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Magnon-magnon interaction and magnon relaxation time in a ferromagnetic Cr2Ge2Te6 monolayer
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Despite the intense amount of attention and huge potential of two-dimensional (2D) magnets for applications
in novel magnetic, magneto-optical, magnetothermal, and magnetoelectronic devices, there is a lack of robust
strategy developed to systematically understand magnon-magnon interactions (MMIs) at finite temperature. In
this paper, we present a first-principles theoretical method to introduce the finite temperature magnon-magnon
interaction into a Heisenberg Hamiltonian through a correction energy. Wick’s theorem is used to decouple
the four-magnon operators to two-magnon order. We demonstrate the capabilities of this method by studying
the strength of MMI in a Cr2Ge2Te6 monolayer. The spin-wave spectrum at finite temperature and the time-
dependent spin autocorrelation function are explored. It is found that the magnon relaxation time due to magnon-
magnon scattering increases with temperature because of the reduction in magnon energy, while it decreases with
wave vector and external magnetic field. Our results provide insight into understanding the magnon damping
and energy dissipation in two-dimensional ferromagnetic materials.
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I. INTRODUCTION

The two-dimensional (2D) materials exfoliated from var-
ious bulk van der Waals (vdW) sheets attract substantial
attention in materials science, condensed matter physics, and
electronic engineering, because of their fascinating properties
[1–4]. Although all major electronic classes (metals, insula-
tors, and semiconductors) have been observed in 2D materials
[5–7], a 2D magnet was missing until the discovery of in-
trinsic ferromagnetism in Cr trihalide and chalcogenides in
2017 [8,9]. Subsequently, numerous 2D magnets with long-
range order have been discovered and investigated, such as
Fe5−xGeTe2 [10,11], XPS3 (X = Mn, Fe) [12–16], CrPS4

[17], Cr2S3 [18,19], CoGa2X4 (X = S, Se, Te) [20], XH2

(X = Sc, Ti, V, Cr, Fe, Co, Ni) [21], CrOX (X = Cl, Br)
[22,23], non-vdW transition-metal oxides [24], and some 2D
transition-metal carbides and nitrides (MXenes) [25,26].

In the family of 2D magnets, the characteristic of mag-
netic anisotropy is quite distinct [27–29]. For instance,
in monolayer CrI3, the magnetic anisotropy parameter is
∼29.3% of the exchange constant, revealing strong mag-
netic anisotropy energy [30]. For monolayer Cr2Ge2Te6,
the magnetic anisotropy parameter is only 2% of the
nearest-neighboring exchange constant, so that the magnetic
anisotropy is ignorable [31]. Based on the magnetic exchange
interaction and the magnetic anisotropy, the Curie/Néel tem-
perature can be calculated using the mean-field theory [32,33].
Meantime, several studies have been implemented to enhance
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the Curie/Néel temperature for the application of 2D magnets
in magneto-optical, magnetothermal, and magnetoelectronic
devices by functionalization [34–36], external field [8,37], and
strain [8,38,39]. Below the Curie/Néel temperature, the time-
resolved magneto-optical Kerr effect (TR MOKE) and the
time-resolved Faraday rotation (TRFR) are often employed to
investigate the magnetic-optical coupling [9,31,40], demon-
strating the rich magnetic behaviors in 2D magnets. The Hall
effect (including spin Hall effect, anomalous Hall effect, and
thermal Hall effect) in 2D magnets also attracts substantial
attention, which not only promotes the development of novel
Hall devices but also provides a new route to detect the
existence of magnetism [41–45]. Among these Hall effects,
the thermal Hall effect is related to the coupling between
spin waves and lattice vibration (magnon-phonon coupling)
[46] usually studied by Raman spectra [47,48], phonon spec-
trum [49,50], and spin-wave spectrum [51,52]. In spintronics,
the manipulation of magnetic order also is a hot topic, and
there are numerous manipulation strategies, such as stack
[53,54], electrostatic doping [55,56], and pressure [57,58].
In addition, Hofmann explored the temperature dependence
of two-dimensional ideal ferromagnets when temperature is
1% of the exchange constant [59,60]. So far, despite intense
studies in this area, there still is a lack of robust theoretical
methods for studying the magnon-magnon interaction (MMI)
at finite temperature, which is crucial for coherent spintronics.

In this paper, we introduce the dynamical interaction
arising from the change in magnon population caused by
temperature into a Heisenberg Hamiltonian to describe the
spin-wave spectrum of a Cr2Ge2Te6 (CGT) monolayer at
finite temperature. The influence of dynamical interaction
on magnon dispersion can be regarded as a correction term
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caused by the decoupling of the products of four Bose
operators. To observe the MMI, the time-dependent spin au-
tocorrelation is employed, and the relaxation time τMM is
obtained by fitting the spin autocorrelation with an expo-
nential function. We theoretically find the relaxation time
τMM (contributed by MMI) increases with temperature but
decreases remarkably with the external magnetic field. Our re-
sults shed light on the understanding of dissipation of magnon
energy at finite temperature.

II. THEORETICAL MODELS
AND COMPUTATIONAL DETAILS

Here, the 2D ferromagnetic system is described by

H = −1

2

∑
l, f ∈N
l �= f

Jl f Sl · S f −
∑

l

gμBB · Sl + Han + Hd, (1)

where the first term represents isotropic exchange interaction,
the second term is Zeeman energy, and the last two terms
describe the magnetic anisotropy (Han ) and dipole-dipole in-
teraction (Hd), respectively. Recently, Shen demonstrated that
the magnetic dipole-dipole interaction leads to a small modi-
fication in magnon frequencies [61]. This modification is very
small for the CGT monolayer (about −0.15 meV/u.c.) (“u.c.”
means “unit cell”); thus it is ignorable comparing with the
exchange interaction (∼6.37 meV/u.c.) in the CGT monolayer
[31].

In Eq. (1), Han can be calculated by

Han = −
∑
l, f
l �= f

Al f Sz
l Sz

f , (2)

where Al f is the anisotropy parameter along the z axis. At
present, there are two methods to estimate the anisotropy
parameter: the XXZ model and the Kitaev interaction model.
For the XXZ model, the off-diagonal elements of the exchange
constant matrix are neglected, and then the anisotropy param-
eter is obtained by difference between the exchange constants
for the x (Jxx ) and z axes (Jzz ). When the Kitaev interaction
is considered, it is necessary to diagonalize the exchange
constant matrix, and the diagonal elements are represented by
Jα , Jβ , and Jγ . Subsequently, the anisotropy parameter is also
estimated by

Al f = Jγ

l f − 1
2

(
Jα

l f + Jβ

l f

)
. (3)

In Ref. [29], both methods are used to calculate
the anisotropy parameter of the CGT monolayer, and the
anisotropy parameters are 0.1–0.2 meV and 0.36 meV by the
XXZ model and the Kitaev interaction model, respectively.
These values are much smaller than the nearest-neighbor
exchange constant of the CGT monolayer (∼6.64 meV),
unlike that in the CrI3 monolayer (anisotropy parameter is
0.85 meV while J = 2.44 meV) [29]. This indicates that in
CGT the anisotropy parameter is only 1%–5% of the ex-
change constant, while this ratio is 30% in CrI3. Therefore,
the Heisenberg model is applicable to the CGT monolayer, in
which the anisotropic parameter is zero.

The magnetic anisotropy can be directly evaluated by
the magnetocrystalline magnetic anisotropy energy (CMAE),

which is defined as the energy difference between in-plane
and out-of-plane spin configurations. For the CGT monolayer,
there are some controversies regarding its easy axis. Zhang
et al. showed the CGT monolayer has an out-of-plane easy-
axis [50], but Fang et al. [31] and Xu et al. [29] showed that
the easy axis of the CGT monolayer is the in-plane direc-
tion while that of multilayer is the out-of-plane direction. To
determine the CMAE of the CGT monolayer, we performed
first-principles based self-consistent calculations considering
spin-orbit coupling. The energies for the in-plane and out-of-
plane magnetizations in the CGT monolayer were obtained as
−49.0513 eV/u.c. and −49.0510 eV/u.c. Then the CMAE is
−0.3 meV revealing the in-plane easy axis, which agrees well
with the conclusions of Fang et al. and Xu et al.. Overall, the
magnetic anisotropy is slight in monolayer CGT and the term
(Han) in Eq. (1) can be ignored, as also adopted in previous
works in the literature [31,50].

The Heisenberg Hamiltonian omitting the magnetic
anisotropy and dipole-dipole interaction for a CGT monolayer
is shown as follows:

H = −1

2

∑
l, f ∈N
l �= f

JSl · S f −
∑

l

gμBB · Sl . (4)

For a given magnetic lattice, S = (Sx, Sy, Sz ) is the spin
vector whose amplitude is S0. J is the isotropic exchange
constant. In this work, only the nearest-neighbor interaction
is taken into account, because the second-nearest-neighbor
and third-nearest-neighbor exchange constants of the CGT
monolayer are about −0.045 and 0.15 meV per unit cell,
which are much lower than the nearest-neighbor exchange
constant (6.37 meV) [31]. Therefore, for simplification, we
only consider one exchange coupling parameter. This simpli-
fication was also adopted in previous works in the literature
[33,50]. The Landé factor is represented as g, μB is the Bohr
magneton, and B represents an external magnetic field along
the c axis. Without loss of generality, the equilibrium mag-
netization is assumed to be parallel to the external field. In
addition, transverse components S± = Sx± iSy are defined to
eliminate the dependence between Sx and Sy. According to
the Holstein-Primakoff (HP) approximation [62,63], S± and
Sz for a given site can be written as

S+ = (
√

2S0 − a+a)a, S− = a+(
√

2S0 − a+a),

Sz = (S0 − a+a), (5)

where a+ and a are the creation and annihilation operators
of magnon for the given site, respectively. The operators of
the magnon described in coordinate space are transferred into
reciprocal space by the Fourier transform:

ak = N− 1
2

∑
r

e−ik·ra, a+
k = N− 1

2

∑
r

eik·ra+, (6)

where k is the wave vector, r is the position vector of
the lattice point, and N is the number of unit cells in the
supercell. The magnon density 〈a+

k ak〉 can be calculated by the
Bose-Einstein distribution function:

〈a+
k ak〉 = 1

(eh̄ωk /kBT − 1)
, (7)
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with Boltzmann constant kB and the reduced Planck constant
h̄. At low temperature (close to zero), h̄w/kBT tends to be
infinite, resulting in an ignorable 〈a+

k ak〉. With temperature
increases, 〈a+

k ak〉 increases significantly, and thus cannot be
ignored.

A. Zero temperature model

For completeness, firstly we introduce the spin-wave spec-
trum model at zero temperature, at which the population of
excited magnon is low; therefore the magnon density can be
negligible with respect to 2S0 [64,65]. The transverse compo-
nents of spin vector for a given site can be rewritten as

S+ = (
√

2S0 − a+a)a ≈ (
√

2S0)a,

S− = (
√

2S0 − a+a)a+ ≈ a+(
√

2S0). (8)

The Hamiltonian can be given as

H = H0 + HB = −1

2
J

∑
l, f ∈N
l �= f

[(S0 − a+
l al )(S0 − a+

f a f )

+ S0(ala
+
f + a+

l a f )] −
∑

l

gμBB(S0 − a+
l al ), (9)

Here H0 and HB are

H0 = −1

2
J

∑
l, f ∈N
l �= f

[(S0 − a+
l al )(S0 − a+

f a f )

+ S0(ala
+
f + a+

l a f )], (10)

HB = −
∑

l

gμBB(S0 − a+
l al ). (11)

Following Eq. (6), Eq. (9) can be transferred into the recipro-
cal space. Then, the Hamiltonian in the reciprocal space can
be written as

H = H0 + HB = −1

2
J

∑
l, f ∈N
l �= f

[
S2

0 − S0N−1
∑

k

(
a+

l,kal,k + a+
f ,ka f ,k − a+

f ,kal,kγk − a+
l,ka f ,kγk

)]

−
∑

l

gμBB

(
S0 − N−1

∑
k

a+
l,kal,k

)
, (12)

with γk= 1
Z

∑
l, f ∈N eik·(r f –rl ). Z is the coordination number for the nearest-neighbor exchange interaction.

In each unit cell of monolayer CGT, it includes two magnetic Cr3+ ions; then the Hamiltonian is

H = H0 + HB = E0 +
∑

k

h̄ω±
k a+

k ak = E0 +
∑

k

[JZS0(1 ± γk ) + 2gμBB]a+
k ak, (13)

where E0 is the energy of the ground state:

E0 = −2NJZS0 − 2NgμBBS0. (14)

The frequencies for optical (h̄w+) and acoustic (h̄w−) magnons can be obtained by

h̄ω±
k = E±

SI + 2gμBB = JZS0(1 ± γk ) + 2gμBB, (15)

with the isotropic exchange constant J. E±
SI is called “static interaction,” which describes the magnetic exchange interaction at

zero temperature (without perturbation) [66].

B. Magnon-magnon interaction at finite temperature

From Eq. (7), it is obvious that the magnon density increases with temperature because of the excitation of substantial
magnons, so that at finite temperature the transverse components of spin vector for a given site should be written as follows [67]:

S+ = (
√

2S0 − a+a)a ≈
√

2S0

(
1 − a+a

4S0

)
a, S− = a+(

√
2S0 − a+a) ≈ a+√

2S0

(
1 − a+a

4S0

)
. (16)

Then, the higher order terms appear in the Heisenberg Hamiltonian:

H (T ) ≈ H0 + HB − 1

2
J

∑
l, f ∈N
l �= f

[
a+

l ala
+
f a f + a+

l alala
+
f

4
+ a+

f a f ala
+
f

4
+ a+

l a f a+
l al

4
+ a+

l a f a+
f a f

4

]
. (17)

Next, the normal coordinate is introduced into the Hamiltonian by Eq. (6), and the Fourier transform for the four-order terms
is shown as following:

a+
l al a

+
f a f = N−2

∑
k−q

e−i(k−q)rl a+
k−q

∑
k

eikr f ak

∑
k′+q

e−i(k′+q)r f a+
k′+q

∑
k′

eik′rl ak′ = N−2
∑
k,k′,q

γk−k′−qa+
k−qa+

k′+qak′ak, (18)
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a+
l al ala

+
f = N−2

∑
k−q

e−i(k−q)r f a+
k−q

∑
k

eikrl ak

∑
k′+q

e−i(k′+q)rl a+
k′+q

∑
k′

eik′rl ak′ = N−2
∑
k,k′,q

γk−qa+
k−qa+

k′+qak′ak, (19)

a+
f a f ala

+
f = N−2

∑
k−q

e−i(k−q)r f a+
k−q

∑
k

eikr f ak

∑
k′+q

e−i(k′+q)r f a+
k′+q

∑
k′

eik′rl ak′ = N−2
∑
k,k′,q

γk′a+
k−qa+

k′+qak′ak, (20)

a+
l a f a+

l al = N−2
∑
k−q

e−i(k−q)rl a+
k−q

∑
k

eikrl ak

∑
k′+q

e−i(k′+q)rl a+
k′+q

∑
k′

eik′r f ak′ = N−2
∑
k,k′,q

γk′a+
k−qa+

k′+qak′ak, (21)

a+
l a f a+

f a f = N−2
∑
k−q

e−i(k−q)rl a+
k−q

∑
k

eikr f ak

∑
k′+q

e−i(k′+q)r f a+
k′+q

∑
k′

eik′r f ak′ = N−2
∑
k,k′,q

γk−qa+
k−qa+

k′+qak′ak . (22)

Then, the Hamiltonian at finite temperature in reciprocal space can be represented by

H (T ) = H0 + HB − JZN−1
∑
k,k′,q

a+
k−qa+

k′+qak′ak

(
γk−k′−q − γk−q

2
− γk′

2

)
. (23)

There is no analytical solution for the four magnon operators, so it is necessary to decompose the products of four magnon
operators. Wick’s theorem, an algebraic strategy, states that the product of operators is equal to the sum of all possible pairs
of operators, and allows one to handle the reduction problem quite easily. Here we adopt Wick’s theorem to decouple the
four-magnon operators to two-magnon order [68]:

a+
k−qa+

k′+qak′ak = (a+
k−qa+

k′+q)(ak′ak ) + (a+
k−qak′ )(a+

k′+qak ) + (a+
k−qak )(a+

k′+qak′ ). (24)

Meanwhile, the low order Taylor approximation is used to simplify the Hamiltonian:

(a+
k−qak′ )(a+

k′+qak ) = [〈a+
k−qak′ 〉 + (a+

k−qak′ − 〈a+
k−qak′ 〉)][〈a+

k′+qak〉 + (a+
k′+qak − 〈a+

k′+qak〉)]. (25)

Finally, the Hamiltonian at finite temperature can be written as

H (T ) = H0 + HB + E1 + JZN−1
∑
k,k′,q

(〈a+
k−qak〉a+

k′+qak′ + 〈a+
k′+qak′ 〉a+

k−qak+〈a+
k−qak′ 〉a+

k′+qak

+〈a+
k′+qak〉a+

k−qak′ )
(γk−q

2
+ γk′

2
− 2γk−k′−q

)
, (26)

with
∑

k′ γk−k′ = γk
∑

k′ γk′ . E1 is the static energy difference from the ground state. Consequently, the magnon dispersion at
finite temperature can be described as

h̄ω±
k (T ) = E±

SI + E±
DI(T ) + 2gμBB = JZS0(1 ± γk ) + JZS0(1 ± γk )β(T ) + 2gμBB, (27)

with

β(T ) = − 1

NS0

∑
k′

(1 − γk′ )〈a+
k′ ak′ 〉T . (28)

E±
DI represents the magnon energy from “dynamical inter-

action,” which is caused by the variety in magnon population
induced by finite temperature [69]. The dynamical interaction
is quite different from the nonlinear response used to describe
magnon-phonon interaction [70]. It is obvious that the value
of dynamical energy E±

DI is proportional to the static exchange
energy E±

SI with a parameter β (T). β (T) can be called the
“dynamical constant,” and is plotted in Fig. 1 as a function of
temperature. The increase in the absolute value of dynamical
constant with temperature reveals the strengthening of dynam-
ical interaction, which can be measured by neutron scattering
[69]. In the present work, the magnon energy contributed
by dynamical interaction is calculated by a self-consistent
procedure.

C. Computational details

In this paper, we used the experimental lattice constants
(a = b = 6.83 Å) [71], and the geometrical structure is

relaxed by the Vienna ab initio simulation package (VASP)
[72] using 500 eV cutoff energy. Due to the d-orbit electrons
around the Cr atom, the generalized gradient approximation
(GGA) with Hubbard “U” should be used as the exchange-
correlation function [73]. Gong et al. [8] and Kang et al. [74]
explored the influence of U on the electronic and magnetic
properties of CGT monolayer and bulk. Kang et al. found
that the CGT monolayer behaves as a semiconductor with
a finite gap when U = 0, while calculation using U = 3 eV
predicts a semimetallic state [74]. Gong et al. found that
for U < 0.2 eV, the bulk CGT becomes in-plane anisotropic;
for U > 1.7 eV the interlayer coupling becomes antiferro-
magnetic [8], which is contrary to the experimental results.
Therefore, they suggest the value of U for CGT should be
within the range from 0.2 to 1.7 eV, and we chose U = 1 eV as
used in previous works in the literature [31,50]. For the CGT
monolayer, a vacuum space of 16 Å is set along the out-of-
plane direction to suppress the possible interaction between
the atomic plane and its neighboring image. The convergence
for the energy difference of self-consistent iterations and
the Hellmann-Feynman force were 10−8 eV and 0.001 eV/Å,
respectively. A k-point mesh of 5 × 5 × 1 was used for
structural relaxation, while a 9 × 9 × 1 mesh was used for
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FIG. 1. The temperature dependence of dynamical constant β(T ).

self-consistent calculation to obtain the energy of the CGT
unit cell under different magnetic configurations. Besides, the
phonon spectrum and phonon density of state (PDOS) are
calculated with a 23 × 23 × 1 mesh by the PHONOPY code.

III. RESULTS AND DISCUSSION

A. Spin-wave spectrum at finite temperature

The geometric structure and the path in the Brillouin zone
of the CGT monolayer are shown in Fig. 2. It was reported
that Te atoms play a fundamental role in stabilizing the fer-
romagnetism of monolayer CGT through the superexchange
interaction between Te-Cr-Te bonds [75,76], although they are
nonmagnetic. As shown in Table I, the optimized lattice con-
stants (a = b = 6.83 Å) agree well with previous reports [71].
The bond length of Cr-Te in the optimized CGT monolayer
is 2.77 Å, which is much shorter than the distance (3.94 Å)
between two Cr atoms in a unit cell. The phonon spectrum and
PDOS of the optimized structure are presented in Fig. 3. It is
obvious that there is no imaginary frequency at the Gamma
point indicating the kinetic stability of our optimized struc-
ture. In detail, the phonon vibration with low frequency is
mainly contributed by the Te atom whose mass is much larger
than the Cr and Ge atoms. To determine the ground state,
the energies of the CGT monolayer with ferromagnetic (FM)
and antiferromagnetic (AFM) configurations are calculated
as −48.407 and −48.345 eV. The diagram of ferromagnetic
(FM) and antiferromagnetic (AFM) configuration is shown in
Fig. 4, where the red and green arrows represent spin up and
spin down, respectively.

FIG. 2. (a) Top view and (b) side view of Cr2Ge2Te6 (CGT)
monolayer, and the irreducible Brillouin zone of CGT monolayer (c).
The Cr, Ge, and Te atoms in (a), (b) are denoted in gray, purple, and
dark green colors, respectively.

For FM configuration, the total energy of CGT unit cell can
be written as

EFM = EN − JZS2
0, (29)

while that for antiferromagnetic configuration should be writ-
ten as

EAFM = EN + JZS2
0 . (30)

EN is the energy of the CGT monolayer when magnetism is
out of consideration, and Z is the coordination number for
the nearest-neighboring exchange interaction. The magnetic
moment of the Cr atom is obtained as 3.14 μB by VASP, which
is very close to the ideal value (3 μB). So, we set S0 as 3

2 for
Cr3+ ion. Then, the nearest-neighboring exchange constant
can be calculated by

J = (EAFM − EFM )
/(

2ZS2
0

)
. (31)

The ground state of the CGT monolayer can be determined
through comparing EFM to EAFM. If EFM is lower than EAFM (a
positive exchange constant), the ground state is ferromagnetic.
On the opposite side, the negative exchange constant reveals
the antiferromagnetism ground state. At zero temperature, the
nearest-neighbor exchange constant in the CGT monolayer is
4.557 meV, revealing the FM ground state. In the following
section, we would use the exchange constant J at zero tem-
perature to calculate the magnon dispersion and investigate
the MMI, following the previous studies [77,78] because the
temperature dependence of J is negligible. Moreover, we also
predicted the Curie temperature as 53 K of the CGT mono-
layer using mean-field theory by [31,65]

TC = ZJ

3kB
, (32)

which agrees well with the Curie temperature Tc of 60 K in
previous theoretical and experimental reports [76,79,80]. The
Curie temperature and other magnetic properties of mono-
layer CGT are summarized in Table II. Here, we focus on

TABLE I. Lattice constant, length of Cr-Te bond, the bond angle of Cr-Te-Cr, and distance of the nearest exchange coupling for Cr2Ge2Te6

monolayer.

Lattice parameter (Å) Bond length of Cr-Te (Å) Bond angle of Cr-Te-Cr (deg) Distance for nearest coupling (Å)

6.83 2.77 84.43 3.94
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FIG. 3. (a) Phonon spectrum and (b) phonon density of state
(PDOS) of CGT monolayer.

the MMI at the finite temperature below 60 K. The magnon
dispersions of the CGT monolayer calculated through Eq. (30)
at temperatures of 0, 15, 30, and 45 K are represented by
black, red, blue, and green spheres in Fig. 5(a). It is obvious
that the acoustic branch of the spin-wave spectrum shows zero
frequencies at the � point, different from the case in CrI3

[81]. This is because the magnetic anisotropy is ignored in
the Heisenberg Hamiltonian of the CGT monolayer, while the
magnetic anisotropy of CrI3 is comparable to its exchange
interaction and cannot be neglected [29,33]. In addition, an
external magnetic field of 0.1 T along the c axis is taken into
consideration in the spin-wave spectrum because of the Zee-
man energy in the Heisenberg Hamiltonian. It can be found
that the magnon frequency at finite temperature is consistent
globally with the zero temperature spectra except for a slight
redshift. The temperature induced redshift in magnon disper-
sion at finite temperature should be ascribed to the correction
energy EDI caused by the dynamical interaction.

The correction energies EDI caused by the dynamical in-
teraction for optical and acoustic magnons are presented in
Figs. 5(b) and 5(c). It should be noted that the range of the Y
axis in Fig. 5(b) is 0.2 to −1.4 meV which is about 25 times
smaller than that in Fig. 5(a), so that the acoustic mode in
Fig. 5(b) looks changed more obviously with temperature.
To observe the relationship between ESI and EDI, we sam-
pled the wave vectors from the center (�) to the boundary
(M) of the Brillouin zone. All of the correction energies EDI

at k = 1.03 × 106 (0.02), 1.03 × 107 (0.2), 2.06 × 107 (0.4),

FIG. 4. The diagram of ferromagnetic (FM) and antiferromag-
netic (AFM) configurations in CGT monolayer. The red arrow
represents spin up, while the green arrow represents spin down.

3.09 × 107 (0.6), 4.12 × 107 (0.8), and 5.15 × 107 cm−1 (1.0
π /a) are negative revealing the influence of dynamical inter-
action on the spin-wave spectrum is to reduce the magnon
frequency. The decrease in an optical magnon is more
pronounced than that in an acoustic magnon, because the cor-
rection energy EDI is proportional to the static magnon energy
ESI as shown in Eq. (30). More importantly, the correction
energies EDI at all k points become more negative with the
increase of temperature, which is consistent with previous
theoretical study on EuO using Dyson-Maleev theory [69].

B. Magnon-magnon interaction
and spin autocorrelation function

In this work, the MMI strength is investigated by cal-
culating the spin autocorrelation functions 〈S+

k (t )S−
−k (0)〉,

〈S−
k (t )S+

−k (0)〉, and 〈Sz
k (t )Sz

−k (0)〉. These spin autocorrelation
functions are supposed to dominate electric spin injection,
chemical potential-driven transport, which is related to the
spin Seebeck effect [78,82,83]. The solutions of the Heisen-

berg equation of motion, ih̄ ∂ak (a+
k )

∂t = h̄ωkak (a+
k ), based on

H(T) for ak (t ) and a+
k (t ) are

ak (t ) = ak (0)e−iωkt , a+
k (t ) = a+

k (0)eiωkt . (33)

Due to the external magnetic field along the c axis, we
would put particular emphasis on the spin autocorrelation
function 〈Sz

k (t )Sz
−k (0)〉. In the reciprocal space, Sz

k can be
represented as

Sz
k = N− 1

2

∑
l

e−ik·rl Sz
l = N

1
2 S0δk,0 − N− 1

2

∑
k′

a+
k′ ak′+k .

(34)

TABLE II. Magnetic moment on Cr3+ ion, energies for in-plane and out-of-plane magnetization, magnetic anisotropy energy, and Curie
temperature for Cr2Ge2Te6 monolayer.

Magnetic moment Energy for in-plane Energy for out-of- Magnetic anisotropy Curie temperature
(μB) FM (eV) plane FM (eV) energy (meV) (K)

3.14 –49.0513 –49.0510 –0.3 53
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FIG. 5. Effects of temperature on spin-wave spectrums (a); the correction energies EDI from dynamical interaction for acoustic (b) and
optical (c) magnons in CGT monolayer at finite temperature. In (b), (c), wave vector k = 1.03 × 106 (0.02), 1.03 × 107 (0.2), 2.06 × 107 (0.4),
3.09 × 107 (0.6), 4.12 × 107 (0.8), and 5.15 × 107 cm−1 (1.0 π /a) are sampled along the path from center (�) to boundary (M) in the Brillouin
zone.

Then 〈Sz
k (t )Sz

−k (0)〉 can be written as

〈
Sz

k (t )Sz
−k (0)

〉 = Tr
(
e−θH

{[
N

1
2 S0δk,0 − N− 1

2
∑

k′ a+
k′ (t )ak′+k (t )

][
N

1
2 S0δ−k,0 − N− 1

2
∑

k′′ a+
k′′ (0)ak′′−k (0)

]})
Tr(e−θH )

= 〈
NS0

2δk,0
〉 − S0δk,0

〈[∑
k′

a+
k′ (t )ak′+k (t ) +

∑
k′′

a+
k′′ (0)ak′′−k (0)

]〉
+ N−1

∑
k′,k′′

〈a+
k′ (t )ak′+k (t )a+

k′′ (0)ak′′−k (0)〉

= NS0
2δk,0 − 2S0δk,0

∑
k′

〈a+
k′ (0)ak′+k (0)〉 + N−1

∑
k′

e−i(ωk′+k−ωk′ )t
〈
a+

k′ (0)ak′+k (0)a+
k′+k (0)ak′ (0)

〉
. (35)

Here, we also employed Wick’s theorem to decouple these four magnon operators [68], and it is

〈
Sz

k (t )Sz
−k (0)

〉 =
{

NS0
2δk,0 − 2S0δk,0

∑
k′ 〈nk′ 〉+N−1 ∑

k′ (2〈nk′ 〉2+〈nk′ 〉) (k = 0)

N−1 ∑
k′ e−i(ωk′+k−ωk′ )t 〈nk′ 〉〈nk′+k+1〉 (k �= 0)

, (36)

with 〈nk〉 = 〈a+
k ak〉. It is worth noting that 〈nk〉 is mainly

contributed by acoustic magnons with respect to optical
magnons, because of the low population of the latter. The
spin autocorrelation functions in the long-wavelength limit
(k = 5.15 × 104 cm−1 = 0.001 π/a) at 55 and 5 K, and
under external magnetic field B of 0.1 T are shown in
Figs. 6(a) and 6(b), while that in the short-wavelength limit
(k = 5.15 × 107 cm−1 = 1 π/a, with T = 55 K and B = 5 T)
is presented in Fig. 6(c). As shown in Fig. 6(a), it is obvious
that the spin autocorrelation function decays with time and
gradually converges. It is noted that the spin autocorrela-
tion function is used to investigate the decay of the magnon
energy with time at a specific wave vector. When the am-
plitude of the spin autocorrelation function is zero, it reveals
complete decoherence of magnons. In order to obtain the re-
laxation time τMM governed by magnon-magnon interaction,
an exponential decay function [ f (t ) = A exp(–t/τMM)] was
employed to fit the envelope of spin autocorrelation function,
as plotted by the red solid line in Fig. 6. The relaxation
time τMM of the spin autocorrelation function can reflect
the strength of MMI, and the shorter τMM corresponds to a
stronger MMI.

Comparing Figs. 6(a) with 6(b), there is a significant tem-
perature dependence in the decay rate of spin autocorrelation
function when temperature T decreases from 55 to 5 K. Com-
paring Figs. 6(a) with 6(c), it can be found that the increase
of wave vector k from the long-wavelength limit to the short-

wavelength limit causes substantial reduction in the relaxation
time τMM. Besides, when the external magnetic field B in-
creases from 0.1 to 5 T, the decay rate of spin autocorrelation
function also increases. Figure 6(d) presents the spin autocor-
relation function at k = 5.15 × 104 cm−1 for T = 55 K and
B = 0.1 T, where only the contribution of acoustic magnons is
taken into consideration. Comparing Figs. 6(a) to 6(d), similar
results [τMM = 120 μs for Fig. 6(a) and τMM = 146 μs for
Fig. 6(d)] suggest the spin autocorrelation function is mainly
raised from acoustic magnon-magnon interaction. Next, we
systematically explore the dependence of the spin autocor-
relation function and relaxation time τMM on wave vector k,
temperature T, and magnetic field B.

C. Magnon relaxation time

In Fig. 7 the wave vector dependence, the temperature
dependence, and the frequency dependence of the relaxation
time are presented. Firstly, we focus on the wave-vector de-
pendence. Here, we extract the relaxation time τMM based on
the spin autocorrelation function throughout the whole wave-
length regime, temperature is fixed at 30 K, and magnetic field
is 0.1 T, as shown in Fig. 7(a). It is obvious that the relaxation
time τMM decreases monotonously with wave vector k. The
energy of acoustic magnon at the boundary of the Brillouin
zone is much higher than that at the zone center, and the
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FIG. 6. (a) Autocorrelation function at k = 5.15 × 104 cm−1 at
external magnetic field B = 0.1 T and temperature T = 55 K. (b)
Autocorrelation function at k = 5.15 × 104 cm−1 at external mag-
netic field B = 0.1 T and temperature T = 5 K. (c) Autocorrelation
function at k = 5.15 × 107 cm−1 at T = 55 K and B = 5 T. (d) The
spin autocorrelation function only contributed by acoustic magnons.
In (d), k = 5.15 × 104 cm−1, T = 55 K, and B = 0.1T. The red solid
lines represent the results fitted by exponential decay functions.

higher magnon energy leads to a faster decay rate of spin
autocorrelation function.

The temperature dependence of relaxation time τMM

for magnons in the long-wavelength limit (k = 5.15 ×
104 cm−1 = 0.001 π/a) and at the boundary of the Bril-
louin zone (k = 5.15 × 107 cm−1 = 1 π/a) is presented in
Fig. 7(b). It is interesting that the relaxation times τMM in the
long-wavelength limit and the short-wavelength limit show
completely opposite temperature dependence. In the long-
wavelength limit, the relaxation time τMM increases with
temperature, while it shows a reduction with temperature
increasing at the boundary of the Brillouin zone. It can be
obtained from Eq. (36) that the decay rate of spin autocorre-

FIG. 8. (a) The magnetic field dependence of τMM at T = 30 K.
(b) The frequency dependence of τMM at T = 30 K when magnetic
field varies from 0.1 to 5 T. In (b), the τMM versus frequency curves
are shown in log-log scale.

lation function depends on the magnon frequency. However,
the magnon frequency decreases with temperature due to the
dynamical interaction, as shown in Fig. 5. Therefore, the
decay rate of spin autocorrelation function reduces with tem-
perature, which leads to the increase in relaxation time τMM

for long-wavelength magnons. At the boundary of Brillouin
zone, relaxation time τMM decreases with temperature due to
the strong anharmonic behavior. In Fig. 7(c), we present the
frequency dependence of relaxation time τMM under magnetic
field B = 1 T at different temperatures (T = 10–50 K). It is
obvious that the relaxation time τMM at different temperatures
show similar frequency dependence. Meantime, an anhar-
monic behavior can be observed.

The dependence of relaxation time τMM on the strength
of magnetic field at k = 5.15 × 104 cm−1 and k = 5.15 ×
107 cm−1 at T = 30 K are presented in Fig. 8(a). It is
found that the relaxation time in both long-wavelength and
short-wavelength limits decreases with the enhancement of
magnetic field, which is opposite of temperature dependence.
Such an enhancement of the magnetic field increases the
magnon frequency ωk, resulting in the rapid decay of spin
autocorrelation function. These opposite impacts between
temperature and magnetic field can also be observed in Fig. 9,
which shows the normalized magnetic moment per Cr3+ ion

FIG. 7. (a) The wave-vector dependence of relaxation time τMM governed by magnon-magnon interaction at T = 30 K and B = 0.1 T. It is
plotted in log-log scale. (b) The temperature dependence of τMM at k = 5.15 × 104 cm−1 and k = 5.15 × 107cm−1. Here B = 1.0 T. (c) τMM

as a function of acoustic magnon frequency. Here B = 1.0 T, and temperature changes from 10 to 50 K.
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FIG. 9. The magnetic moment per Cr3+ ion normalized to M0

(M0 = 3 μB ) versus magnetic field. In this figure, the temperature
changes from 5 to 55 K.

at different temperature and magnetic field. The magnetic
moment M per Cr3+ ion is calculated by [84]:

M(B, T ) = gμB

∑
l

(S0 − 〈a+
l al〉B,T )

= M0

(
1 − 1

NS0

∑
k

〈a+
k ak〉B,T

)
, (37)

where M0 = gμBS0 = 3μB is the magnetic moment of Cr3+

at zero temperature. The dependence of normalized magnetic
moment to M0 on magnetic field B at different temperatures
is shown in Fig. 9. It is obvious that the magnetic moment
grows with the enhancement of the magnetic field and tends
to a specific value, while it decreases close to zero with the

increase of temperature. These results reveal the magnon den-
sity 〈a+

k ak〉 increases with temperature but decreases with the
enhancement of magnetic field [85], which is in agreement
with results in Figs. 7 and 8. Figure 8(b) presents τMM as a
function of frequency under different magnetic field. Overall,
τMM decreases with frequency increases, independent of the
strength of the magnetic field.

IV. CONCLUSIONS

In summary, we established the Heisenberg Hamiltonian
model for ferromagnetic 2D materials at finite temperature by
taking the dynamical interaction into consideration. Based on
this Hamiltonian model, it is found the increase of temper-
ature results in a non-negligible reduction in the spin-wave
spectrum, especially the optical branch. Furthermore, the re-
laxation time τMM governed by magnon-magnon interaction
is also calculated based on decay of spin autocorrelation
function. We find the relaxation time τMM increases with
temperature but decreases with wave vector and magnetic
field, because of the different magnon energy trends. All these
results presented in our work are helpful for the utilization and
manipulation of ferromagnetic 2D materials for applications
in spintronic devices.
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