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We report the Raman spectroscopy of 12C/13C graphene isotope superlattices (SLs) synthesized by chemical
vapor deposition. At large periods the Raman spectrum corresponds to the sum of the bulk 12C and 13C
contributions. However, at small periods we observe the formation of mixed 12C/13C modes for Raman processes
that involve two phonons, which results in the tripling of the 2D and 2D′ Raman peaks. This tripling can be well
understood in the framework of real-space Raman spectroscopy, where the two emitted phonons stem from
different regions of the SL. The intensity of the mixed peak increases as the SL half-period approaches the mean
free path of the photoexcited electron-hole pairs. By varying the SL period between 6 and 225 nm we have a
direct measure of the photoexcited electron mean free path, which is found to be 18 nm for suspended graphene
and 7 nm for graphene on SiO2 substrates.
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I. INTRODUCTION

Raman spectroscopy is a powerful technique to measure
vibrational energies through inelastic photoexcited elec-
tron scattering processes via the emission or absorption of
phonons. These processes are typically viewed in momen-
tum space, where momentum conservation plays an important
role in the electron-phonon scattering processes. However, in
the presence of short-range spatial variations of the phonon
modes, real-space considerations become important. This is
particularly relevant when the electronic degrees of freedoms
are spatially invariant as opposed to the vibrational properties.
For instance, this is true in crystals, where the isotopes of the
atoms have a spatial dependence, since the different masses
will modify the vibrational properties, but not the electronic
ones. Particularly interesting is the case in a single Raman
process, where it is possible to generate two phonons from
two regions with different atomic masses. This would lead
to additional second-order Raman lines, which we discuss
below.

The Raman spectrum of graphene is quite unique due to
the prominence of two-phonon Raman processes. Indeed, the
strongest Raman peak in pure graphene is the two-phonon 2D
Raman peak [1–3]. Isotope superlattices (SLs) composed of
alternating bands of 12C and 13C result in a spatial variation of
the phonon local density of states while preserving the crys-
tal structure and electronic properties of graphene. They are
therefore an ideal platform to investigate real-space Raman
processes. In this work we report the synthesis of isotopic
graphene SLs with periods as low as 6 nm and the resulting
structure-dependent tripling of the two-phonon Raman peaks.
We show that this peak structure is caused by a nonlocal
Raman processes involving the emission of two spatially sep-
arated phonons and provides a direct measure of the mean
free path of photoexcited electrons. Thus, Raman scattering

provides a unique tool to probe the spatial variation of phonon
modes at scales much smaller than the optical wavelength.

Graphene isotopic SLs have been extensively studied the-
oretically using molecular dynamics [4–9] with a focus on
thermal conductivity and acoustic phonons as opposed to the
effect of the SL structure on the optical phonon modes. How-
ever, there have not been experiments on isotopic SLs until
very recently [10], where a strong suppression of the thermal
conductivity was observed due to the isotope heterointerface.

Three-dimensional SLs made from alternating layers of
different materials or isotopes have been shown to demon-
strate many novel properties, such as reduced thermal
conductivity [11,12], increased mechanical strength [13,14],
and modifications to the electronic [15] and phonon
band structures [16,17]. Changes to the isotope content
of fullerenes [18], nanotubes [19], diamond [20], and
graphene [21] as well as other materials such as Ge [22] have
been shown to modify phonon energies.

In this work, graphene SLs are synthesized by chemical
vapor deposition (CVD) with a sequence of alternating 12C
and 13C methane gas flow as diagramed in Fig. 1. Contrary to
three-dimensional semiconductor SLs synthesized by molecu-
lar beam epitaxy, where the material is grown vertically, CVD
of graphene proceeds by surface diffusion and aggregation.
The result is a single layer of graphene with in-plane mass
periodicity. Samples are composed of graphene single crystals
with a radial sequence of alternating bands of 12C and 13C.
These are characterized by a spatial period Ls varying between
6 and 225 nm. The synthesis is described in detail in Sec. VI.
Characterization of these samples is done by a detailed study
of the spatial dependence of the Raman peak intensities and
energies as described in Secs. III and VII.

Interest in SLs is primarily motivated by the expected
reduction in thermal conductivity [14,23,24] and the unique
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FIG. 1. Schematic of CVD growth of a graphene isotope SL.

properties of graphene [25–27], which may make a graphene
SL an ideal material for thermoelectric devices. The synthe-
sis of nanometer-scale graphene SLs with tunable interface
density therefore represents an important advancement and
we present a framework to directly characterize the isotope
concentration and SL period in graphene and other two di-
mensional materials through Raman spectroscopy.

To understand the effects of spatial variations in the phonon
modes on Raman spectroscopy, it is important to consider
the real-space Raman picture (see Figs. 2 and 3), which we
describe next.

II. REAL-SPACE RESONANT RAMAN PROCESSES

In general, Raman spectroscopy of graphene will identify a
number of phonon energies at well-defined regions in momen-
tum space. For instance, the so-called G peak corresponds to
an emission (Stokes) or absorption (anti-Stokes) of phonons
at the � point in the Brillouin zone. The most prominent peak
(2D) corresponds to two phonons close to the K (or K ′) points
along the in-plane transverse optical phonon mode with wave
number determined by the laser energy [28].

FIG. 2. An example of a two-phonon Stokes Feynman diagram
for the 2D or 2D′ resonant Raman scattering process. Here γi, f are the
incoming and Raman-shifted outgoing photon energies, ω±q are the
emitted phonon energies, and εc,v

k are the electron and hole energies.

In graphene, the strong 2D and narrow 2D′ peaks in Stokes
Raman spectroscopy arise from the emission of two nonzero
momentum phonons. Their higher amplitude than their single-
phonon counterpart (D and D′) can be explained by their
double or triple resonant structure [1,29] or the sliding mech-
anism [30] due to the linear electronic dispersion.

This process and all the other relevant diagrams can
be evaluated with standard diagrammatic techniques and
summed up to obtain the full cross section. However, we will
restrict the discussion to the process shown in Fig. 2, which
involves intermediate states that are all real electronic states
(not virtual), which will give a dominant contribution [31].
The diagram in Fig. 2, shown in the real (position) -space
representation, is usually computed in momentum space [29],
but here we will evaluate the diagram semiclassically in
real space. This real-space approach is necessary, because
our system lacks translational invariance, due to the periodic
isotope structure. We therefore consider the real-space the-
ory of resonant multiphonon Raman scattering proposed by
Basko [31,32].

The real-space calculations of Raman processes were
previously employed by Martin [33] for one-phonon Ra-
man processes and Zeyher [34] for two-phonon Raman
processes. This approach was extended by Basko and co-
workers to calculate the intensities of Raman processes in
graphene [31,35] and peak shapes in magneto-Raman pro-
cesses [36]. Calculating the Raman matrix elements in the
coordinate representation gives rise to a quasiclassical in-
terpretation of the two-phonon Raman process, which we
describe below.

The incoming light of energy γi produces an electron and
a hole at x with opposite group velocity v = ∂kεk , where εk is
given by the hallmark conical dispersion relation of graphene,
v � 106 m/s, and momentum k = γi

2v
. The quasifree electron

and hole will follow their initial trajectories of opposite ve-
locity until they scatter with other electrons or phonons. If
the electron scatters with a phonon of momentum q at r1

and the hole scatters with a phonon of momentum −q at r2,
they can eventually recombine at y and emit a Raman-shifted
photon.

What is important in our context is that the two phonons
involved are spatially separated due to the finite momentum
transfer between electron holes and phonons. While many
processes can contribute to the two-phonon Raman scattering
amplitude, the most important one is shown in Fig. 2. The
Feynman diagram is drawn in the real-space configuration,
where a photoexcited electron is created at x after a photon
absorption of energy γi. The electron of energy εc

k � γi/2
is scattered by a phonon of energy ωq and momentum q at
r1, while the hole of energy εv

k = εc
k − γi is scattered by a

phonon of energy ω−q and momentum −q at r2. The electron
and hole recombine at y to emit a photon of energy γ f =
γi − ωq − ω−q.

A necessary condition for recombination is that neither
the electron nor hole undergoes another scattering event.
However, this is generally quite likely, which leads to the
well-known suppression of Raman events. For the events that
contribute to the Raman amplitude, if the electron is scattered
by a 12C phonon at r1 and the hole is scattered by a 13C
phonon at r2 then the phonon emitted by the electron will
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FIG. 3. Diagram of possible real-space Raman two-phonon processes in a 12C/13C SL with energies given by (a) ω13,12, (b) ω12,13, (c) ω12,12,
and (d) ω13,13. Solid and dotted lines represent the semiclassical trajectory of the photoexcited electron and hole, respectively. Note that, as
described in Sec. II, the energy of the scattered photon is uniquely determined by the positions of phonon emission r1 and r2 and not the
positions of the incident or emitted photon x and y.

have a different energy from the phonon emitted by the hole,
yet both phonons will have opposite momenta. This process
is illustrated in Fig. 3. This would lead to a combination
Raman 2D peak at an energy ω2D = ω12

D + ω13
D , where ω2D

is the measured Raman 2D peak shift and ωα
D the D-phonon

energy for isotope α. In general, there will be three possi-
ble energies for the 2D peak, ω

αβ

2D = ωα
D + ω

β
D, where α and

β = 12 or 13 as illustrated in Fig. 3 for an isotope SL. The
typical separation between the electron and hole when they
scatter with two phonons (not necessarily at the same time) is
de-h = |r1 − r2| = λ, where λ is the electronic mean free path
(MFP).

This real-space picture allows us to conveniently estimate
the relative strengths of each process by identifying the cor-
responding spatial location probabilities of the electron and
hole. If r̃e(t ) is the SL trajectory of the electron, then the
probability to emit a phonon at r1 at time t1 and to recombine
at y at time t = t1 + t2 is proportional to e−t/τ , where τ is the
total scattering time. Equivalently, the probability for the hole
with trajectory r̃h(t ) to emit a phonon at r2 at time t2 and to
recombine at y at time t with the electron is also proportional

to e−t/τ , where we assume that the electron and hole have
the same scattering time τ . Therefore, the normalized joint
probability for the electron to emit an α phonon and for the
hole to emit a β phonon is given by

Pαβ (r̃e, r̃h) =
(

2

τ

)2 ∫ ∞

0
dt1

∫ ∞

0
dt2 e−2(t1+t2 )/τ

× Mα[r̃e(t1)]Mβ[r̃h(t2)], (1)

where Mα (r) = 1 if we have isotope α at position r and
zero otherwise. We have M12(r) + M13(r) = 1. The relative
integrated intensities of the two-phonon Raman peaks is then
given by summing over all the electron and hole trajectory
pairs

Fαβ = 1

Ntot

∑
r̃e,r̃h

Pαβ (r̃e, r̃h), (2)

where F 12,12 + F 12,13 + F 13,12 + F 13,13 = 1. In the simple
case of a one-dimensional isotope SL of period Ls in the
direction x we have

Fαβ = 2

πτ 2Ls

∫ ∞

0
dt1

∫ ∞

0
dt2

∫ Ls

0
dx

∫ 2π

0
dθ e−2(t1+t2 )/τ Mα[x + vt1 cos(θ )]Mβ[x − vt2 cos(θ )]. (3)

The relative fraction of integrated intensities Fαβ will depend
on Ls and the electronic mean free path λ = vτ . In the case
of the 2D and 2D′ modes the two permutations (12,13) and
(13,12) are degenerate in energy and we write the relative
intensity of the Raman signal as

F {12,13} = F 12,13 + F 13,12. (4)

For λ � Ls all Fαβ are equal, while for λ � Ls we have
F {12,13} � 4λ

πLs
and a crossover region when λ � Ls.

If we consider only the semiclassical trajectories of the
electron-hole pair we find that the x component of the sep-
aration xe-h is described by the distribution

P(xe-h) = 8

πλ2
xK1

(
2x

λ

)
, (5)

where Kn is the Bessel function of the second kind. In the
case of a SL with interface density Id = 1/Ls this leads to a
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FIG. 4. Raman spectra as a function of SL period Ls. Spectra are
averaged over 10–20 spots taken from a single sample with a wide
range of periods.

dependence of F 12,13 given by

F {12,13} = 1

2
− 4

π2

∞∑
n=1,3,5,...

1

n2
(
1 + n2π2λ2I2

d

)3/2 . (6)

The overall dependence can be well approximated numeri-
cally by

F {12,13} �
[(πLs

4λ

)3

+ f −3
0

]−1/3

, (7)

where f0 is a constant determined by the duty cycle of 12C and
13C in the SL structure with f0 = 1

2 in the case that the lengths
of the 12C and 13C regions are equal. Equation (7) can be used
to extract λ from Ls as discussed in the following sections.

III. COMBINATION 12C/13C RAMAN PEAKS

12C/13C graphene isotope SLs with periods ranging from
225 to 6 nm were prepared by CVD. The synthesis and charac-
terization of these samples are described in Secs. VI and VII.

At SL periods greater than 100 nm we observe in Fig. 4,
as expected, double peaks for each Raman mode in graphene
corresponding to 12C and 13C graphene bulk Raman spectra.
At small periods we also observe the formation of a third
peak in the 2D and 2D′ modes, as shown in Fig. 4. The ad-
ditional middle Raman peaks arise from processes involving
two spatially separated phonons, one 12C and one 13C phonon
as described in detail in Sec. II. The frequencies and relative
intensities of the peaks are extracted by fitting the 2D and 2D′
modes with a triple Lorentzian peak structure. The Raman
shift of this middle peak is the average of the 12C and 13C
Raman peaks ω

{12,13}
2D = 1

2 (ω12,12
2D + ω13,13

2D ) and the intensity
F {12,13} scales with decreasing SL period as given by Eq. (7).
The experimental value of F {12,13} is calculated as

F {12,13} = N {12,13}

N12,12 + N13,13 + N {12,13} , (8)

where Nα,β are the integrated counts of the corresponding
Raman peak, determined by fitting with a triple Lorentzian

FIG. 5. Calculated SL phonon dispersion shown for a 12C/13C
SL of period 21 nm [blue dots in (a) and (b)]. (a) Close-up of the in-
plane longitudinal and transverse optical (iLO and iTO, respectively)
frequency range from the full dispersion in (b). The solid reference
lines show the in-plane dispersion for pure 12C. (c) Graph showing
the DOS for iTO phonons close to the K point (D-peak phonons) as
a function of SL period [38].

(details of the spectral fitting are in the Supplemental Mate-
rial [37]).

In the case of the one-phonon G process we do not observe
the formation of a third peak. The observation that the third
peak is only present for two-phonon Raman processes as well
as the lack of any features in the calculated phonon density of
states (DOS) for Ls > 6 nm (see Fig. 5) corresponding to this
intermediate peak strongly suggest that it results from a two-
phonon process involving one 12C and one 13C phonon. It also
precludes the possibility that this peak is simply the result of
the underlying isotope distribution, since a distribution peaked
at an isotope concentration ρ = 0.5 would be evident in the G
peak structure.

While the 2D and 2D′ peaks involve two phonons on the
same phonon branch (close to the K point for 2D and close to
� for 2D′), other combination peaks such as D′ + D3 and D +
D′′ involve two different phonon branches [39]. In this case
ω12,13 �= ω13,12, which would lead to two additional phonon
peaks as shown in the Supplemental Material [37].

For the 2D and 2D′ Raman amplitudes, we find that the
relative intensity F {12,13} of the mixed Raman peak increases
with decreasing SL period approximately as 1/Ls. This is
shown in Fig. 6. The dependence is well fitted by Eq. (7),
which depends on the ratio of the SL period Ls and the MFP.

IV. PHOTOEXCITED ELECTRON MEAN FREE PATH

The incoming Raman laser beam excites the electrons by
the energy of the photon. With momentum conservation in
the Dirac cone electron dispersion, most photoexcited elec-
trons will have an energy close to εL/2 from the K point,
where εL is the incoming photon energy. These photoexcited
electrons will rapidly decay to lower energies by inelastic
scattering with other electrons and phonons. Time-resolved
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FIG. 6. Length dependence of the relative intensity of a mixed
process Raman peak for the (a) 2D and (b) 2D′ modes. Here F {12,13} is
plotted against the interface density Id = 1/Ls. As expected, we ob-
serve at small values of Id a linear dependence with slope determined
by λ. Data points are determined by binning values corresponding to
individual spectra and error bars show the standard error on the mean.
The y error bars also include the experimental error on Ls determined
by the spatial resolution of the Raman maps. The data are fit to Eq. (7)
and the shaded error shows the 95% confidence interval of the fit
parameters.

experiments in graphene show that this decay starts to hap-
pen in the 10 fs range [40]. Experiments and simulations
seem to indicate that the initial electron-electron scattering
is followed by electron-optical phonon scattering spanning
10–300 fs [40–42]. Time-resolved Raman spectroscopy ex-
periments in graphite have shown the full building of the
G phonon Raman mode to be below 300 fs with an initial
buildup within 20 fs [43,44].

For the photoexcited electrons and holes, the total inelastic
mean free time is given by τ−1

tot = τ−1
e-ph + τ−1

e-e , where τ−1
e-e is

the electron-electron scattering rate and τ−1
e-ph is the electron-

TABLE I. Comparison of the present results with previous lit-
erature values of electronic linewidth in graphene, in order of
increasing MFP. Here ARPES denotes angle-resolved photoemission
spectroscopy and TRPES denotes time-resolved photoemission spec-
troscopy.

2γ (meV) λ (nm) Technique Reference

100 6.6 ARPES [47]
89 7.4 Raman SL (supported) this work
66 10 Raman [32]
54 12 magneto-Raman [36]
48 14 Raman [29]
36 18 Raman SL (suspended) this work
<33 >20 ARPES (epitaxial) [48]
28 24 TRPES (HOPG) [49]

phonon scattering rate. For hot electrons and photoexcited
electrons in graphene τtot was calculated to be in the 10–120 fs
range and dependent on the Fermi energy [45,46]. The time-
resolved experiments discussed above are consistent with a
shorter τe-e compared to τe-ph. In this case only a small fraction
of the Raman photoexcited electrons will generate a Raman
phonon.

The Raman analysis in the real-space picture gives us a
direct measurement of the MFP of photoexcited electrons,
which is connected to the total scattering time by λ = vτtot .
Using Eq. (7), we can fit the relative intensities as a function of
superlattice period to obtain λ. This is shown in Fig. 6 for both
suspended graphene and graphene supported on SiO2 and is in
good agreement with the experimental data. A least-squares fit
gives λ of 18 nm ± 4 nm in suspended graphene compared to
7.4 nm ± 0.6 nm in graphene on SiO2.

While there are no other direct experimentally measured
mean free paths of the photoexcited electrons or holes in
graphene, various measurements have been made of the
electronic linewidth and the exciton lifetime, by time- or
angle-resolved photoemission spectroscopy or Raman experi-
ments and report values ranging from 28 to 100 meV. Table I
summarizes results measuring electronic broadening, exci-
tation lifetime, and mean free path of carriers in graphene
and highly oriented pyrolytic graphite (HOPG). The corre-
sponding value of λ is obtained from λ = h̄v/2γ . Electronic
broadening is reported depending on the reference as one of γ ,
2γ , or 4γ and here are standardized as 2γ . Our measured val-
ues of λ correspond to values of 2γ � 36 meV for suspended
graphene and approximately 89 meV for graphene on SiO2,
which are similar to the other results reported in the literature.

The total probability of resonant two-phonon processes is
proportional to λ2 [31]. Therefore, if we consider the Raman
nonresonant G peak intensity to be independent of scattering
rate then we expect the ratio I2D/IG ∝ λ2. The ratio I2D/IG has
previously been shown to increase for suspended graphene
vs graphene on SiO2 which was attributed to a decrease in
charged impurities [50]. Similarly, we find that suspending
graphene increases both the measured value of λ and I2D/IG

compared to the results on SiO2 substrates. For suspended
graphene the ratio I2D/IG � 6 whereas for supported graphene
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FIG. 7. Polarization dependence: 2D′ spectrum for circular and
linear polarizations approximately perpendicular and parallel to the
mass periodicity. The inset shows the theoretical polarization depen-
dence of x/λ given by Eq. (9). Measured polarizations are shown
in red with error bars calculated from the standard deviation of the
spectral fitting parameters.

we measure I2D/IG � 4 (see Supplemental Material [37] for
details).

V. DEPENDENCE ON POLARIZATION

The real-space Raman process described in Sec. II will
invariably lead to a dependence on the polarization of the
incoming light with respect to the SL orientation, since
the photoexcited electron-hole pair will more likely have a
momentum perpendicular to the polarization. For an angle
φ measured between the electric field polarization and the
electron-hole pair momenta the probability of detecting a
photon [31], corresponding to the backscattered electron-hole
pair, varies as (sin φ)4. Hence, electron-hole pairs with mo-
menta in the direction of periodicity will more likely result in
the emission of 12–13 phonon pairs and as a result the value of
F {12,13} will vary as a function of polarization angle as shown
in Fig. 7.

The magnitude of F {12,13} is varied by the parameter x, the
component of the mean free path in the direction of periodic-
ity, which we take to be 2

π
λ for circularly polarized light. We

can quantify the polarization dependence by considering the
value of x(φ) as a function of polarization angle φ as

x(φ)

λ
= 8

3π

∫ π

0
sin(θ )[sin(θ − φ)]4dθ. (9)

The value of F {12,13} is measured for different linear polariza-
tions and the corresponding value of x is extracted by solving
Eq. (7) for λ. We take φ = 0 to be polarized perpendicular
to the periodicity of the SL. This is shown in the inset of
Fig. 7. The number of experimental data points is limited, but
is consistent with Eq. (9).

FIG. 8. (a) Growth log showing flow rates V̇ of 12C and 13C
methane along with (b) the corresponding atomic mass vs distance,
where distance is calculated as V̇ �t and scaled to correspond to
the measured growth rate and the average atomic mass is obtained
from the isotopic methane concentration. Here SCCM denotes cubic
centimeter per minute at STP.

VI. SYNTHESIS OF ISOTOPE SUPERLATTICE

Graphene is grown by low-pressure chemical vapor depo-
sition on commercially available 25-μm-thick copper foils.
During the growth phase 12C methane and 13C methane are
pulsed in an alternating sequence. The methane sources are
respectively 99.99% pure 12C methane or 99% pure 13C
methane (Sigma-Aldrich 490229). The duration of the pulses
is on the order of 1 s followed by a 2–4 s period with no
methane flow in order to maintain high isotope concentration
throughout the growth.

Periodically, a long (1-min) pulse of pure 12C or 13C
methane is introduced which allows us to distinguish different
regions and the associated isotope sequence in the graphene
crystal and extract the SL period for each region. Regions
consist of between 100 and 2000 gas pulses and result in
average SL periods ranging from 6 to 225 nm. Figure 8
shows a typical gas flow sequence along with the associated
isotope distribution as a function of radial distance. Growth
conditions are chosen to produce isolated graphene single
crystals and graphene is subsequently deposited onto Si/SiO2

wafers by poly(methyl methacrylate) wet transfer for Raman
spectroscopy.

VII. CHARACTERIZATION OF THE GRAPHENE
ISOTOPE SUPERLATTICE

In order to demonstrate the successful synthesis of an
isotopic SL we perform a careful analysis of the measured
gas flow rates during CVD growth and the Raman spectra of
the resulting samples. Samples are characterized by Raman
mapping using a Renishaw InVia system and a 514-nm laser
excitation source.

Using the growth of a single crystal with regions of varying
isotope concentration in 10% concentration steps [51], we can
extract the Raman G peak position and width dependence
on the 12C isotope concentration ρ for homogeneous isotope
mixtures. We can fit the peak with a Lorentzian of width γρ
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FIG. 9. Predicted vs measured G peak Raman spectra for different isotope distributions. The bar graph indicates the isotope concentration
distribution extracted from the growth logs. The solid line is the predicted Raman peak shape from Eq. (12) and circles show the measured
Raman spectra for the corresponding region. (a) 100% 12C graphene, (b) 50% 12C mix, (c) low-isotope-concentration superlattice (C � 0.7),
and (d) high-isotope-concentration superlattice (C � 0.9). The measured Raman spectra represent a single map point, with short collection
time, and as a result are relatively noisy. These are shown as is, in order to avoid introducing extra linewidth broadening by averaging over
multiple data points.

and position ωρ , where

ωρ = ω12

√
12

13 − ρ
, γρ = γ0 + γ1

f (ρ)

f (0.5)
. (10)

The f (ρ) was calculated by Rodriguez-Nieva et al. [21], who
found for uncorrelated mass disorder

f (ρ) = ρ(1 − ρ) δm2 (1 + ρδm)−5/2. (11)

Here δm = 1
12 is the relative mass difference of 13C and 12C.

We find γ1 = 6.2 cm−1 and γ0 = 12.4 cm−1, in line with
previously reported values [21,52] (details and figure shown
in the Supplemental Material [37]).

It is now possible to predict the expected peak structure
for an inhomogeneous distribution of isotopes, where the con-
centration of each dominant isotope region is not necessarily
100% pure as expected from the growth log shown in Fig. 8.
We expect the inhomogeneous peak structure to be given by a
sum of Lorentzian peaks weighted by the isotope concentra-
tion distribution Pρ :

I (ω) =
∑

ρ

Pρ

γρ/2

(ω − ωρ )2 + (γρ/2)2
. (12)

As a result, we can now compare in Fig. 9 the measured
Raman G peak structure with the expected peak structure from
Eq. (12) using the measured isotope distribution from the gas
flows of the growth (see Fig. 8). As we can see in Fig. 8,
the peak concentrations are not exactly 100% or 0% in each
isotope region and they depend on the growth as shown in
Fig. 9, which justifies the use of Eq. (12). Examples of differ-
ent binary distributions of concentrations are shown in Fig. 9
as well as the corresponding predicted Raman peak structure.
The excellent agreement between the predicted and measured
spectra indicates that the distribution of isotopes within the
samples is well represented by the measured gas flows and
that the Raman G peak is a determined by the corresponding
isotope distribution. As such we can use the G peak position
and line shape as a measure of the SL purity.

For a bimodal isotope concentration distribution such as
those shown in Figs. 9(c) and 9(d) we find that we can individ-
ually resolve the 12C and 13C Raman G peaks. We consider the

simplifying approximation that the concentration distribution
is well described with two peaks centered at ρ1 and ρ2 and
integrated peak counts N1 and N2 and therefore the Raman
intensity is well described by considering two peaks with
Raman shifts of ω1 and ω2 and integrated counts N1 and N2

where ω1,2 and ρ1,2 are related through Eq. (10).
Two useful quantities describing the SL quality, the aver-

age carbon mass M and the average isotopic concentration C,

FIG. 10. Raman maps of (a) the average carbon mass M using
Eq. (13), (b) the isotopic concentration C using Eq. (14) and calcu-
lated from the G peak position and intensity, and (c) the measured
mixed peak relative intensity F {12,13}.
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can be calculated from the G peak line shape as

M = 13 − N1ρ1 + N2ρ2

N1 + N2
, (13)

C = ω2 − ω1

2
(
ω12

G − ω13
G

) + 1

2
, (14)

where ω12
G − ω13

G � 62 cm−1. In Fig. 10 these two quantities
are shown for a given SL Raman map, extracted by fitting the
G peak to a double Lorentzian function.

From the Raman maps shown in Fig. 10 we observe that the
sample contains several regions with a periodic SL structure
and average mass of approximately 12.5 amu separated by
lines of pure 12C and 13C graphene. We note that the SL period
is generally smaller than the spot size of the Raman excitation
laser and as such each data point is averaging over several
periods. We are able to realize isotopic concentrations from
0.8 to greater than 0.9. This assumes constant ωρ , which is
in agreement with our numeric results for SL periods greater
than 10 nm.

In general, we also observe broadening of the Raman peaks
compared to pristine 12C or 13C graphene, which we attribute
to increased phonon scattering from isotope impurities [21]
and a further broadening caused by the inhomogeneous iso-
tope distribution within a given band. From the Raman map
for each region (delimited by regions of pure 12C or 13C

graphene) the average superlattice period Ls can be calculated
by measuring the length of the region and the number of
isotopic methane pulses employed in the growth phase.

VIII. CONCLUSION

We presented experimentally realized Raman spectroscopy
of nanometer-scale graphene isotope superlattices. Character-
ization of these superlattices shows evidence of high isotopic
concentration greater than 0.9 and small superlattice period on
the order of 6 nm. We found a mixed Raman process involving
spatially separated phonons from both the 12C and 13C bands.
The mixed Raman process is well explained quantitatively by
the real-space Raman picture, involving two-phonon resonant
Raman processes. The intensity of this process increases as
a function of the superlattice interface density and depends
on the mean free path of the photoexcited carriers involved in
the Raman process. We show the dependence of the photoex-
cited electron mean free path on the substrate by comparing
suspended and SiO2 supported graphene where the mean free
paths was found to be 7.4 and 18 nm, respectively.
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Severin, J. P. Rabe, C. Ropers, A. Knorr, and T. Elsaesser, Phys.
Rev. B 83, 153410 (2011).

[41] A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini,
Phys. Rev. B 88, 035430 (2013).

[42] D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S.
Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo,
and M. Polini, Nat. Commun. 4, 1987 (2013).

[43] H. Yan, D. Song, K. F. Mak, I. Chatzakis, J. Maultzsch, and T. F.
Heinz, Phys. Rev. B 80, 121403(R) (2009).

[44] K. Ishioka, M. Hase, M. Kitajima, L. Wirtz, A. Rubio, and H.
Petek, Phys. Rev. B 77, 121402(R) (2008).

[45] W.-K. Tse, E. H. Hwang, and S. Das Sarma, Appl. Phys. Lett.
93, 023128 (2008).

[46] J. C. W. Song, K. J. Tielrooij, F. H. L. Koppens, and L. S.
Levitov, Phys. Rev. B 87, 155429 (2013).

[47] A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg,
Nat. Phys. 3, 36 (2007).

[48] M. Sprinkle, D. Siegel, Y. Hu, J. Hicks, A. Tejeda, A. Taleb-
Ibrahimi, P. Le Fèvre, F. Bertran, S. Vizzini, H. Enriquez, S.
Chiang, P. Soukiassian, C. Berger, W. A. de Heer, A. Lanzara,
and E. H. Conrad, Phys. Rev. Lett. 103, 226803 (2009).

[49] G. Moos, C. Gahl, R. Fasel, M. Wolf, and T. Hertel, Phys. Rev.
Lett. 87, 267402 (2001).

[50] Z. H. Ni, T. Yu, Z. Q. Luo, Y. Y. Wang, L. Liu, C. P. Wong, J.
Miao, W. Huang, and Z. X. Shen, ACS Nano 3, 569 (2009).

[51] E. Whiteway, W. Yang, V. Yu, and M. Hilke, Carbon 111, 173
(2017).

[52] B. R. Carvalho, Y. Hao, A. Righi, J. F. Rodriguez-Nieva, L.
Colombo, R. S. Ruoff, M. A. Pimenta, and C. Fantini, Phys.
Rev. B 92, 125406 (2015).

235429-9

https://doi.org/10.1103/PhysRevB.4.3676
https://doi.org/10.1103/PhysRevB.9.4439
https://doi.org/10.1038/nnano.2013.46
https://doi.org/10.1103/PhysRevB.81.155436
http://link.aps.org/supplemental/10.1103/PhysRevB.102.235429
https://doi.org/10.1103/PhysRevB.86.085409
https://doi.org/10.1103/PhysRevB.83.153410
https://doi.org/10.1103/PhysRevB.88.035430
https://doi.org/10.1038/ncomms2987
https://doi.org/10.1103/PhysRevB.80.121403
https://doi.org/10.1103/PhysRevB.77.121402
https://doi.org/10.1063/1.2956669
https://doi.org/10.1103/PhysRevB.87.155429
https://doi.org/10.1038/nphys477
https://doi.org/10.1103/PhysRevLett.103.226803
https://doi.org/10.1103/PhysRevLett.87.267402
https://doi.org/10.1021/nn900130g
https://doi.org/10.1016/j.carbon.2016.09.034
https://doi.org/10.1103/PhysRevB.92.125406

