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The Eilenberger equation is a standard tool in the description of superconductors with an arbitrary degree of
disorder. It can be generalized to systems with linear-in-momentum spin-orbit coupling (SOC), by exploiting
the analogy of SOC with a non-Abelian background field. Such a field mixes singlet and triplet components and
yields the rich physics of magnetoelectric phenomena. In this work we show that the application of this equation
extends further, beyond superconductivity. In the normal state, the linearized Eilenberger equation describes the
coupled spin-charge dynamics. Moreover, its resolvent corresponds to the so-called Cooperons, and can be used
to calculate the weak-localization corrections. Specifically, we show how to solve this equation for any source
term and provide a closed-form solution for the case of Rashba SOC. We use this solution to address several
problems of interest for spintronics and superconductivity. First, we study spin injection from ferromagnetic
electrodes in the normal state, and describe the spatial evolution of spin density in the sample, and the complete
crossover from the diffusive to the ballistic limit. Second, we address the so-called superconducting Edelstein
effect, and generalize the previously known results to arbitrary disorder. Third, we study weak-localization
correction beyond the diffusive limit, which can be a valuable tool in experimental characterization of materials
with very strong SOC. We also address the so-called pure gauge case where the persistent spin helices form.
Our work establishes the linearized Eilenberger equation as a powerful and a very versatile method for the study
of materials with spin-orbit coupling, which often provides a simpler and more intuitive picture compared to
alternative methods.

DOI: 10.1103/PhysRevB.102.235430

I. INTRODUCTION

Materials and nanostructures with spin-orbit coupling
(SOC) are a subject of intensive research because of their po-
tential for application in spintronics [1]. Coupling of spin and
orbital degrees of freedom leads to various magnetoelectric
phenomena, which allow to achieve a spin response by apply-
ing electric fields, and vice versa. Most well-known examples
of such effects are the spin Hall effect [2,3], spin-galvanic
effect (SGE) or inverse Edelstein effect (IEE) [4,5], and in-
verse spin-galvanic effect (ISGE) or Edelstein effect (EE)
[6,7]. Experimental realization of these effects was achieved
in numerous traditional semiconductor structures [1,2], and
more recently in van der Waals heterostructures [8–12].

SOC also has important consequences in the super-
conducting state, particularly in noncentrosymmetric su-
perconductors [13–15]. Namely, SOC induces a mixing
between singlet and triplet correlations [16]. Breaking time-
reversal symmetry in these superconductors may lead to
the formation of modulated helical phases [17–19], as
well as to various superconducting magnetoelectric effects,
such as inducing supercurrents with a static magneti-
zation and vice versa [20–25]. These effects are com-
pletely analogous to SGE and ISGE in the normal state,

respectively [26]. In Josephson junctions, a combination of
time-reversal-symmetry breaking and SOC leads to the so-
called anomalous Josephson effect, where the Josephson
current flows between two superconductors in the absence
of a phase difference [27,28], and which was experimentally
confirmed in several recent works [29–32]. These phenomena
are a basis of the emerging field of superconducting spintron-
ics [33,34].

Another manifestation of SOC in the normal state is the
weak antilocalization [35–37]. Namely, in metals with weak
SOC, constructive electron interference along time-reversed
trajectories increases the probability of electrons moving in
closed loops. As a consequence, the conductance will be
smaller compared to the classical (Drude) one. This phe-
nomenon is known as weak localization (WL). In the presence
of strong SOC, the precession of electrons’ spin leads to a
phase shift and, consequently, destructive interference and a
positive correction to the Drude conductance. This is known
as weak antilocalization (WAL), and it is a widely used tool
for experimental characterization of SOC [38–40].

More recently, an equivalence between the singlet-triplet
dynamics in diffusive superconductors and the spin-charge
transport in the normal state has been established [26,28,41].
In the linearized regime both phenomena are described by
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the same diffusion equation [42–44], the linearized Usadel
equation. The SOC enters this equation as spin precession and
relaxation terms, and as a charge-spin coupling term [45–47],
which in the superconducting case translate into a triplet-
component precession and the singlet-triplet coupling [26].
Furthermore, weak localization is described in terms of two-
particle correlation functions called Cooperons, which can
also be obtained from these equations [36,37,48] (see also
Sec. VI). Therefore, the linearized Usadel equation provides
a universal quasiclassical description of the magnetoelectric
phenomena in both normal and superconducting states, as
well as weak localization, in the diffusive limit. In the op-
posite, pure ballistic, limit, the system is described by the
Eilenberger equation [49]. Its utility to study the triplet preces-
sion mediated by SOC in ballistic superconducting systems
has already been demonstrated in Refs. [50–52], whereas the
singlet-triplet coupling has been analyzed in Ref. [26] in the
linearized case. In this work, we generalize all these works by
providing the universal description of said phenomena at any
disorder from the linearized Eilenberger equation.

We focus on both the normal and superconducting state
with arbitrary degree of disorder and discuss, based on the
Eilenberger equation, several applications related to spin
transport and weak localization. As we will see, this equation
provides a simple and physically transparent picture and al-
lows for analytical solutions in many cases, while at the same
time allowing to describe the full crossover from the diffusive
to the ballistic limit. Moreover, we discuss the one-to-one
analogy to the singlet-triplet dynamics in the superconduct-
ing state as well as the appearance of nonconventional pair
correlations induced by the SOC, which emerges naturally
from the linearized Eilenberger equation. Our method can be
easily adapted to different experimental setups, both in normal
and superconducting regimes, as well to arbitrary linear-in-
momentum SOC.

The article is organized as follows. First, in Sec. II, we
introduce the linearized Eilenberger equation for systems with
any linear-in-momentum spin-orbit coupling, which is the
central equation of this work, and discuss the solution pro-
cedure in a general case, for an arbitrary source term. In
Sec. III, we obtain a closed-form solution for the particular
case of Rashba SOC [53]. We use this solution for three
applications: local spin injection (Sec. IV), superconducting
Edelstein effect at arbitrary disorder (Sec. V), and weak lo-
calization beyond the diffusive limit (Sec. VI). In Sec. VII,
we solve the Eilenberger equation for the case of pure gauge
SOC, and discuss spatial spin structures that form upon local
spin injection.

II. THE LINEAR EILENBERGER EQUATION AND ITS
GENERAL SOLUTION

We consider a system of conducting electrons with arbi-
trary linear-in-momentum SOC, HSO = αa

k pkσ
a, where pk are

components of the electron momentum, σ a are Pauli matrices,
and αa

k is a pseudotensor parametrizing a coupling of orbital
and spin degrees of freedom. The system can be conveniently
described using the SU(2) covariant [54–57] Hamiltonian

H = (pk − Ak )2

2m
+ Vimp, (1)

where Ak = 1
2Aa

kσ
a ≡ −mαa

k σ
a is an effective SU(2) vector

potential, and the Vimp accounts for random spin-independent
disorder. In the superconducting state, Hamiltonian (1) ac-
quires a structure in the Nambu space and needs to be
supplemented with the superconducting pairing term which
is off diagonal in this space.

Within the quasiclassical approximation, which assumes
that all energy scales are much smaller than the Fermi energy
EF , our system is described by the two-time quasiclassical
Green’s function ǧ(n, r, t, t ′) in Keldysh-Nambu-spin space.
It depends on the momentum direction n = p/pF and position
r, and satisfies the Eilenberger equation

vF ni∇̃iǧ + [ω̌ − i�̌, ǧ] = 1

2m

{
niFi j, ∂n j ǧ

} + 1

2τ
[ǧ, 〈ǧ〉].

(2)
In the absence of SOC, Eq. (2) can be derived by following
the standard procedure [49,58]. However, for a correct in-
clusion of the SOC within the quasiclassical approach it is
necessary to use the SU(2) covariant formulation, in which the
SOC enters as a background SU(2) gauge field [28,41,50,59].
Within this formulation the Eilenberger equation is written
in terms of covariant derivatives ∇̃i· = ∂i − i[Ai, ·] and the
SU(2) magnetic field Fi j = ∂iA j − ∂ jAi − i[Ai,A j]. 1/τ is
the disorder scattering rate, and 〈· · · 〉 is the average over the
direction of the Fermi momenta described by the unit vector
n. Summation over repeated indices is implied. The commu-
tator in the covariant derivative describes the spin precession
due to SOC, while the anticommutator in Eq. (2) leads to
singlet-triplet or spin-charge coupling. Superconducting order
is described by the anomalous self-energy term �̌ and ω̌ =
∂tδ(t − t ′)τz, where τi are Pauli matrices spanning the Nambu
space. The Green’s function has the following structure in the
Keldysh subspace: ǧ = [gR gK

0 gA], where R, A, and K denote the
retarded, advanced, and Keldysh components, respectively.

We first focus on the normal state, � = 0, in which ǧ
is diagonal in the Nambu space, and the advanced and re-
tarded components are trivial, gR,A(t, t ′) = ±δ(t − t ′)τz. The
properties of the system are then solely determined by the
nonequilibrium distribution function f which is a matrix in
spin space equal to the Keldysh component evaluated at same
times, f (t ) = τzgK (t, t )/2. Then, starting from Eq. (2), after
performing the Fourier transform in the time domain, the
Eilenberger equation reduces to

vF ni∇̃i f + iω f = 1

2m
{niFi j, ∂n j f } − 1

τ
( f − 〈 f 〉) + G(r),

(3)
where ω is the frequency. In the right-hand side we have added
a generic source term, G(r). Physically the latter describes a
generation or injection of spin and/or charge. One possible
realization of such a term is a spin injection induced by a
time-dependent Zeeman field h, as discussed in Ref. [41], for
which G(r) ∝ ∂h(r)/∂t �→ iωh. The distribution function f
in Eq. (3) has the form

f = f0 + f jσ j, (4)

where f0 describes the nonequilibrium charge, and f j , with
j = x, y, z, the three nonequilibrium spin components. The
anticommutator in the first term on the right-hand side of
Eq. (3) is responsible for the charge-spin coupling via the
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SU(2) magnetic field, which was widely studied in the context
of the spin Hall effect [44,59].

One interesting aspect of Eq. (3) is that it also describes,
after minor modifications, the equilibrium properties of either
a superconductor at a temperature close to its critical tem-
perature, or a nonsuperconducting material weakly coupled
to a superconductor. Being in equilibrium, these two situa-
tions can be written in terms of the Matsubara frequencies
ωn = 2πT (n + 1

2 ), where T is the temperature, such that ǧ in
Eq. (2) is the quasiclassical Matsubara Green’s function which
is a matrix in the Nambu-spin space. Equation (2) has the same
form after substituting ω̌ by ωn. Because superconducting
correlations are assumed to be weak, one can approximate
ǧ ≈ [sgnωn f

f̄ −sgnωn
], where now f describes the superconduct-

ing anomalous component of the Green’s function and f̄
its time-reversal conjugate, defined as f̄ (n) = σy f ∗(−n)σ y.
Linearization of the the Eilenberger equation (2) with respect
to f leads to Eq. (3) with the substitution iω → 2ωn and
(1/τ ) → (1/τ )sgnωn.

The spin structure of f is the same as in the normal case,
Eq. (4), but now f0 describes the singlet component of the
superconducting condensate, whereas f j describes the three
triplet components. Hence, the term with the SU(2) mag-
netic field in Eq. (3) describes the singlet-triplet coupling via
the SOC. This establishes the equivalence between the spin-
charge dynamics in the normal state with the singlet-triplet
dynamics in the superconducting state: both are described by
the linearized Eilenberger equation. This equivalence turns
out to be very useful in tackling transport problems of rather
different systems and finding analogies between them, as we
discuss in subsequent sections. But first, we present the gen-
eral solution of the linear Eilenberger equation, Eq. (3), which
can be be applied to a wide range of problems.

In order to solve Eq. (3), we transform it to the momentum
space, where Q is the momentum conjugated to the position
r, so we have

f (1 + iQinil + iωτ ) − i[lniAi, f ]

= 〈 f 〉 + G(Q)τ + l

2pF

{
niFi j, ∂n j f

}
, (5)

where l = vF τ is the mean free path. The second term in the
first line describes spin precession due to the SOC, whereas
the last term is the spin-charge coupling term. The latter is

a factor A/pF smaller than the precession one. Therefore,
within the quasiclassical approximation, it can be treated per-
turbatively by expanding f ≈ f (0) + f (p), where the indices 0
and p denote the bare solution and the perturbative correction,
respectively. Then, the following equations are satisfied:

f (0,p)(1 + iδ + iωτ ) − [
, f (0,p)] = X (0,p), (6)

where we introduce the notation δ = Qinil , 
 = lniAi,
and source terms X (0) = 〈 f 〉 + G(Q)τ and X (p) =

l
2pF

{niFi j, ∂n j f (0)}. The solution of Eqs. (6) can be written in
terms of the averaged 〈 f 〉,

f (0,p) = 1

2|
|2
1

1 + iδ + iωτ
{
, X (0,p)}
 + i

M
[
, X (0,p)]

+ 1

4|
2|
1 + iδ + iωτ

M
[
, [
, X (0,p)],

(7)

where M = (1 + iδ + iωτ )2 + 4|
|2.
Finally, we average Eq. (5) over n:

〈(δ + ωτ ) f − [
, f ]〉 = −iG(Q)τ − i〈X (p)〉. (8)

This equation determines 〈 f 〉 for any linear-in-momentum
SOC. Once 〈 f 〉 is known, the full solution f is readily ob-
tained from Eqs. (7). The 〈· · · 〉 average in Eq. (8) can be
performed analytically in certain particular high-symmetry
cases of SOC. In the present work we address two widely
studied cases: Rashba SOC [53] in Sec. III and the pure gauge
SOC [60] in Sec. VII. In an arbitrary situation Eqs. (7) and (8)
can be solved numerically.

III. CASE OF RASHBA SPIN-ORBIT COUPLING

In this section, we provide the solution of the Eilenberger
equation for the case of Rashba SOC, and discuss it in the
diffusive limit (Sec. III A) and in the ballistic limit (Sec. III B).
The SU(2) vector potential for Rashba SOC is given as Ax =
−mασy, Ay = mασx, so that |
| = αpF τ . The SU(2) mag-
netic field Fxy is then Fxy = −Fyx = −i[Ax,Ay] = 2m2α2σz.

To proceed, we expand 〈 f 〉 = 〈 fi〉σi, i = 0, x, y, z. Then, start-
ing from Eq. (8), after evaluating the averages over the Fermi
surface, we can write a compact expression determining 〈 f 〉:

〈 fi〉 = [1̂ − �(Q)]−1
i j � jk (Q)Gk (Q)τ. (9)

Here, 1̂ is the unity matrix, and � is the so-called matrix
polarization operator defined as

�(Q) =

⎡
⎢⎣

a + b cos 2φ b sin 2φ ie cos φ ig sin φ

b sin 2φ a − b cos 2φ ie sin φ −igcos φ

−ie cos φ −ie sin φ c 0
ig sin φ −igcos φ 0 d

⎤
⎥⎦, (10)

where φ is the angle associated with the momentum direction, such that cos φ = Qx/Q. The first, second, third, and fourth rows
and columns in this matrix correspond to indices x, y, z, and 0, respectively. The coefficients a, c, d , b, e, and g can be expressed
as

a = 1

2T0
+

∑
±

1

4T±
, c =

∑
±

1

2T±
, d = 1

T0
, b = 1

2Q2l2

[
(1 + iωτ )2

T0
+ T0 −

∑
±

1

2

(
t2
±

T±
+ T±

)]
,

e =
∑
±

±it±
2QlT±

, g = γ

2Ql

[
2xα

T0
(1 + iωτ ) + i

∑
±

±T±

]
. (11)
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Here, we used the notation t± = 1 ± ixα + iωτ , T± =√
t2± + Q2l2, and T0 =

√
(1 + iωτ )2 + Q2l2, where xα =

τ−1
α τ , with τ−1

α = 2pF α being the spin-orbit precession rate.
Moreover, we introduced the quantity γ = 1/(2pF vF τ ). The
quantities a, b, c, and d describe diffusion and relaxation
processes, e describes the inhomogeneous spin precession,
while g accounts for spin-charge or singlet-triplet coupling.
Note that, when using Eqs. (9)–(11) to describe the supercon-
ducting state, we need to make the substitutions iω → 2ωn

and (1/τ ) → (1/τ )sgnωn, as explained in Sec. II. The latter
substitution also implies l → l sgnωn, xα → xα sgnωn, and
γ → γ sgnωn.

It is important to emphasize that Eq. (9) is a compact
way of writing 〈 f 〉, but one should bear in mind that the
spin-charge coupling, i.e., the components proportional to g
in Eq. (10), are treated perturbatively, and hence 〈 f 〉 contains
term up to linear order in g.

The operator [1̂ − �(Q)] is the generalized diffusion oper-
ator which includes the charge-spin coupling term. At Q = 0
and ω = 0 it describes the relaxation properties of the system
for arbitrary disorder:

1̂ − �(Q = 0) = diag

(
1

2

x2
α

1 + x2
α

,
1

2

x2
α

1 + x2
α

,
x2
α

1 + x2
α

, 0

)
,

(12)
where “diag” denotes a diagonal matrix. As expected, the
charge component 〈 f0〉 is the only one which does not relax,
in accordance to the charge conservation. In the diffusive
limit, xα � 1, the relaxation operator yields the well-known
Dyakonov-Perel [61] rates for Rashba SOC [1,53,62] (see
Sec. III A).

A. Diffusive limit

In the diffusive limit, the mean free path l is the shortest
length scale in the system. Therefore, we can assume Ql � 1
and expand the quantities in Eq. (11), keeping terms up to
second order in Ql , and taking that SOC is weak compared to
disorder (xα � 1). Equation (9) in this limit reduces to

〈 fi〉 = [1̂ − �D(Q)]−1
i j G j (Q)τ, (13)

where the diffusive polarization operator �D(Q) is given by

1̂ − �D(Q)

= τ 1̂(iω + DQ2)

+ τ

⎡
⎢⎢⎣

τ−1
DP 0 i�pQx i�scQy

0 τ−1
DP i�pQy −i�scQx

−i�pQx −i�pQy 2τ−1
DP 0

i�scQy −i�scQx 0 0

⎤
⎥⎥⎦.

(14)

Equations (13) and (14) yield the well-known spin-charge
coupled system of diffusion equations [42–44]. Here, D =
1
2v2

F τ is the diffusion constant, τ−1
DP = x2

α/(2τ ) is the
Dyakonov-Perel spin relaxation rate, �p = xα/τ is the spin
precession rate, and �sc = γ x3

α/(2τ ) is the spin-charge cou-
pling rate.

FIG. 1. Schematic representation of the spin injection experi-
ment. The injector F is a ferromagnetic electrode, oriented along the
y direction.

B. Ballistic limit

If the mean free path is the longest length scale in the
system, we may take the limit l/lα → ∞, where lα = vF τα .
Equation (9) then becomes

〈 fi〉 = [�B(Q)]i jG j (Q)τα, (15)

where we defined the ballistic polarization operator �B(Q) as

�B(Q) = lim
l/lα−>∞

l

lα
�(Q). (16)

�B(Q) has the same form as �(Q) in Eq. (10), with the
substitutions a → aB, b → bB, c → cB, d → dB, e → eB, and
g → gB. These coefficients acquire a particularly simple form
at ω = 0, when they are purely real and read

cB = Re
1√

Q2l2
α − 1

, dB = 1√
Q2l2

α + l2
α/l2

,

aB = dB

2
+ cB

4
, bB = dB

2
− cB

4
+ cB

Q2l2
α

− 2δ(Qlα ),

eB = − cB

Qlα
, gB = γα

Qlα
Im

1√
Q2l2

α − 1
. (17)

Here, we introduced the quantity γα = 1/(2pF vF τα ). Note
that we keep the lα/l contribution in the expression for dB in
Eq. (17). Namely, if we neglected this contribution, we would
have dB(Q) = 1/(|Q|lα ), which does not have a well-defined
Fourier transform to the real space. Keeping small lα/l reg-
ularizes the Fourier integral, which scales as dB(x) ∼ ln lα/l .
This fact is used in Sec. IV to obtain the results in the ballistic
limit presented in Figs. 2 and 3.

IV. APPLICATION: LOCAL SPIN INJECTION

Having established the solution of the Eilenberger equation
for the case of Rashba SOC with an arbitrary source term in
Sec. III, we now turn to various applications. In this section,
we consider the problem of spin injection from a narrow,
infinitely long ferromagnetic electrode, placed on top of a
Rashba conductor (see Fig. 1). The electrode lies along the
y direction, so the system is inhomogeneous only along the
x direction, which makes this problem effectively one dimen-
sional. Such spin injection can be modeled by a source term
G(r) = Giσiδ(x), where i = x, y, z denotes the injected spin
component. Conveniently, in the momentum space this source
term reduces to a constant, Gi(Q) = Gi.

This kind of setup was already studied in Ref. [42], but
only in the diffusive limit. By contrast, our result provides
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FIG. 2. Spatial dependence of (a) spin density Sx , (b) spin density
Sz, and (c) charge current density Jy, induced by a local spin injection
of the x component of the spin. Black curves correspond to the
exact numerical solution, whereas the red and green curves are the
approximate solutions in the diffusive limit (for αpF τ = 0.1) and in
the ballistic limit, respectively.

a full crossover from the ballistic to the diffusive limit. Fur-
thermore, our approach based on the Eilenberger equation is
significantly simpler compared to the standard density matrix
calculation employed in Ref. [42].

Similar spin injection setups, with one or multiple fer-
romagnetic electrodes, were employed in numerous recent
experimental studies of magnetoelectric phenomena in van
der Waals heterostructures of graphene [8–10,10–12]. Note
that, although graphene on its own has very weak SOC,
various kinds of SOC (including the Rashba kind) can be
induced in graphene sheets in these heterostructures [63,64].
The combination of exceptional transport properties and car-
rier mobilities of graphene, and strong SOC, makes these
structures one of the most promising platforms for future
spintronic devices [65].

The spin density Si (i = x, y, z) is given as

Si = NF 〈 fi〉, (18)

where NF is the density of states at the Fermi energy.
In the linearized Eilenberger equation, we do not treat

FIG. 3. Spatial dependence of (a) spin density Sy and (b) elec-
trochemical potential δμ induced by a local spin injection of the y
component of the spin. Black curves correspond to the exact numer-
ical solution, whereas the red and green curves are the approximate
solutions in the diffusive limit (for αpF τ = 0.1) and in the ballistic
limit, respectively.

explicitly the mean-field electrostatic potential by absorbing
it into the definition of the charge distribution function f0. In
this approach the average value 〈 f0〉 yields the variation of the
electrochemical potential

δμ = 〈 f0〉. (19)

If needed, the corresponding charge density δn = NF (δμ +
eδϕ) can be determined by solving the Poisson equation for
the electrostatic potential δϕ.

The polarization operator in the present one-dimensional
setup (φ = 0) acquires the form

�(Q) =

⎡
⎢⎣

a + b 0 ie 0
0 a − b 0 −ig

−ie 0 c 0
0 −ig 0 d

⎤
⎥⎦. (20)

In the following, we are interested in the spatial evolution
of Si and δμ, which is obtained by solving Eq. (9) and per-
forming the Fourier transform

f (x) = F[ f (Q)] =
∫ ∞

−∞

dQ

2π
eiQx f (Q). (21)

The polarization of the injected spin can be controlled by
changing the magnetization direction of the ferromagnetic
electrode. In the following, we consider two scenarios: first,
injection of the spin component perpendicular to the injector
(Gx), and second, injection of the spin component parallel to
the injector (Gy). They are addressed in Secs. IV A and IV B,
respectively. The dynamics of spin and charge is governed
by different mechanisms in the two scenarios. Namely, in
the first scenario, the injected spin Sx induces Sz via the
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inhomogeneous spin precession. Coupling between these two
spin components is described by the coefficient e in the polar-
ization operator �(Q) [see Eq. (20)]. In the second scenario,
the injected spin Sy induces a charge density δn via the spin-
charge coupling [coefficient g in �(Q)].

A. Injection of spin polarized in x direction

If the x component of the spin is injected (Gx �= 0, Gy =
Gz = 0), this leads to the finite Sx component in the system,
but also a finite Sz component, induced by the inhomogeneous
spin precession. Solving Eq. (9) yields

Sx(Q)

NF Gxτα

= xα

(a + b)(1 − c) + e2

(−1 + a + b)(−1 + c) − e2
,

Sz(Q)

NF Gxτα

= xα

−ie

(−1 + a + b)(−1 + c) − e2
. (22)

Furthermore, there is a finite charge current flowing in the y
direction, defined as

Jy(Q) = NF 〈ny f0〉. (23)

Using the expression for f0 obtained using Eq. (7), we find

Jy(Q)

γα

= iSz(Q)

2Ql

[
−2T0 +

∑
±

t± + Q2l2

T±

]

− i(Sx(Q) + NF Gxτ )

2Q2l2

[
ixαT0 −

∑
±

(
ixαQ2l2

T±
± T±

)]
.

(24)

1. Total spin and current

The total (integrated) spin for the component Sx is readily
found as∫ ∞

−∞
dxSx(x) = Sx(Q = 0) = NF xα

(
1 + 2

x2
α

)
Gxτα. (25)

Similarly,∫ ∞

−∞
dxSz(x) = 0,

∫ ∞

−∞
Jy(x) dx = NF xαGxταγα. (26)

Note that Sx and Jy are even functions in x, whereas Sz is an
odd function. For that reason, integrated Sz yields zero.

2. Diffusive limit

In the diffusive limit xα � 1, it is possible to obtain analyt-
ical expressions for Sx(x), Sz(x), and Jy(x). Starting from the
polarization operator specified in Eq. (14), after the Fourier
transform we obtain

Sx(x)

NF Gxτα

= Re
1 + 5i√

7

xακ
e− κ|x|

lα ,
Sz(x)

NF Gxτα

= 4xIme− κ|x|
lα√

7|x|xα

,

Jy(x)

NF Gxταγα

= Rexα

3i√
7

− 1

κ
e− x

lα
κ , (27)

where κ2 = (−1 + i
√

7)/2.

3. Ballistic limit

Starting from Eq. (15), we straightforwardly obtain the
following expressions in the ballistic limit:

Sx(Q)

NF Gxτα

= aB(Q) + bB(Q),
Sz(Q)

NF Gxτα

= −ieB(Q),

Jy(Q)

NF Gxταγα

= aB(Q) − 2cB(Q). (28)

We calculate Sx(x), Sz(x), and Jy(x) by performing the
Fourier transform of Eqs. (22) and (24) numerically. The re-
sults are shown in Fig. 2 as black curves for various values of
αpF τ . The expressions obtained in the diffusive and ballistic
limit are also plotted as colored curves for comparison. All
three quantities oscillate in space with a period determined
by the spin precession length lα , and decay on the distances
comparable to the mean free path l due to spin relaxation.

B. Injection of spin polarized in y direction

Next, we consider injection of the y component of the spin
(Gy �= 0, Gx = Gz = 0). Aside from the finite spin density Sy,
a finite change of the electrochemical potential δμ, leading to
a finite charge density δn, is also generated, due to spin-charge
coupling. Solving Eq. (9), we obtain

Sy(Q)

NF Gyτα

= xα

b − a

(−1 + a − b)
,

δμ(Q)

Gyτα

= xα

ig

(−1 + a − b)(−1 + d )
. (29)

Unlike the previously considered case in Sec. III A, there
is no finite charge current: we readily check that Jx(Q) =
NF 〈nx f0〉 = 0.

The electrochemical potential δμ(Q) has a pole of order
1 at Q = 0. We may add and subtract Res[δμ(Q = 0)]/(Ql )
from δμ(Q), and apply the Fourier transformation (21). This
way, we obtain

δμ(x)

Gyτα

= F
[
δμ(Q) + 2iγα

Ql

]
+ 2γα�(x). (30)

This equation describes a voltage jump, from zero to the
maximal value determined by the prefactor of the � function,

δμmax = 2Gyταγα = Gy

pF vF
. (31)

Therefore, the system acts as a spin-controlled battery: by
injecting a y component of a spin, a voltage drop is generated
as a consequence of spin-charge conversion. Remarkably, the
generated voltage drop of Eq. (31) is universal and depends
neither on SOC strength α nor on the momentum relaxation
time τ . Of course, this holds true only if the size of the sample
in the x direction is larger that the spin precession length and
the mean free path.

1. Total spin

Similarly to Eq. (25), we find the total spin Sy as∫ ∞

−∞
dxSy(x) = NF xα

(
1 + 2

x2
α

)
Gyτα. (32)
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2. Diffusive limit

In the diffusive limit xα � 1, we readily obtain analytical
results in the real space by utilizing the polarization operator
in Eq. (14):

Sy(x)

NF Gyτα

= e−|x|/lα

xα

,

δμ(x)

Gyταγα

= ex/lα�(−x) − e−x/lα�(x) + 2�(x). (33)

3. Ballistic limit

Using Eq. (15), we find in the ballistic limit

Sy(Q)

NF Gyτα

= aB(Q) − bB(Q),
δμ(Q)

Gyτα

= −ieB(Q). (34)

We calculate Sy(x) and δμ(x) by performing the Fourier
transform (21). The results are shown in Fig. 3 as black curves
for various values of αpF τ . The expressions obtained in the
diffusive and ballistic limit are also plotted as colored curves
for comparison.

V. APPLICATION: SUPERCONDUCTING EDELSTEIN
EFFECT AT ARBITRARY DISORDER

In his seminal work, Edelstein showed that an equilibrium
supercurrent in Rashba superconductors can generate a finite
spin polarization, both in the ballistic [20] and the diffusive
limit [22]. This is known as the superconducting Edelstein
effect (EE), and it is naturally understood as a consequence of
SOC-mediated singlet-tripled coupling [26]. In this section,
we apply the results of Secs. II and III to study this effect.
As we show, our approach allows us to reproduce the afore-
mentioned Edelstein results and generalize them for arbitrary
disorder in just a few lines of calculation.

In the superconducting state, the superconducting correla-
tions appear due to the source term G(r) = −2i�eiφsgn(ωn),
which describes singlet s-wave pairing. The superconducting
phase with the form φ = q · r gives the supercurrent flow-
ing through the system, j ∼ q. For simplicity, we assume
that q lies along the x direction: q = (qx, 0). In momentum
space the source reads G(Q) = −4iπ�δ(Q − q)sgn(ωn), and
one can solve Eq. (9) straightforwardly after the following
substitutions in Eqs. (9) and (10): iω → 2ωn and (1/τ ) →
(1/τ )sgn(ωn) (see Sec. II).

From Eq. (9) we obtain a finite averaged singlet component
〈 f0〉, and a triplet component 〈 fy〉 induced by singlet-triplet
coupling. They are given by

〈 f0〉(Q) = −4iπ�τd

1 − d
δ(Q − q),

〈 fy〉(Q) = 4π�τg

(−1 + a + b)(d − 1)
δ(Q − q). (35)

We are interested in the Edelstein effect, i.e., the linear re-
sponse to the supercurrent. Thus, we may expand 〈 f0〉 and

〈 fy〉 from Eq. (35), retaining only the terms linear in qx:

〈 f0〉 = − i�eiqxx

|ωn| , 〈 fy〉 = �eiqxxγ qxl

ωn

xα x̃2
α

x̃2
α + 4|ωn|τ , (36)

where we introduced x̃2
α = x2

α/[x2
α + (1 + 2|ωn|τ )2]. Note that

the average singlet component 〈 f0〉 is even in frequency, while
the average triplet component 〈 fy〉 is odd in frequency [66].

Using Eq. (7), we can now find the complete solution for
the anomalous Green’s function f . For the singlet component
we obtain

f0 = 〈 f0〉
[

1 − iqxlnxsgn(ωn)

1 + 2|ωn|τ
]
. (37)

Here the first and second contributions have an s-wave and
p-wave symmetry, respectively. The triplet components are

fy = 〈 fy〉
[

1 + 2|ωn|τ
1 + 2|ωn|τ

( − n2
x + n2

y

)]
,

fx = 〈 fy〉 4|ωn|τ
1 + 2|ωn|τ nxny, fz = 〈 fy〉4ωnτ

xα

ny. (38)

The first contribution of fy has an s-wave symmetry, whereas
the second contribution of fy and fx have a d-wave symmetry.
All these triplet components, being even in momentum, are
due to Pauli’s exclusion principle odd in frequency [66–70],
as one can check explicitly from the above expressions. In
contrast, fz has a p-wave symmetry (odd in momentum) and
hence it is an even function of the Matsubara frequency.

Finally, having found f , we now proceed to calculate ob-
servables. For superconductors in the linearized regime, the
spin polarization can be calculated from the expression [26]

Si = iπ

4
NF T

∑
ωn

Tr〈σi( f f̄ + f̄ f )〉sgn(ωn). (39)

Substituting the solutions from Eqs. (37) and (38), keeping
only the terms up to linear order in qx, we obtain

Sy = iπ

2
NF T

∑
ωn

[〈 f0〉〈 f̄y〉 + 〈 f̄0〉〈 fy〉]sgn(ωn) = χqx, (40)

where we introduced the Edelstein response function χ as

χ = πNF T
∑
ωn

γ l�2

|ωn|2
xα x̃2

α

x̃2
α + 4|ωn|τ . (41)

Note that, for completeness, in Eqs. (37) and (38) we write
the complete solution for the singlet and triplet components
of the anomalous Green’s function f . However, most of these
components do not contribute to the Edelstein effect, as can
be seen from Eq. (40). In fact, only the s-wave components
of the singlet f0 and the triplet fy contribute, while all other
p-wave and d-wave components vanish upon Fermi surface
averaging. This is not necessarily the case beyond the linear
response approximation.

Equation (41) is the main result of this section, describing
the Edelstein effect in superconductors with arbitrary disorder.
In the diffusive limit, it reduces the result of Ref. [22]:

χ = πNF T
∑
ωn

l�2

|ωn|
�sc

τ−1
DP + 2|ωn|

, (42)
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whereas in the ballistic limit, we reproduce the result of
Ref. [20],

χ = πNF T
∑
ωn

1

4

1

pF

�2

ω2
n

(αpF )3

|ωn|
[
(αpF )2 + ω2

n

] . (43)

Next, let us consider the inverse Edelstein effect (IEE),
where the presence of a static magnetization can induce a
supercurrent in the systems with SOC. As established in
Ref. [26], there is an Onsager reciprocity between the EE
and IEE, so that the IEE supercurrent is given as jy = eχhx,
where hx = gμBBx is a magnetic field applied along the x
direction. Moreover, the same reference showed that the IEE
is strongly related to the anomalous Josephson effect, where
the Josephson current I acquires an anomalous phase shift
φ0: I = Ic sin(φ − φ0) [27,28]. Namely, both IEE supercurrent
and φ0 arise due to the interplay between the magnetic field
and spin-charge coupling, and both are proportional to the
magnitudes of the magnetic field and the SU(2) field Fi j . Re-
cently, several experiments found evidence of the anomalous
phase shift in structures with strong SOC [29–32]. Another
promising platform for testing this section’s predictions is
superconductor-semiconductor hybrid structures with large
SOC, as studied recently in Ref. [71].

In this section, we demonstrated that our solution of the lin-
earized Eilenberger equation, presented in Secs. II and III, can
be a powerful tool in the study of magnetoelectric phenomena
in superconductors at arbitrary disorder. The same procedure
could be applied to study magnetoelectric effects in systems
with different kinds of linear-in-momentum SOC (other than
Rashba).

VI. APPLICATION: WEAK LOCALIZATION BEYOND THE
DIFFUSIVE LIMIT

The theory of WAL in a Rashba electron gas is well
established in the diffusive limit xα � 1 [36,37,72]. More
recently, Refs. [73,74] attempted to extend this theory beyond
the diffusive limit (xα ∼ 1). However, their results are not
correct due to the inadequate Q expansion of the two-particle
correlators (Cooperons) that determine the W(A)L, as we can
easily check using our method and we discuss in detail in the
following.

WL corrections are most commonly studied using the di-
agrammatic perturbation theory, which involves calculating
disorder averages of two Green’s functions corresponding to
maximally crossed diagrams called Cooperons [75]. In this
work, we use a different approach, which is more physically
transparent and more easily employed beyond the diffusive
limit. Namely, we exploit the fact that the resolvent of the lin-
earized Eilenberger equation also leads to the Cooperon [48].
This holds because superconducting (particle-hole) correla-
tions of the linearized Eilenberger equation are equivalent
to maximally crossed diagrams. This approach is similar to
the field-theoretical treatment of WL using the nonlinear σ

model [76,77].
In order to calculate the weak-localization correction to the

conductance in the two-dimensional Rashba conductor, we
start from the main building block: the Cooperon. It is given

as

C−1(Q) = 2πNF τ [1 − �(Q)], (44)

where �(Q) is the polarization operator defined in Eq. (10).
Then, the interference correction to the Drude conductance is

δσ = e2

2π

∫
d2Q

(2π )2
Tr[C(Q)W ]. (45)

Here, W is the so-called Cooperon weight factor, given as
W = diag(Wx,Wy,Wz,W0), where

W0 = 2πNF v2
F τ 3

0 , Wx = −W0

(
1 + x2

α

4

1 + x2
α

− x2
α

2
(
1 + x2

α

)2

)
,

Wy = −W0
1 + 3x2

α

4

1 + x2
α

, Wz = −W0

(
1

1 + x2
α

− x2
α

2
(
1 + x2

α

)2

)
.

(46)

Equations (45) and (46) are proved in Appendix A using the
diagrammatic perturbation theory.

After inverting Eq. (44) and integrating over the angle
φ, we obtain C(Q) = 1

2π

∫ 2π

0 dφ C(Q) = diag(Cx,Cy,Cz,C0),
where

Cx,y =
[

(4πNF τ )−1

1 − (a − b)
+ (4πNF τ )−1(1 − c)

[1 − (a + b)](1 − c) − e2

]
,

Cz = (2πNF τ )−1[1 − (a + b)]

[1 − (a + b)](1 − c) − e2
, C0 = (2πNF τ )−1

1 − d
.

(47)

The Cooperons Cx,y,z correspond to the three spin triplets,
while C0 is the spin singlet. The weight factor for the singlet
channel W0 is always positive, meaning that it contributes as a
positive (antilocalization) contribution to δσ . In contrast, the
triplet weight factors Wx,y,z are always negative, and yield a
negative (localization) correction to δσ . In the diffusive limit
xα � 1, we recover the well-known result Wx,y,z = −W0 [36].

Note that in Eq. (47) we have neglected the effect of
spin-charge coupling, given by the coefficient g in the po-
larization operator �. This is because in the quasiclassical
approximation g ∼ α/vF � 1, so it gives a negligible contri-
bution compared to other parameters. Therefore, the singlet
Cooperon C0 is unaffected by spin-orbit coupling. An interest-
ing open question is whether for α ∼ vF spin-charge coupling
leads to a suppression of the singlet C0.

To proceed, we note that the integral in Eq. (45) is
dominated by the small Ql values. Therefore, we may
expand the coefficients a, b, c, d , and e assuming small Ql ,
keeping terms up to fourth order: a(Q) ≈ a0 + a2Q2 + a4Q4,
b(Q) ≈ b2Q2 + b4Q4, c(Q) ≈ c0 + c2Q2 + c4Q4, d (Q) ≈
d0 + d2Q2 + d4Q4, and e(Q) = e1Q + e3Q3. All expansion
coefficients are defined in Appendix A. Then, in the
denominators of the first contribution of Cx,y and in C0

we keep terms up to second order in Q. In denominators
of the second contribution in Cx,y and in Cz we keep terms
up to fourth order in Q, while we keep terms up to second
order in the numerators. This way, all Cooperons can be
expressed as diffusion poles after performing a partial
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FIG. 4. Inverse relaxation length |λi|−1 as a function of the pa-
rameter xα . The quantities λ1 and λ2 are complex conjugated in the
plotted range, while λ3 is real.

fraction decomposition, namely,

Cx,y =
∑

i=1,2,3

(
2πNF τ 3v2

F

)−1
Axi

Q2 + λ−2
i

,

Cz =
∑
i=1,2

(
2πNF τ 3v2

F

)−1
Azi

Q2 + λ−2
i

, C0 =
(
2πNF τ 3v2

F

)−1

1
2 Q2

.

(48)

Here, we introduced the relaxation length λi, which is speci-
fied in Appendix B together with the coefficients Ax,zi.

In the study of weak localization it is customary to stop
the Ql expansion of the Cooperon at the second order, as
was indeed done in Refs. [73,74]. However, we find that this
is justified only in the diffusive limit xα � 1. Beyond this
limit, it is actually important to keep the terms up to fourth
order in Ql , as they are needed to obtain the correct value
of relaxation lengths λ1 and λ2. This can be seen from the
explicit equation for λ1,2 in Appendix B. Here, for xα � 1, we
see that the higher-order expansion coefficients a4, b4, c4, and
e3 give contributions of the same order of magnitude as the
lower-order expansion coefficients a0,2, b2, c0,2, and e1.

In Fig. 4 we plot the inverse relaxation lengths as a function
of xα . The lengths λ1,2 are complex, while λ3 is real. In the
strict diffusive approximation xα � 1, these lengths are given

as λ−1
1,2 =

√
(−1 ± i

√
7)/2l2

α and λ−1
3 = 1/lα [42,78].

Finally, the WL correction to the conductance is

δσ = e2

2π

∫ 1/l

1/L

QdQ

2π

∑
i=0,x,y,z

WiCi(Q). (49)

Here, we introduce the upper and lower cutoff of the integral
in Eq. (49), determined by the inverse size of the system
(L) and the inverse mean free path (l), respectively. After
performing the Q integration, we have

δσ

σ0
= ln

L

l
+

∑
i=1,2,3

Ki ln
1 + λ2

i /l2

1 + λ2
i /L2

, (50)

where we introduced K1,2 = 1
4 [Ax1,2(Wx + Wy) + Az1,2Wz],

K3 = 1
4 Ax3(Wx + Wy), and σ0 = e2/(2π2) is the conductance

quantum. The first term in Eq. (50) comes from the singlet
channel, which is not affected by the SOC, while all other

FIG. 5. Weak-localization correction to the conductance normal-
ized with respect to the singlet-channel contribution. The ratio L/l is
fixed to 100.

terms come from triplet channels and are suppressed by the
SOC. In Fig. 5, we plot the WL conductance normalized with
respect to the singlet contribution,

r = δσ

σ0 ln L
l

. (51)

Our results presented in Figs. 4 and 5 differ notably from
the results of Ref. [73]. Most importantly, they report a plateau
in the normalized conductance r at xα ∼ 0.4. As mentioned
previously, Ref. [73] considered only terms up to Q2 in the
Cooperon expansion. However, as we show below Eq. (47)
and in Appendix B, to go beyond the diffusive limit, it is nec-
essary to consider terms up to Q4 in order to obtain the correct
relaxation lengths λi. We therefore argue that the conductance
plateau found in Ref. [73] is not of physical origin, but rather
an artifact of the incorrect Q expansion of the Cooperons.

VII. APPLICATION: PERSISTENT SPIN HELIX

In addition to the Rashba case (Sec. III), another high-
symmetry scenario where it is possible to analytically solve
the linearized Eilenberger equation is the so-called pure gauge
case

Ai = mαih · σ, (52)

where h = (hx, hy, hz ) and σ = (σx, σy, σz ). Namely, this kind
of SOC can be removed from the Eilenberger equation, or
gauged out, by a local unitary transformation of the form
U = eiAiri , where r = (x, y) [60,79–81].

One of the most interesting consequences of the pure gauge
SOC is the absence of spin relaxation for certain spin direc-
tions [82], and formation of stable spatially inhomogeneous
spin structures: the so-called persistent spin helices [60,81].
There are two examples of the pure gauge case that are
widely studied. The first one is a Dresselhaus model for the
quantum wells of GaAs grown along the (110) axis, where
Ax = mασz and Ay = 0. The second example is the compen-
sated Rashba + Dresselhaus model, corresponding to GaAs
structures grown along the (001) axis, where Ax = Ay =
mα(σx − σy).

The latter example can be experimentally investigated by
finely gate tuning Rashba and Dresselhaus SOC so that they
are exactly equal, thus meeting the conditions for emergence
of the spin helix [81,83,84]. In such systems, it is important
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to know the magnitudes of both kinds of SOC, which can
be probed in transport measurements by analyzing W(A)L
corrections [40,85,86] (see also Sec. VI).

Without loss of generality, we fix h · σ = σz and deter-
mine what kinds of spatial spin structures form upon spin
injection in a setup similar to Fig. 1. Because there is no
spin relaxation for certain spin directions in the pure gauge
case, the injected spin grows without bound in the sample.
To remedy this, we modify the setup presented in Fig. 1 by
introducing an additional ferromagnetic electrode, which has
the same magnetization and orientation as the first one, and
at the distance L from it. The first electrode then serves as a
source of spin, while the other one will be a spin sink. The
Eilenberger equation for the pure gauge SOC in real space is
then

∂inivF f − ivF ni[mαiσz, f ]

= − 1

τ
( f − 〈 f 〉) + G[δ(x) + δ(x − L)], (53)

where the two terms proportional to the δ function describe
two ferromagnetic electrodes at positions x = 0 and x = L,
and the source term G has the same meaning as in Sec. IV.

We gauge out the SOC by the unitary transformation

f = U f̃ U †, G = UG̃U †, U = eimriαiσz . (54)

We can now rewrite Eq. (53) as

vF ni∂i f̃ = − 1

τ
( f̃ − 〈 f̃ 〉) + G̃[δ(x) + δ(x − L)]. (55)

To solve Eq. (55), we transform it to the Fourier space

iQinivF f̃ (Q) = − 1

τ
[ f̃ (Q) − 〈 f̃ (Q)〉] + G̃0 + G̃LeiQxL.

(56)

Here, we introduced G̃λ = Gzσzδ(Qyl ) + exp(−iλαxmσz )
G⊥ · σ⊥ exp(iλαxmσz )

∑
±(1 ± σz ) δ(Qyl ± 2mαyl ), with

G⊥ = (Gx, Gy) and σ⊥ = (σx, σy), and λ = 0, L are the
positions of the two electrodes. The solution is

NF 〈 f̃ 〉(Q) = S̃(Q) = NF√
1 + Q2l2 − 1

[G̃0 + eiQxLG̃L]τ,

(57)

where we introduced the spin density S = NF 〈 f 〉. Transform-
ing back to real space, we obtain

S̃(x, y) = −NF

∑
λ=0,L

[
W (x − λ, 0)Gzτσz + W (x − λ, αy)e−iαxm(λ+y)σz G⊥ · σ⊥τeiαxm(λ+y)σz

]
, (58)

where we defined the function

W (x, αy) =
∫

dQx

2π
e−iQxx 1√

1 + Q2
x l2 + 4m2α2

y l2 − 1
.

(59)

The function W can be expressed in terms of known special
functions if αy = 0, namely,

W (x, 0) = −|x|/(2l ) − 1

4π
G2,1

0,1

( 3
2

0, 0, 1
2

∣∣∣∣x2l2

4

)
, (60)

where G2,1
0,1(· · · ) is one of the so-called Meijer G func-

tions [87]. It is instructive to look at the behavior of the
function W (x, αy) for x � l , where we may approximate

W (x, 0) ≈ −|x|
l

, W (x, αy) ≈ e−2mαy
|x|
l

2mαyl
. (61)

The transformed spin S̃ depends on both x and y co-
ordinates, but the physical spin S depends only on the x
coordinate, S(x) = US̃(x, y)U †. This is as expected, since the
injection setup is homogeneous in the y direction. The final
expression for the physical spin is

Sz(x) =
∑

λ=0,L

W (x − λ, 0)NF Gzτ,

S⊥(x) =
∑

λ=0,L

W (x − λ, αy)R[2mαx(x − λ)]NF G⊥τ. (62)

Here R(θ ) = [ cos θ sin θ

− sin θ cos θ] is the rotation matrix for an angle
θ . Note that this result could also be obtained in a more direct
but less elegant way, without exploiting the gauge symmetry,
by directly solving Eq. (8).

Let us discuss the results of Eq. (62) by considering two
scenarios: injection of the z component of the spin (Gz �=
0, Gx = Gy = 0), which is collinear with the gauge SOC po-
tential, and injection of the x component (Gx �= 0, Gy = Gz =
0), which is perpendicular to the SOC potential.

A. Injection of spin polarized in z direction

The Sz spin component does not “feel” the gauge SOC. As
a consequence, it forms a uniform spatial structure away from
the electrodes, as shown in Fig. 6.

FIG. 6. Density of the spin component Sz. Two ferromagnetic
electrodes are placed at the positions x = 0 and x = l .
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FIG. 7. Densities of the spin components Sx (black curve) and Sy (red curve). Two ferromagnetic electrodes are placed at the positions

x = 0 and x = l . The magnitude of spin orbit coupling is fixed to
√

α2
x + α2

y pF τ = 10 in all plots. We consider different angles χ between the

injection axis and the spin-orbit field: (a) χ = π/2, (b) χ = π/4, and (c) χ = 0.

B. Injection of spin polarized in x direction

The behavior of coupled spin components Sx and Sy is
determined by the angle χ between the injector (y axis) and
the vector determined by the SOC potential (αx, αy): tan χ =
αx/αy. As seen from the second line in Eq. (62), αx and αy play
distinctly different roles in determining the spin densities Sy

and Sx. Namely, αx only contributes to the angle of rotation in
the matrix R, and therefore introduces spatial oscillation with
a period 2mαxl . On the other hand, αy enters in the function
W , which decays on the scale of ∼mαyl , and therefore this
term is responsible for the spin relaxation and decay of the
spin density. For the case χ = π/2, there is no spin relax-
ation, meaning that Sx and Sy form a modulated spatial spin
structure, better known as the persistent spin helix. On the
other hand, for the case χ = 0, the spin component Sx rapidly
decays and Sy is not induced. Figure 7 illustrates the behav-
ior of spin components Sx and Sy for several values of the
angle χ .

VIII. CONCLUSION

The Eilenberger equation is a well-known tool used in
the study of superconductivity. In this work we demonstrate
that it can be effectively used in the normal state as well,
where it provides an intuitive tool to study spin transport
and weak localization at any degree of disorder. In Sec. II,
we formulated the linearized Eilenberger equation for any
linear-in-momentum SOC using the covariant SU(2) formal-
ism [Eq. (3)], and provided a generic solution in terms of
Fermi surface averages [Eq. (8)]. For the specific case of
Rashba SOC, this yields a relatively simple closed-form so-
lution, which we elaborate in Sec. III. We used this Rashba
solution to address three unrelated problems.

First, we studied the spin injection problem by a ferromag-
netic electrode. We calculated the spatial distribution of spin
and charge density upon spin injection at arbitrary disorder. In
the case when the injected spin direction is collinear with the
electrode, we demonstrate a “spin battery” effect in Sec. IV B.

Second, we demonstrated the power of our approach to
study magnetoelectric phenomena in superconductors on the
example of the superconducting Edelstein effect. Starting
from our general solution (Sec. III), we recover this effect
in just a few lines of calculation. Moreover, we generalize

previously known results in the ballistic [20] and the diffusive
limit [22].

Third, we addressed the problem of weak localization in
the Rashba conductor beyond the diffusive limit (Sec. VI), and
corrected previous works on this topic. More importantly, we
demonstrated a way to avoid cumbersome diagrammatic cal-
culations and obtain the results in a more transparent manner.
This approach could be useful to describe systems with other
kinds of SOC, for instance the Rashba + Dresselhaus model,
where W(A)L is lately intensively studied both theoretically
and experimentally due to a potential to realize persistent spin
helix structures [40].

Furthermore, we solved the Eilenberger equation for the
so-called pure gauge case in Sec. VII. We studied the
formation of spin textures upon local spin injection, and
demonstrated that they greatly depend on the relative ori-
entation between the injector and the effective SOC vector
potential.

Our work establishes a direct relationship between sev-
eral different phenomena mediated by the SOC: spin-triplet
superconductivity, spin transport, and weak localization. The
presented equations can be used to study all these phenomena
in various systems, such as hybrid nanostructures and inho-
mogeneous systems, and they can be adapted to address novel
materials such as transition-metal dichalcogenide monolayers,
different geometries, and physical situations.
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APPENDIX A: WEIGHT FACTOR IN WEAK
LOCALIZATION

In this Appendix, we prove Eqs. (45) and (46) from the
main text using the diagrammatic perturbation theory. First,
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FIG. 8. Diagrams for the WL correction to the conductance.
Solid arrows represent Green’s functions while the dashed lines
represent disorder. The upper (lower) branch of the diagrams
corresponds to retarded (advanced) Green’s functions. Vertices cor-
respond to the renormalized current operator. (a) Bare Hikami box.
(b) Dressed Hikami boxes. Greek indices describe the spin degree of
freedom.

we define the advanced and retarded Green’s functions which
will be employed in the diagrams:

GR,A
p =

(
ξp + mαpF σy cos θ − mαpF σx sin θ ± i

2τ

)−1

,

(A1)
where p = pF (cos θ, sin θ ) is the momentum. Next, we intro-
duce the renormalized current operator [74] as

Jxp = vF cos θ. (A2)

Diagrammatic representation of the weak-localization cor-
rection to the conductance in terms of maximally crossed
diagrams, Cooperons C, is given in Fig. 8.

We distinguish two contributions to the WL conductance,

δσ = δσ (a) + δσ (b), (A3)

where δσ (a) comes from the so-called bare Hikami box [75]
[Fig. 8(a)], and δσ (b) comes from the dressed Hikami boxes
[Fig. 8(b)]. Explicitly evaluating diagrams in Fig. 8(a) yields

δσ (a) = e2

2π

∫
d2p

(2π )2

∫
d2Q

(2π )2

[
GR

p

]
α′αCαβ,γ δ (Q)

× [
GR

p̄+Q

]
γ γ ′

[
Jxp̄+Q

]
γ ′δ′

[
GA

p̄+Q

]
δ′β ′

[
GA

p

]
δβ

[Jxp]β ′α′ ,

(A4)

where the summation over repeated indices is assumed. The
Cooperons Cαβ,γ δ that enter Eq. (A4) need to be transformed
from the basis of spin indices to the singlet-triplet basis, which

is the basis used in the main text. This is achieved by the
following transformation [75,88]

Css′ = 1
2 [σyσs]αβCαβ,α′β ′ [σs′σy]β ′α′ . (A5)

Applying the transformation to Eq. (A4), we obtain

δσ (a) = e2

2π

∫
d2Q

(2π )2
Tr[C(Q)W (a)], (A6)

where W is the weight factor matrix given as

W (a)
ss′ = 1

2

∫
d2p

(2π )2
Tr

[
σyσs′GA

pJxpGR
p

(
GR

p̄Jxp̄GA
p̄σyσs

)T ]
.

(A7)

Note that here we neglected the weak Q dependence of the
weight factor, which is justified since the dominant contribu-
tion of the Cooperons comes from small Q.

Similarly δσ (b) is obtained using expression (A6) with the
weight factor substituted by W (b), given as

W (b)
ss′ (Q) = 1

2

∫
d2p

(2π )2

∫
d2p′

(2π )2

×Tr
[
σyσs′GA

pJxpGR
pGR

p′
(
GR

p̄GR
p̄′Jxp̄′GA

p̄′σyσs
)T

+ σyσs′GA
p′GA

pJxpGR
p

(
GR

p̄′Jxp̄′GA
p̄′G

A
p̄σyσs

)T ]
.

(A8)

Here, the first and second lines come from the two different
types of dressed Hikami boxes, represented in the upper and
lower panels of Fig. 8(b), respectively. They give equal con-
tributions after integration.

Finally, after performing the momentum integration in
Eqs. (A7) and (A8), we arrive at Eq. (46) in the main text.
Note that W0 and Wy, as well as the first term in Wx and Wz,
come from bare Hikami boxes, while the remaining terms
come from dressed Hikami boxes.

APPENDIX B: COEFFICIENTS IN WEAK LOCALIZATION

In this Appendix we write the expansion coefficients for
quantities a, b, c, d , and e, introduced above Eq. (48) in the
main text. This is followed by the definition of the relaxation
lengths λi and the coefficients Ax,zi that appear in Eq. (48).

The expansion coefficients are

a0 = 1 + x2
α

2

1 + x2
α

, a2 = −2 + 3x4
α + x6

α

4
(
1 + x2

α

)3 , a4 = 3

16

2 − 5x2
α + 15x4

α + 10x6
α + 5x8

α + x10
α(

1 + x2
α

)5 , b2 = x2
α

(
6 + 3x2

α + x4
α

)
8
(
1 + x2

α

)3 ,

b4 = −x2
α

(
15 + 5x2

α + 10x4
α + 5x6

α + x8
α

)
8
(
1 + x2

α

)5 , c0 = 1

1 + x2
α

, c2 = −1 + 3x2
α(

1 + x2
α

)3 , c4 = 3
(
1 − 10x2

α + 5x4
α

)
8
(
1 + x2

α

)5 ,

d0 = 1, d2 = −1

2
, d4 = 3

8
, e1 = − xα(

1 + x2
α

)2 , e3 = −3xα

( − 1 + x2
α

)
2(1 + x2

α

)4 . (B1)

Using these coefficients, we may approximate the Cooperons from Eq. (34) of the main text as

Cx(Q) = Cy(Q) = 1

4πNF τ

[
1

1 − a0 + Q2l2(b2 − a2)
+ 1 − c0 − c2Q2l2

α + βQ2l2 + γ Q4l4

]
, Cz(Q) = 1

2πNF τ

1 − a0 − Q2l2(a2 + b2)

α + βQ2l2 + γ Q4l4
.

(B2)
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Here, α = (1 − a0)(1 − c0), β = −(a2 + b2)(1 − c0) − (1 − a0)c2 − d2
1 , and γ = −(a4 + b4)(1 − c0) + (a2 + b2)c2 − (1 −

a0)c4 − 2d1d3. After performing the partial fraction decomposition, Eq. (B2) reduces to Eq. (48) from the main text, where
relaxation lengths λi are

λ−2
1,2 = 1

l2

β ∓
√

β2 − 4αγ

2γ
, λ−2

3 = 1

l2

1 − a0

b2 − a2
, (B3)

and the coefficients in the decomposition are

Ax1,2 = ∓1 − c0 + c2λ
−2
1,2l2

2γ l2
(
λ−2

1 − λ−2
2

) , Ax3 = 1

2(b2 − a2)
, Az1,2 = ∓1 − a0 + (a2 + b2)λ−2

1,2l2

γ l2
(
λ−2

1 − λ−2
2

) . (B4)

The expression for relaxation lengths λ1,2 in Eq. (B3) is given in terms of coefficients α, β, and γ , which depend on expansion
coefficients from Eq. (B1). In the diffusive limit, xα � 1, the coefficients a4, b4, c4, and e3 give negligible contributions.
Therefore, it is sufficient to expand the Cooperons only up to Q2. However, beyond the diffusive limit, xα ∼ 1, the aforementioned
coefficients give contributions of the same order of magnitude as lower-order coefficients a0,2, b2, c0,2, and e1. Therefore, in order
to obtain the correct relaxation lengths λ1,2, it is necessary to keep terms up to Q4 in the Cooperon expansion, as argued in the
main text.
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