediate “hexatic”
phase through which melting occurs, according to the theory
[19,20], ought to feature the superfluid properties of the fluid,
giving rise to a novel “superhexatic” phase, possessing orien-
tational order and capable of flowing without dissipation.

There are reasons to be skeptical of such an otherwise
intriguing hypothesis. First, it is highly unlikely that a sin-
gle layer of 4He, resting on an inert solid layer, would be
superfluid at a temperature as high as T = 1.4 K. The claims
made in Ref. [18] are not supported by measurements of the
superfluid density; we are not aware of any monolayer 4He
system with such a high superfluid transition temperature.
Indeed, first-principle computer simulations [21] and exper-
imental measurements [22] consistently point to a superfluid
transition temperature of Tc ∼ 0.7–0.8 K for a monolayer 4He
film on weakly attractive substrates, i.e., only slightly above
that of purely 2D 4He [23,24]. It is worth noting that the
failure of a fluid phase to be superfluid at a given temperature
excludes that a hypothetical solid (or orientationally ordered)
phase of the same density may possess superfluid properties
at that same temperature [25].

Equally difficult to credit is the contention that a quasi-2D
solid 4He film of density 0.075–0.080 Å−2 should undergo 2D
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melting at T = 1.4 K, considering that 2D 4He at that density
displays a crystalline order [26] up to a temperature as high
as 2.2 K. It is doubtful that atomic motion in the transverse
direction, which acts to soften the hard core repulsion of the
pairwise helium interaction at short distances, could reduce
the melting temperature by as much as ∼0.8 K, if the system is
to remain essentially two-dimensional, i.e., with no significant
third-layer atomic promotion. It is also worth mentioning that,
while there is robust theoretical evidence that no incommensu-
rate quasi-2D supersolid phase of 4He exists [27], there is no
reason to expect that a crystalline layer of 4He in that density
range should be commensurate [14,17].

In order to shed light on this problem, and obtain unbiased
theoretical insight into the system, we have carried out first-
principle QMC simulations of a thin (two layers) 4He film on
graphite. Our calculations are based on the standard micro-
scopic model of 4He and of the graphite substrate, including
accurate pairwise interactions between 4He atoms, as well as
between 4He atoms and the graphite substrate. We present
here results for the specific heat, focusing on the coverage
θA mentioned above, at which the specific heat “anomaly” is
most prominent, and attempt to establish whether the standard
microscopic model can account for the specific heat behavior
observed experimentally, possibly supporting the contention
made in Ref. [18].

Indeed, our QMC simulations yield a very similar peak in
the specific heat, but no crystalline order appears in the second
layer down to the lowest temperature considered here, namely,
T = 0.5 K. Rather, the second layer is fluidlike, with no sig-
nificant structural change occurring in the temperature range
0.5–1.7 K. Nor is there any evidence of a finite superfluid
response at the temperature at which the peak is observed, as
the layer undergoes a conventional superfluid transition at a
much lower temperature, close to 0.5 K. Thus, we contend that
the interpretation of the heat capacity measurements provided
in Ref. [18] is unfounded and that the data shown therein
provide no support for a quasi-2D “supersolid” phase of 4He;
our results point instead to atomic promotion to a third layer
as the most likely physical cause underlying the peak.

We have also carried out simulations at a higher coverage,
namely, θB = 0.21 Å−2, at which the stable equilibrium phase
of the second adlayer is an incommensurate crystal. In this
case, a peak in the specific heat observed in Ref. [18] at a
temperature close to 1 K is claimed therein as signaling the
melting of the incommensurate solid upper layer. Although
we did not pursue the calculation of the specific heat for this
coverage, in this case too our simulations fail to confirm the
physical scenario laid out in Ref. [18], showing instead that
the second-layer incommensurate crystal remains stable up
to a temperature of at least 2 K; moreover, melting in this
system is not really 2D, but rather occurs through promotion
of atoms to the third layer. In summary, therefore, while the re-
sults presented here reinforce on the one hand the conclusion
that no “supersolid” phase exists in this system, on the other
hand they also underscore the difficulty of reliably assigning
observed features in the specific heat to actual physical phe-
nomena.

The remainder of this manuscript is organized as follows.
In Sec. II we describe the microscopic model adopted in this
study. In Sec. III we offer a brief description of the methodol-

ogy adopted in this work. We illustrate our results in Sec. IV
and outline our conclusions in Sec. V.

II. MODEL

We consider an ensemble of N 4He atoms, regarded as
pointlike spin-zero bosons, moving in the presence of a
smooth, flat graphite substrate. The system is enclosed in a
simulation cell shaped as a cuboid, with periodic boundary
conditions in all directions (but the length of the cell in the z
direction can be considered infinite for all practical purposes).
The graphite substrate occupies the z = 0 face of the cuboid,
whose area is A. The nominal coverage θ is given by N/A.

The quantum-mechanical many-body Hamiltonian reads as
follows:

Ĥ = −
∑

i

λ∇2
i +

∑

i

U (ri ) +
∑

i< j

v(ri j ). (1)

The first and second sums run over all the N 4He atoms,
λ = 6.0596 K Å2, and U is the potential describing the in-
teraction of a helium atom with the graphite substrate; we
use here the laterally averaged version of the well-known
Carlos-Cole potential [28]. The third sum runs over all pairs
of particles, ri j ≡ |ri − r j |, and v(r) is the accepted Aziz pair
potential [29], which describes the interaction between two
helium atoms.

As mentioned above, this is the standard microscopic
model used to describe a thin helium film on a substrate.
The substrate itself is considered smooth and flat; i.e., its
corrugation is neglected (as well as, obviously, zero-point
motion of the carbon atoms in the substrate). This has been
quantitatively shown to be a valid approximation; for exam-
ple, the effect of explicitly including the corrugation on the
computed energy difference between solid and liquid phases
is of the order of 0.01 K [17]. One can understand why that
is the case, by considering that the lower 4He solid layer is
incommensurate with the graphite substrate, while the upper
layer mostly experiences the corrugation of the lower layer.

At the 4He coverages and in the temperature range consid-
ered here, two atomic layers form. In principle, of course, 4He
atoms are identical, and therefore no conceptual distinction
can be drawn between atoms in the “top” and “bottom” lay-
ers. However, we have carried out a number of simulations
of the system with all atoms regarded as indistinguishable,
consistently observing that both interlayer hopping of atoms
and quantum-mechanical exchanges among atoms in the first
adsorbed layer (which orders as a triangular crystal) and/or in
different layers are exceedingly infrequent. It is therefore an
excellent approximation to regard atoms in the bottom layer as
distinguishable quantum particles (i.e., “Boltzmannons”); on
the other hand, atoms in the top layer are considered as indis-
tinguishable and can therefore undergo quantum exchanges.

As a consequence of the above approximation (one that is
routinely made in computer simulations of this system), which
underlies all of the results that we present here, the numbers of
atoms in the two layers are constant, i.e., N1 atoms constitute
the first layer, and N2 = N − N1 constitute the second layer
(and N1/A and N2/A are the 2D densities in the two layers).
This de facto amounts to regarding the two layers as two
distinct “species,” which allows us to compute separately their
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energetic contributions. In turn, this makes it possible for us
to test quantitatively the contention made in Ref. [18], namely,
that the bulk of the contribution to the specific heat of the film
comes from the top layer.

III. METHODOLOGY

We carried out QMC simulations of the system described
in Sec. II using the worm algorithm in the continuous-space
path integral representation [23,24]. We shall not review
the details of this method, instead referring the reader to the
original references. We utilized a canonical variant of the
algorithm in which the total number of particles N is held
constant, in order to simulate the system at fixed coverage
[30,31]. We obtained results in a range of temperature going
from 0.5 K to a high temperature of 1.7 K (3 K) for coverage
θA (θB). The number (N1) of 4He atoms in the lower level
is either 64 or 144, whereas that (N2) of atoms in the upper
layer is determined by the total 4He coverage, as well as the
2D density of the lower level (we take that from experiment,
whenever available). For a discussion of the dependence of the
results on the size of the simulated system, we refer the reader
to the Appendix.

Details of the simulation are standard; we made use of the
fourth-order approximation for the high-temperature density
matrix (see, for instance, Ref. [32]), and all of the results
quoted here are extrapolated to the limit of time step τ → 0.
In general, we found that a value of the time step equal to
1.6 × 10−3 K−1 yields estimates indistinguishable from the
extrapolated ones.

The main physical quantity of interest is the specific heat
C(T ), which we aim at comparing with that measured exper-
imentally. It is well known that a direct calculation of the
specific heat in QMC simulations is complicated by the fact
that estimators are statistically “noisy.” It is therefore easier
to obtain C(T ) by computing the energy per particle e(T )
and obtaining C(T ) as de(T )/dT , either through numerical
differentiation or by fitting the computed e(T ) curve.

The occurrence of crystalline order in the system is de-
tected through (i) visual inspection of the imaginary-time
paths and (ii) the calculation of the pair-correlation function
g(r), integrated along the direction (z) perpendicular to the
substrate. Superfluid order is detected through the direct cal-
culation of the superfluid fraction, using the well-established
winding number estimator [33]. Qualitative insight on the
propensity of the system to flow without dissipation can be
obtained from the computed statistics of exchange cycles.

IV. RESULTS

As mentioned in the Introduction, we have computed the
specific heat as a function of temperature for the single cover-
age θA = 0.1973 Å−2 for which the peak observed in Ref. [18]
is strongest and occurs at the highest temperature (close to
1.4 K). We set the density of the lower layer to 0.1205 Å−2, as
specified in Ref. [18].

Figure 1(a) shows the computed energy per 4He atom e(T )
as a function of temperature, for the top layer. The inset shows
the corresponding quantity for the bottom layer. The first
observation is that there is no noticeable dependence on the

FIG. 1. Left: Energy per 4He atom (in K) in the top layer, as a
function of temperature. The solid line is a fit to the data. The dashed
line is a cubic fit to the data for T < 1.4 K. The inset shows the
energy per particle for the bottom layer. These results are obtained
by simulating a system comprising N1 = 64 (N2 = 41) particles in
the bottom (top) layer. Right: Specific heat of the film, estimated by
differentiating the function used to fit the data for e(T ) for the top
layer. Also shown are experimental measurements from Ref. [18].

temperature of the estimates for the bottom layer, showing that
the contribution to the specific heat of the film comes almost
exclusively from the top layer, as opined in Ref. [18]. The
energy values for the top layer follow the expected (phonon)
∼T 3 behavior at low T (dashed line in Fig. 1), but we can-
not fit all of our data with a single power-law expression,
as there is a clear inflexion, resulting in a broad peak of
the specific heat C(T ) ≡ de(T )/dT at T ∼ 1.3 K. This is
shown in Fig. 1(b), displaying the derivative with respect to
the temperature of the fitting curve in Fig. 1(a) (solid line).
Also shown are the experimental data for the specific heat of
Ref. [18], read off of Fig. 1(c) therein.

The comparison of our results with experiment appears al-
together satisfactory, in that the most important features of the
experimentally measured specific heat, i.e., the presence of a
peak, its overall shape, and the temperature at which it occurs,
are all fairly well reproduced. Achieving a quantitative repro-
duction of the experimental measurements is beyond the scope
of this study, as the microscopic model utilized here, arguably
one of the most reliable presently available, is nonetheless still
relatively simplified (e.g., the graphite substrate is regarded
as flat) and based on semiempirical potentials. It should also
be mentioned that carrying out a detailed comparison of the
specific heat experimentally measured in Ref. [18] and that
yielded by our energy estimates is no trivial task, as (a) a
straightforward numerical differentiation of the set of com-
puted energy values shown in Fig. 1 is affected by a relatively
large uncertainty, and (b) there is ambiguity associated with
the fitting procedure, as different functional forms can fit
the data while yielding significantly different C(T ) curves.
Nevertheless, the most important physical result, namely, the
presence of a peak at experimentally relevant temperatures, is
robust and does not require that the underlying model be mi-
croscopically accurate. This gives us confidence in our ability
to assess the plausibility of the physical scenario proposed in
Ref. [18] to account for such a peak.

We begin by examining possible structural changes occur-
ring in the film as the temperature is lowered from T = 1.6 K
through T = 0.5 K, i.e., across the specific heat anomaly,
occurring in our case at T ∼ 1.3 K, i.e., a temperature slightly
lower than that in the experiment. Figure 2 shows the reduced
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FIG. 2. Pair-correlation function g(r) for the upper layer of a 4He
film of coverage θA = 0.1973 Å−2, integrated over the axis perpen-
dicular to the substrate. The results shown here for three different
temperatures (T = 0.5, 1.0, and 1.6 K) are obtained by simulating a
system comprising N1 = 144 (N2 = 92) particles in the bottom (top)
layer. The inset shows a blow-up of the region near r = 0. When not
shown, statistical uncertainties are smaller than the symbol size.

pair-correlation function g(r) for the top layer (of 2D density
0.0768 Å−2), integrated over the direction perpendicular to
the substrate. The results clearly show little or no difference
among the g(r) computed at these three significantly different
temperature, pointing to the absence of structural change in
the film. The rapidly decaying oscillations indicate that the
system is in the liquid phase, as confirmed by visual inspec-
tion of many-particle configurations generated by the random
walk. The only, rather subtle, change that takes place as the
temperature is raised, is illustrated in the inset of Fig. 2, in
which the region near r = 0 is shown magnified. The fact
that g(r) remains finite in the r → 0 limit, at the highest
temperature, is evidence of promotion of atoms to the third
layer, which, in our submission, constitutes the most plausible
physical explanation for the peak in the specific heat observed
both in our study and in the experiment. Specifically, we
attribute the change of slope of the e(T ) curve (Fig. 1), giving
rise to the peak in C(T ), to the reduced second-layer density
arising from atomic promotion to the third layer. The results
obtained in this study are entirely consistent with the physical
picture offered in, e.g., Ref. [14]; i.e., they do not support the
contention that such an anomaly should arise from the melting
of a 2D crystal, as contended in Ref. [18].

Nor is there any evidence of a finite superfluid response
of the second layer (as mentioned above, the bottom layer
is crystalline and inert) for T > 1 K. Although permutations
of indistinguishable particles do occur, even at temperatures
as high as 1.7 K, the expected superfluid transition of the
fluid layer takes place below 1 K. While we did not pursue
the precise determination of Tc in this work, the values of
the superfluid fraction obtained in a system of 92 particles in
the top layer suggest that Tc ∼ 0.5 K (the superfluid fraction
approaches 100% at T = 0.25 K). In other words, no super-
fluid phase of the system exists at temperatures as high as
those at which the specific heat anomaly reported in Ref. [18]
occurs. In light of this, the interpretation offered in Ref. [18]
of the specific heat measurements seems unviable.

FIG. 3. Pair correlation function g(r) for the upper layer of a
4He film of coverage θB = 0.21 Å−2, integrated over the axis per-
pendicular to the substrate. The results shown here for three different
temperatures (T = 1.0, 2.0, and 2.5 K) are obtained by simulating
a system comprising N1 = 144 (N2 = 106) particles in the bottom
(top) layer. The density of the first layer is fixed at 0.1209 Å−2.

In order to illustrate how problematic it is to attribute
specific physical meanings to distinct features of the measured
specific heat, we turn now to a higher coverage, namely,
θB = 0.21 Å−2, for which the specific heat displays a sharp
peak at a temperature T between 1.1 and 1.2 K. This peak
is interpreted in Ref. [18] as indicative of the 2D melting
of an incommensurate crystal. There is no controversy here
as to whether at that coverage the second layer should form
an incommensurate solid, but, as we show below, neither
the contention that such a layer should undergo melting at a
temperature so low nor that the melting transition should be
2D in nature is supported by our first-principle simulations.

Figure 3 shows the same quantity as in Fig. 2, namely, the
reduced pair-correlation function for the top layer, for three
different temperatures, namely, T = 1.0, 2.0, and 2.5 K. Here,
we set the value of the density for the bottom layer (not given
in Ref. [18]) to be 0.1209 Å−2. It is manifest from the data
shown in the figure that virtually nothing happens to the film,
structurally, between 1 and 2 K, and in particular there is
no discernible attenuation of the oscillations that mark the
presence of crystalline long-range order. On the other hand,
at T = 2.5 K such oscillations decay rapidly, the main peak
has a loss of ∼20% of the strength and, most significantly,
g(0) is finite and relatively large, signaling that the disappear-
ance of order (i.e., melting) is connected to the promotion
of atoms to the third layer; i.e., it cannot be regarded as
“two-dimensional.” We have not pursued the fairly lengthy
calculation of the specific heat for this coverage, but it is clear
that, in this case too, the interpretation of the measurements
proposed in Ref. [18] clashes with the results of our computer
simulations.

V. CONCLUSION

We have carried out extensive, first-principle numerical
study of the structure and energetics of a two-layer 4He film
adsorbed on graphite, with the aim of gaining insight into
the physics of the system, in light of recent experimental
measurements for which a potentially exciting interpretation
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was put forth. We have made use of state-of-the-art numerical
techniques (QMC); the quantitative predictive power of this
methodology, for interacting Bose systems, is by now fairly
well established. As well, the microscopic model utilized
here, based on accepted potentials, has been adopted in es-
sentially all previous numerical studies [34], including those
based on QMC simulations, which have yielded predictions
generally in agreement with experiment.

It seems fair to state that even in this case there is substan-
tial agreement between theoretical results and experimental
data; quantitative differences can be attributed to the in-
evitable limitations of a microscopic model which, while
capturing the bulk of the physical effects, is nonetheless still
highly simplified. However, our results fail to provide any
kind of support for the interpretation of experimental data
proposed in Ref. [18], even though they confirm some of the
working assumptions made therein, e.g., that the contribution
to the specific heat comes almost entirely from the second
layer. In particular, we see no evidence of melting of a crystal
(either commensurate or incommensurate) at the temperatures
at which anomalies in the specific heat are observed exper-
imentally, nor is there any evidence of superfluid behavior
where, according to the authors of Ref. [18], a “superfluid
hexatic” phase may occur. More generally, the data presented
in Ref. [18] offer nothing to the effect that the theoretical
phase diagram of this system, as proposed, for example, in
Ref. [14], should be substantially revised.

It is important to restate at this point that no direct experi-
mental evidence has been produced so far of a commensurate
solid phase in the second layer of 4He on graphite. Its ex-
istence has so far been only posited as a plausible way to
account for specific features in the experimentally observed
specific heat. But, as also shown in this work, the interpreta-
tion of those features is often not univocal; for example, there
are valid reasons to attribute the broad peak in the specific heat
at the lower coverage investigated here to promotion of atoms
to the third layer. While the physical nature of the peak in the
specific heat at the higher coverage was not investigated here,
there is no reason to exclude such an explanation in that case
as well.

In summary, it seems as if progress toward the resolution
of the controversy existing at the moment, over the presence
of a commensurate phase in this system, is not likely to be
achieved through measurements of the specific heat, whose
interpretation is ambiguous. It seems as if, at this point, alter-
nate sources of experimental information are needed, ideally
capable of directly imaging the second layer and providing
robust evidence for the existence of the elusive commensurate
phase.
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TABLE I. Energy per 4He atom in the upper layer of a film of
coverage θA = 0.1973 Å−2, computed at two different temperatures
for the two system sizes considered in this work. Statistical errors (in
parentheses) are on the last two digits.

T (K) N N2 e (K)

0.5 105 41 −19.877 (35)
0.5 236 92 −19.847 (34)
1.4 105 41 −19.593 (18)
1.4 236 92 −19.565 (29)

APPENDIX: DEPENDENCE OF RESULTS
OF SYSTEM SIZE

We offer here some details on the dependence on system
size of the physical estimates obtained in our Monte Carlo
simulation, by providing a few explicit, representative results
for the two system sizes considered here.

Table I reports computed energy per 4He atom in the top
layer of a film of coverage θA = 0.1973 Å−2. The estimates
are at two different temperatures and show consistency of the
results, within the statistical errors of the calculation. This is
not a surprise, as it is generally accepted that the energy is not
particularly sensitive to the size of the simulated system, as it
is mostly affected by the environment experienced by atoms
in their immediate vicinity. In all cases, the contribution to
the potential energy arising from interatomic distances greater
than rc = 10.7 Å is evaluated by assuming atomically thin,
flat layers and setting g(r) = 1 beyond rc. Figure 4 shows
the integrated pair-correlation function g(r) defined above,
for a film of coverage θA, at a temperature of T = 1.4 K.
Consistency of the results yielded by the two different sizes
is clear.

FIG. 4. Pair correlation function g(r) for the upper layer of a 4He
film of coverage θA = 0.1973 Å−2, integrated over the axis perpen-
dicular to the substrate. These results shown here are for temperature
T = 1.4 K, and are obtained by simulating a system comprising
N1 = 64 (N2 = 41) 4He atoms in the bottom (top) layer (circles),
as well as N1 = 144 (N2 = 92) 4He atoms in the bottom (top) layer
(diamonds). The density of the first layer is fixed at 0.1205 Å−2.
Statistical errors are smaller than symbol sizes.

235436-5



MASSIMO BONINSEGNI AND SAVERIO MORONI PHYSICAL REVIEW B 102, 235436 (2020)

[1] M. Bretz, J. G. Dash, D. C. Hickernell, E. O. McLean, and O. E.
Vilches, Phases of 3He and 4He monolayer films adsorbed on
basal-plane oriented graphite, Phys. Rev. A 8, 1589 (1973).

[2] S. V. Hering, S. W. Van Sciver, and O. E. Vilches, Apparent
new phase of monolayer 3He and 4He films adsorbed on Grafoil
as determined from heat capacity measurements, J. Low Temp.
Phys. 25, 793 (1976).

[3] S. E. Polanco and M. Bretz, Liquefaction of second-layer 4He
films on graphite, Phys. Rev. B 17, 151 (1978).

[4] K. Carneiro, L. Passell, W. Thomlinson, and H. Taub, Neutron-
diffraction study of the solid layers at the liquid-solid boundary
in 4He films adsorbed on graphite, Phys. Rev. B 24, 1170
(1981).

[5] R. E. Ecke and J. G. Dash, Properties of monolayer solid helium
and its melting transition, Phys. Rev. B 28, 3738 (1983).

[6] H. J. Lauter, H. P. Schildberg, H. Godfrin, H. Wiechert, and R.
Haensel, Neutron diffraction studies of two-dimensional quan-
tum systems, Can. J. Phys. 65, 1435 (1987).

[7] J. Lauter, H. Godfrin, V. L. P. Frank, and P. Leiderer, Neutron
scattering studies of quantum films, in Phase Transitions in
Surface Films 2, edited by E. Taub, G. Torzo, H. J. Lauter, and
S. C. Fain (Plenum, New York, 1991).

[8] D. S. Greywall and P. A. Busch, Heat Capacity of Fluid Mono-
layers of 4He, Phys. Rev. Lett. 67, 3535 (1991).

[9] D. S. Greywall, Heat capacity and the commensurate-
incommensurate transition of 4He adsorbed on graphite, Phys.
Rev. B 47, 309 (1993).

[10] We use quotation marks because the denomination supersolid
is strictly speaking not applicable to a system of this type. See,
for instance, Ref. [11].

[11] M. Boninsegni and N. V. Prokof’ev, Supersolids: What and
where are they?, Rev. Mod. Phys. 84, 759 (2012).

[12] P. A. Crowell and J. D. Reppy, Reentrant Superfluidity in 4He
Films Adsorbed on Graphite, Phys. Rev. Lett. 70, 3291 (1993).

[13] P. A. Crowell and J. D. Reppy, Superfluidity and film structure
in 4He adsorbed on graphite, Phys. Rev. B 53, 2701 (1996).

[14] P. Corboz, M. Boninsegni, L. Pollet and M. Troyer, Phase
diagram of 4He adsorbed on graphite, Phys. Rev. B 78, 245414
(2008).

[15] J. Happacher, P. Corboz, M. Boninsegni, and L. Pollet, Phase
diagram of 4He on graphene, Phys. Rev. B 87, 094514 (2013).

[16] J. Ahn, H. Lee, and Y. Kwon, Prediction of stable C7/12
and metastable C4/7 commensurate solid phases for 4He on
Graphite, Phys. Rev. B 93, 064511 (2016).

[17] S. Moroni and M. Boninsegni, Second layer crystalline phase
of helium films on graphite, Phys. Rev. B 99, 195441 (2019).

[18] S. Nakamura, K. Matsui, T. Matsui, and H. Fukuyama, Possible
quantum liquid crystal phases of helium monolayers, Phys. Rev.
B 94, 180501(R) (2016).

[19] V. L. Berezinskii, Destruction of long-range order in one-
dimensional and two-dimensional systems having a continuous
symmetry group II. Quantum systems, Sov. Phys. JETP 34, 610
(1972).

[20] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and
phase transitions in two-dimensional systems, J. Phys. C: Solid
State Phys. 6, 1181 (1973).

[21] M. Boninsegni, M. W. Cole and F. Toigo, Helium Adsorption
on a Lithium Substrate, Phys. Rev. Lett. 83, 2002 (1999).

[22] E. Van Cleve, P. Taborek and J. E. Rutledge, Helium adsorption
on lithium substrates, J. Low Temp. Phys. 150, 1 (2008).

[23] M. Boninsegni, N. Prokof’ev and B. Svistunov, Worm Al-
gorithm for Continuous-Space Path Integral Monte Carlo
Simulations, Phys. Rev. Lett. 96, 070601 (2006).

[24] M. Boninsegni, N. V. Prokof’ev and B. V. Svistunov, Worm
algorithm and diagrammatic Monte Carlo: A new approach to
continuous-space path integral Monte Carlo simulations, Phys.
Rev. E 74, 036701 (2006).

[25] A. J. Leggett, Can a Solid Be Superfluid? Phys. Rev. Lett. 25,
1543 (1970).

[26] This conclusion was established in this work by means of
targeted quantum Monte Carlo simulations of two-dimensional
4He.

[27] M. Boninsegni, On the existence of a supersolid 4He monolayer,
J. Low Temp. Phys. 165, 67 (2011).

[28] W. E. Carlos and M. W. Cole, Anisotropic He-C Pair Interaction
for a He Atom Near a Graphite Surface, Phys. Rev. Lett. 43, 697
(1979).

[29] R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and G. T.
McConville, An accurate intermolecular potential for helium,
J. Chem. Phys. 70, 4330 (1979).

[30] F. Mezzacapo and M. Boninsegni, Superfluidity and Quantum
Melting of p-H2 Clusters, Phys. Rev. Lett. 97, 045301 (2006).

[31] F. Mezzacapo and M. Boninsegni, Structure, superfluidity and
quantum melting of hydrogen clusters, Phys. Rev. A 75, 033201
(2007).

[32] M. Boninsegni, Permutation sampling in path integral Monte
Carlo, J. Low Temp. Phys. 141, 27 (2005).

[33] E. L. Pollock and D. M. Ceperley, Path-integral computation of
superfluid densities, Phys. Rev. B 36, 8343 (1987).

[34] The differences between the various versions of the Aziz po-
tential involve energy scales much smaller than those that are
relevant here.

235436-6

https://doi.org/10.1103/PhysRevA.8.1589
https://doi.org/10.1007/BF00657299
https://doi.org/10.1103/PhysRevB.17.151
https://doi.org/10.1103/PhysRevB.24.1170
https://doi.org/10.1103/PhysRevB.28.3738
https://doi.org/10.1139/p87-226
https://doi.org/10.1103/PhysRevLett.67.3535
https://doi.org/10.1103/PhysRevB.47.309
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1103/PhysRevLett.70.3291
https://doi.org/10.1103/PhysRevB.53.2701
https://doi.org/10.1103/PhysRevB.78.245414
https://doi.org/10.1103/PhysRevB.87.094514
https://doi.org/10.1103/PhysRevB.93.064511
https://doi.org/10.1103/PhysRevB.99.195441
https://doi.org/10.1103/PhysRevB.94.180501
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/PhysRevLett.83.2002
https://doi.org/10.1007/s10909-007-9516-5
https://doi.org/10.1103/PhysRevLett.96.070601
https://doi.org/10.1103/PhysRevE.74.036701
https://doi.org/10.1103/PhysRevLett.25.1543
https://doi.org/10.1007/s10909-011-0393-6
https://doi.org/10.1103/PhysRevLett.43.697
https://doi.org/10.1063/1.438007
https://doi.org/10.1103/PhysRevLett.97.045301
https://doi.org/10.1103/PhysRevA.75.033201
https://doi.org/10.1007/s10909-005-7513-0
https://doi.org/10.1103/PhysRevB.36.8343

