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Autonomous quantum absorption refrigerators
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We propose a quantum absorption refrigerator using the quantum physics of resonant tunneling through
quantum dots. The cold and hot reservoirs are fermionic leads, tunnel coupled via quantum dots to a central
fermionic cavity, and we propose configurations in which the heat absorbed from the (very hot) central cavity
is used as a resource to selectively transfer heat from the cold reservoir on the left to the hot reservoir on the
right. Heat transport in the device is particle-hole symmetric; we find two regimes of cooling as a function of
the dot energies—symmetric with respect to the Fermi energy of the reservoirs—and we associate them with
heat transfer by electrons above the Fermi level and holes below the Fermi level. We also discuss optimizing the
cooling effect by fine-tuning the energy of the dots as well as their linewidth and characterize regimes where the
transport is thermodynamically reversible such that the Carnot coefficient of performance is achieved with zero
cooling power delivered.
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I. INTRODUCTION

Converting otherwise wasted heat to perform useful work
in the nanoscale is an open problem that spans across almost
all disciplines of applied science [1–6], including comput-
ing [7–12], where there is a lower bound on dissipated heat
per cycle of irreversible computation, given by the Lan-
dauer’s bound [13]. Managing the excess heat generated in
circuits is also crucial for various quantum-computing plat-
forms currently available, such as superconducting qubits and
matter-based spin qubits, where cooling down to subkelvin
temperatures is a must [7]. Besides, efficient cooling below
4 K is a necessity for enhancing the performance of radiation
detectors and charge sensors, with benefits also extending to
various medical applications, including magnetic resonance
imaging [14–16]. Furthermore, subkelvin cooling is essential
for exploiting quantum physics in the mesoscopic regime
for quantum device applications and for nanoscale energy
harvesting with quantum dots [5]. The increasing demand
for achieving temperatures nearing absolute zero is largely
fulfilled by state-of-the-art dilution refrigerators, which can
achieve base temperature down to about 10 mK; even then,
localized dissipation of heat remains a major issue to be
addressed in places including quantum circuits, where it is a
limiting factor for achieving coherent, nonlocal manipulation
of quantum information in various quantum-computing plat-
forms currently available [7,17–24].

Cooling has always been an exciting problem in ther-
modynamics [16], and the advent of quantum technologies

*skizhakk@ur.rochester.edu
†ejussiau@ur.rochester.edu
‡jordan@pas.rochester.edu

presented more recent opportunities for novel refrigeration
schemes which can be integrated into various computing
platforms and further cool down the devices below ambient
temperatures [15]. Some examples of such cooling tech-
niques in the solid state include nuclear demagnetization [16],
voltage-biased junction refrigerators [25,26], and Josephson-
junction-based refrigerators [27,28] (see also Ref. [15] and
references therein). Solid-state refrigeration schemes using
adiabatic magnetization of a superconductor have also been
proposed, which is particularly useful as a cooling mechanism
below the superconducting critical temperatures [29–31].

An alternate approach to dealing with excess heat in quan-
tum circuits is to recycle this heat as a resource to power
other quantum thermal machines, such as quantum heat en-
gines and quantum refrigerators [4–6,32–38]. A refrigerator
powered by a dissipative heat source is conventionally called
an absorption refrigerator [39,40]; the principles of such
a cooling technique were known since the 1700s and fur-
ther developed through the early twentieth century, as an
alternative to the standard compression-based refrigerators
[41–43]. Albeit having a lower coefficient of performance
(COP), the utility of absorption refrigerators emerges from
their unique approach to cooling, where excess heat, poten-
tially from a dissipative heat source, is used as a resource
to run the cooling cycle. In an evaporation-based absorp-
tion refrigeration cycle, the evaporation of a cooling agent
at the cold reservoir generates the cooling power. The low
vapor pressure required for evaporation is maintained by an
absorbing fluid, which reduces the vapor pressure of the cool-
ing agent by absorbing it in the vapor phase. Subsequently,
the absorbing agent is heated by an external heat source,
which releases the cooling agent, now hotter than its am-
bient temperature. The excess heat is released into the hot
reservoir (typically the environment), and the cooling agent
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condenses as it flows back into the cold reservoir. The cycle
repeats.

Absorption refrigerators that operate at mesoscopic scales,
where quantum effects are relevant, have also emerged as one
among the prototypical systems to probe thermodynamics in
the quantum regime [38,44–48]. A canonical model would
consist of three reservoirs—cold (L), hot (R), and hotter
(H), where TL < TR < TH—and quantum systems (possibly
qubits) interacting among themselves, as well as with the
reservoirs. The interactions are such that the spontaneous flow
of heat in the direction H → R also induces a flow of heat
in the direction L → R, resulting in further cooling of the
reservoir L. See, for instance, Ref. [49], where a proposal
for such an absorption refrigerator using Coulomb-coupled
quantum dots or metallic islands is discussed. It has also
been pointed out that quantum coherent effects may enhance
the performance of absorption refrigerators in the quantum
regime [50,51], suggesting that absorption refrigerators may
be used to probe quantum advantages in the operation of
thermal machines.

Thermoelectric effects in nanoscale devices are tightly
linked to their energy-filtering properties [52]. Allowing a
flow of electrons between two terminals at certain energies
only can give rise to a flow of charge against an electrochem-
ical potential or a flow of heat against a temperature bias. A
thermoelectric device is then characterized by its transmission
function T (E ) describing the probability for an electron at en-
ergy E to traverse the system. Typically, thermoelectric effects
arise in devices for which T (E ) behaves differently above
and below the Fermi energy [38]. We then understand the
importance of working with devices with prominent and well-
characterized energy-filtering properties. This is why many
experimental realizations of nanoscale thermoelectrics make
use of quantum dots whose transmission function is given
by a Lorentzian function centered at the resonant dot energy
[48,53–55].

In this paper, we propose a quantum absorption refrigerator
where we take advantage of the quantum physics of resonant
tunneling through quantum dots to achieve the unidirectional
flow of heat required for refrigeration. In our proposal, we
consider an energy-filtering configuration for the dot energies,
similar to the one considered in Refs. [35,37]. We present an
experimentally viable design motivated by a recently realized
energy-harvesting quantum device discussed in Ref. [48].

The configuration we consider is sketched in Fig. 1. The
reservoir H is a fermionic cavity that is coupled to a cold
reservoir L on the left and a hot reservoir R on the right
via quantum dots having prescribed energies. Refrigerator
configurations in such architectures have been investigated
in Refs. [53,56], where the goal is to cool down the central
cavity, H. A variant of this, where quantum dots are replaced
by superlattices, is presented in Ref. [57]. Similar tunnel cou-
pling to cool down a central metallic reservoir using selective
transfer of hot electrons and holes to left and right reservoirs
has also been proposed [58]. In contrast, our present study
investigates whether it is possible to think of the fermionic
cavity as a hot spot in a circuit, which allows us to extract
finite cooling power from the cold reservoir L. In addition
to that, we also provide a complete thermodynamic charac-
terization of the device and discuss its optimal and stopping

J QRQL

FIG. 1. Schematic of the particle current j and heat currents
QL, QR, and J in the absorption refrigerator. The bias of the dot
energies EL and ER with respect to the Fermi energy of the leads
chooses whether the transport is mediated by electrons (above the
Fermi energy of the leads, j > 0) or holes (below the Fermi energy of
the leads, j < 0). Nevertheless, the heat currents are invariant under
this choice of bias, depicting particle-hole symmetry in the transport
problem.

configurations. Our analysis also makes simple connections
to the particle-hole symmetry in the transport problem from
a thermodynamic point of view, which reveals two equivalent
bias configurations for the operation of our absorption refrig-
erator. They correspond to the energy of the dots positioned
above the Fermi level (mediated by hot electrons) and below
the Fermi level (mediated by hot holes), respectively.

Note that a pedagogical analogy can be made to a con-
ventional refrigerator context, where work has to be supplied
to refrigerate reservoir L relative to reservoir R. Here, one
can think of reservoirs H and R as analogous to the hot and
cold reservoirs of an engine, which supply the necessary work
required for cooling in a conventional refrigerator, where the
heat flow in the direction H → R generates the fiducial work
to run the refrigeration of reservoir L relative to reservoir R.

In the discussions which follow, we provide a systematic
characterization of our quantum absorption refrigerator in its
steady state. The system obeys both particle and energy cur-
rent conservation laws in the steady state. We further assume
that the chemical potentials are identical for reservoirs L and
R, so as to ensure that our device qualifies as an absorption
refrigerator. Indeed, in such a situation, the refrigeration is
solely powered by the heat provided by the hot cavity H,
contrary to standard nanoscale refrigerators where a voltage
bias enables electric power generation to fuel the refrigerator
[15,26]. From the point of view of electrons leaving the cold
reservoir, they have to gain definite energy from cavity H
to overcome the temperature difference and exit to the hot
reservoir on the right. However, we can add a voltage bias
to our setup to design hybrid devices that use the heat from
the cavity both to cool down reservoir L and generate electric
power in reservoir R (if μL < μR), or conversely, we can
imagine a “doped” absorption refrigerator whose performance
is improved using electric power alongside the heat from the
cavity (if μL > μR).

A crucial assumption we make is that the hot and cold
reservoirs are connected to some external circuit, while the
cavity is in thermal equilibrium with a separate heat reservoir.
As such, reservoirs L and R can exchange particles with their
environment, and their chemical potentials μL and μR can
then be imposed externally. On the contrary, the number of

235427-2



AUTONOMOUS QUANTUM ABSORPTION REFRIGERATORS PHYSICAL REVIEW B 102, 235427 (2020)

particles in the cavity is constant, and its chemical poten-
tial is then fixed by particle conservation [59]. Furthermore,
we assume that strong inelastic electron-electron or electron-
phonon interactions taking place in the cavity cause electrons
entering it to relax on a time scale much shorter than the time
they will spend there. As such, electron populations in the
cavity are described by the usual Fermi factors, where the
chemical potential is determined through particle conserva-
tion.

In this paper, we focus on the situation where the device
operates as a steady-state absorption refrigerator and thus
assume that all its characteristic parameters (temperatures,
dot energies, and chemical potentials) are constant in time.
The steady-state behavior of the machine is described us-
ing the Landauer-Büttiker scattering theory [38,60–63]. This
formalism can be straightforwardly extended to situations
with time-varying parameters when these variations are much
slower than the typical time necessary for electrons to tra-
verse the system. In this so-called adiabatic limit, electrons
do not feel the change in the device properties, and the
time-dependent problem is then treated by simply reusing
the results derived in the time-independent case, albeit with
time-dependent parameters [64–66]. Sophisticated techniques
have been developed to address the case of nonadiabatically
varying parameters [4,66], where the information obtained in
the stationary case no longer suffices to solve the problem. For
the setup studied here, not only the dwell time for electrons in
the dots must be taken into account, but also the thermaliza-
tion time for electrons in the cavity. Indeed, if the parameters
of the problem were to vary on a time scale shorter or com-
parable to this relaxation time, a nonequilibrium distribution
of electrons in the cavity would arise instead of the Fermi-
Dirac distribution considered hereafter. Such considerations
are outside the scope of this work.

This paper is organized as follows. We first discuss our
model in detail, in light of the conservation laws. We then
extend this discussion to characterize the laws of thermody-
namics for our absorption refrigerator, assuming vanishing
linewidth for the quantum dots. In subsequent sections we
prescribe methods to optimize cooling power over energy of
the dots, as well as temperature of the leads involved. We also
numerically investigate optimizing the cooling power over the
finite linewidth of the quantum dots and present estimates of
experimentally achievable figures of merit for our quantum
absorption refrigerator.

II. THE MODEL AND CONSERVATION LAWS

We consider two fermionic reservoirs L and R connected
via two quantum dots at energies EL and ER to a cavity H in
the middle (see Fig. 1). The resonant-tunneling quantum dots
are tunnel coupled to the reservoirs and cavity, each contact
being characterized by a tunneling rate γα which corresponds

to the inverse lifetime of an electron on the dot and is also
referred to as the level width for the dot. In what follows, we
will assume symmetric coupling; that is, all tunnel rates are
taken to be equal, γL = γR = γ .

Electron populations in the leads and cavity are described
by the Fermi-Dirac distributions

f (E − μα, Tα ) = (e
E−μα
kBTα + 1)−1, α = L, R, H. (1)

Here, μα are the chemical potential of reservoir α, and kB is
the Boltzmann’s constant. The particle and energy currents out
of reservoir α = L, R, denoted by jα and Jα , respectively, are
given by the Landauer-Büttiker-type expressions [38,60–63]

jα = 2

h

∫
dE Tα (E )[ f (E − μα, Tα ) − f (E − μH, TH)],

(2)

Jα = 2

h

∫
dE ETα (E )[ f (E − μα, Tα ) − f (E − μH, TH)],

(3)

where Tα (E ), the transmission function for dot α, assumes a
Lorentzian shape for resonant tunneling [38,63],

Tα (E ) = γ 2

(E − Eα )2 + γ 2
. (4)

We furthermore define the heat current associated with each
of the leads as

Qα = Jα − μα jα. (5)

The chemical potential of the cavity cannot be chosen
arbitrarily; it is constrained by particle conservation across the
device,

jL + jR = 0. (6)

The above relation clearly asserts that the net particle current
out of the cavity vanishes in the steady state. Consequently,
the total heat current J flowing out the cavity coincides with
the corresponding energy current [35] and can thus be inferred
from energy conservation,

J + JL + JR = 0. (7)

J is identified as the heat current driving the absorption refrig-
erator.

In general, the conservation laws in Eqs. (6) and (7)
cannot be solved exactly. It is, however, possible in the
narrow-linewidth regime, γ � kBTL, kBTR, kBTH, where the
transmission function in Eq. (4) can be approximated by
Tα (E ) = πγ δ(E − Eα ) owing to the δ-function limit of the
Lorentzian function,

lim
γ→0

γ

x2 + γ 2
= πδ(x). (8)

In this regime, the conservation equations become

f (EL − μL, TL) − f (EL − μH, TH) + f (ER − μR, TR) − f (ER − μH, TH) = 0, (9)

J + γ EL

h̄
[ f (EL − μL, TL) − f (EL − μH, TH)] + γ ER

h̄
[ f (ER − μR, TR) − f (ER − μH, TH)] = 0, (10)
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reminiscent of similar equations in Ref. [35]. Above, Eq. (9)
suggests that the parameters in the transport problem cannot
be defined independently of each other as a result of current
conservation. We can therefore use Eq. (9) to determine the
chemical potential of the cavity μH as a function of other
parameters, such as the energy of the dots and chemical poten-
tial of the external leads, μL and μR (see Appendix A). This
is because these parameters—the energy of the dots and the
chemical potential of the external leads—are typically fixed
in a given experimental setting, which can be controlled via
external voltage controls.

Solving Eq. (9) for the chemical potential μH yields an
exact expression for the particle current across the device,

j = γ

h̄
[ f (EL − μL, TL) − f (EL − μH, TH)]

= γ

h̄
[ f (ER − μH, TH) − f (ER − μR, TR)]. (11)

The heat current J then straightforwardly follows: From
Eq. (10), we find J = j�E , where �E = ER − EL is the
energy gain between the right and left dots. Such a relation
is typical of the so-called tight-coupling limit, where particle
and energy currents are proportional to one another. Indeed,
in the narrow-linewidth limit, each electron flowing from L
to R necessarily carries a definite amount �E of energy.
This property no longer holds when γ increases as the dots’
energy levels widen allowing electrons with different energies
to pass.

III. THERMODYNAMIC ANALYSIS

A. Thermodynamics of the absorption refrigerator

We now analyze the situation where the device is used as
an absorption refrigerator and characterize it thermodynam-
ically. We want to use the heat from the hottest cavity as a
resource to induce a heat current out of the coldest reservoir
without electrical power being involved. Here, we assume
TL < TR < TH and μL = μR = μ. Hereafter, we set the zero
of energy at μ without loss of generality. Furthermore, for
the system to function as a refrigerator, the cooling power,
which is the heat current out of the cold reservoir, must be
positive, namely, QL > 0. For the device at stake here, the
laws of thermodynamics read

J + QL + QR = 0, (12)

which is the statement of global conservation of energy (first
law), and (the second law of thermodynamics in the Clausius
form [67])

J

TH
+ QL

TL
+ QR

TR
� 0. (13)

The first law of thermodynamics in Eq. (12) enables us to
eliminate one of the heat currents from the entropy balance
in Eq. (13). As such, we obtain

J

(
1

TR
− 1

TH

)
� QL

(
1

TL
− 1

TR

)
� 0 (14)

and

QR

(
1

TH
− 1

TR

)
� QL

(
1

TL
− 1

TH

)
� 0. (15)

Our choice TH > TR imposes J � 0, and QR � 0. In this situ-
ation, the heat out of the cavity H drives a heat current from
reservoir L to reservoir R, enabling cooling of the former. The
COP of the absorption refrigerator is then defined as

C = QL

J
. (16)

The COP is maximum when the refrigerators operates re-
versibly. We refer to this upper bound as the Carnot COP, and
its value can be obtained from Eq. (14),

J

(
1

TR
− 1

TH

)
� QL

(
1

TL
− 1

TR

)

⇒ C = QL

J
� T −1

R − T −1
H

T −1
L − T −1

R

= CCarnot. (17)

B. Vanishingly small linewidth

These thermodynamic relations can be written in terms of
the microscopic details of our device in the limit of small
level width, γ � kBTL. In this regime, we have QL = jEL,
QR = − jER, and J = j�E . The second law in Eq. (13) then
becomes

j

(
�E

TH
+ EL

TL
− ER

TR

)
� 0, (18)

and the COP is given by

C = EL

�E
. (19)

Interestingly, there are two possible choices for the rela-
tive positions of the dot energies and Fermi level such that
J � 0, QL � 0, and QR � 0. In comparison to the electric-
current-rectification case discussed in Ref. [35], where the dot
energies are positioned above and below the Fermi energy,
here both the dot energies are positioned either above or below
the Fermi energy. They respectively correspond to ER > EL >

0, where the particle current flows from L to R ( j > 0), or
ER < EL < 0, where the particle current flows from R to L
( j < 0). In the former case, hot electrons are taken out of the
cold reservoir, while cold electrons are injected into the cold
reservoir in the latter case. Alternatively, the latter case can be
viewed as the transport of hot holes below the Fermi energy
(taken as the zero of energy); see Fig. 1. We note that this is
a manifestation of particle-hole symmetry in the underlying
transport problem, which is often an overlooked aspect but
has interesting consequences; in our absorption refrigerator
context, the particle-hole symmetry can be exploited as an
additional freedom of choice for the biasing of dot energies
relative to the Fermi energy, and this freedom could be bene-
ficial in an experimental implementation of our proposal.

The thermodynamic analysis presented above allows us
to predict the temperature of the hot reservoir R for which
cooling power vanishes. According to Eq. (18), for j > 0, we
must have

EL

TL
− ER

TR
+ �E

TH
� 0, (20)
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FIG. 2. (a) The cooling power QL in dimensionless units, qL =
h̄QL/(γ kBTL ), as a function of TR/TL. We also compare the numer-
ical calculation for qL for small, but finite, linewidth (blue dots)
with exact predictions assuming a δ transmission function (red solid
curve), as well as linear response regime results (black dashed curve).
We choose μL = μR = 0, TH = 5TL, EL = 0.4kBTL, ER = 0.45kBTL,
and γ = 10−4kBTL. (b) COP C as a function of TR/TL. Note that
Carnot COP is reached at TR = Tstop. (c) Comparing the numerical
calculation for qL for small, but finite, linewidth (blue dots) with ex-
act predictions assuming a δ transmission function (blue solid curve),
as well as linear response regime results (black dashed curve) for dif-
ferent values of r = EL/ER. We choose μL = μR = 0, TR = 1.5TL,
TH = 5TR, ER = 0.6kBTL, and γ = 10−4ER. (d) COP of the absorp-
tion refrigerator. It is shown that the refrigerator achieves Carnot
COP at the stopping energy, EL = rstopER, and that the coefficient of
performance at Emax

L is Cmax = (T −1
R − T −1

H )/(2T −1
L − T −1

R − T −1
H ).

while, for j < 0, we must have

EL

TL
− ER

TR
+ �E

TH
� 0. (21)

In either of the cases the stopping configuration corresponds
to saturating the equality in Eqs. (20) and (21), as the entropy
change becomes zero and the system becomes thermodynam-
ically reversible. Solving for TR = Tstop, we obtain

Tstop = ER

(
EL

TL
+ �E

TH

)−1

. (22)

The cooling power drops to zero at TR = Tstop, as demon-
strated in Fig. 2(a). This hints at the fact that the transport of
electrons is thermodynamically reversible at the stopping con-
figuration. This can be straightforwardly verified by showing
that Carnot COP is achieved in this situation; see Fig. 2(b).

IV. OPTIMIZING THE COOLING POWER

In this section, we discuss systematically optimizing the
performance of our absorption refrigerator. We focus on the
parameters which can be tuned via external control, such as
the energy of the dots, as well as their linewidth. We com-
pute their optimal values numerically and compare with exact
analytical predictions whenever possible.

A. Optimizing with respect to the dot energies

We first discuss the optimal and stopping configurations
with respect to varying the energy of the left dot when all
other parameters are assumed to have fixed values. We further
assume that we are in the limit of vanishing level width, γ �
kBTL. Hereafter, we assume j > 0, such that ER > EL > 0
according to Eq. (18). In this regime, the second law implies

EL

(
1

TL
− 1

TH

)
� ER

(
1

TR
− 1

TH

)
. (23)

We deduce that the system operates as an absorption refriger-
ator if the dot energies satisfy

0 � EL � rstopER, (24)

where we have introduced the stopping ratio

rstop = T −1
R − T −1

H

T −1
L − T −1

H

. (25)

The cooling power goes to zero at this stopping configuration
where electron transport is thermodynamically reversible and
thus achieves Carnot COP. This is demonstrated in Figs. 2(c)
and 2(d), respectively.

We now discuss the optimal point of operation of the
refrigerator by first solving for the chemical potential of
the reservoir μH (see Appendix A) and then optimizing the
cooling power QL with respect to the energy of the left
dot. However, the solution for μH does not allow for further
analytical calculations in the general case, and additional ap-
proximations are necessary. In what follows, we will assume
that the energy differences between dot energies and chemical
potentials are small, so that the Fermi factors can be expanded
as follows:

f (E − μ, T ) ≈ 1

2
− E − μ

4kBT
. (26)

Such simplification is accurate for |E − μ| � kBT [68]. In
this regime, the cavity chemical potential is given by

μH ≈ −EL

2

(
TH

TL
− 1

)
− ER

2

(
TH

TR
− 1

)
. (27)

The cooling power then reads

QL = γ EL

8h̄kBTH

[
ER

(
TH

TR
− 1

)
− EL

(
TH

TL
− 1

)]
. (28)

We find that cooling power is maximum when the left-dot
energy is precisely at the center of its allowed range, Emax

L =
rstopER/2, where

Qmax
L = γ E2

R

(
T −1

R − T −1
H

)2

32h̄kB
(
T −1

L − T −1
H

) . (29)

The corresponding COP is

Cmax = T −1
R − T −1

H

2T −1
L − T −1

R − T −1
H

. (30)

We indicate these optimal configurations in Figs. 2(c) and
2(d). Further optimization of the device by varying more than
one parameter at once is shown in Figs. 3 and 4.
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FIG. 3. The cooling power QL in dimensionless units, qL =
h̄QL/(γ kBTL ), as a function of dot energies, as well as temperatures.
The contour lines are obtained independently in the small-linewidth
limit from exact calculations (solid curves) and linear response re-
sults (dashed curves). We choose μL = μR = 0, TL = 0.6TR, and
ER = 0.4kBTR. The minimum temperature of reservoir H is set at
TH = 5TR, and the maximum value of the ratio EL/ER is taken to be
the stopping ratio rstop for this minimum temperature.

Analogous to the rectification of a current without any volt-
age difference [35], we note from Eq. (28) that it is possible
to drive a rectified heat current even if there is no thermal bias
between reservoirs L and R, TL = TR = T . In this case the
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of linear response theory. (a) The maximum cooling power Qmax

L

in dimensionless units, q̃max
L = h̄Qmax

L /(kBTR )2, as a function of the
energy ratio r for different values of TL. We choose μL = μR = 0,
TH = 5TR, ER = kBTR, and γ = γ max(rER, ER, TL, TR, TH). (b) The
maximum cooling-power linewidth γ = γ max(rER, ER, TL, TR, TH)
in dimensionless units, γ̃ max = γ max/kBTR, is shown as a function
of r. The stopping values of r are shown as dots, and they corre-
spond to the values obtained assuming vanishing linewidth. The TL =
TR case corresponds to the rectification configuration discussed in
Appendix B.

heat current out of reservoir L is given by

QL = γ EL�E

8h̄kBTH

(
TH

T
− 1

)
. (31)

In this situation, the direction of the heat flow, along with the
direction of the particle current, is entirely then determined
by the relative position of the dot energies. For example,
let us consider a setup with EL > 0 and ER > 0, in which
case heat transport is mediated by hot electrons; we have
QL > 0 ( j > 0) if ER > EL, while QR > 0 ( j < 0) if ER <

EL. More details about this rectified heat current are given in
Appendix B.

B. Optimizing with respect to the linewidth γ

We now generalize our discussion to finite linewidth
γ characterizing the transmission through the dots. The
linewidth γ is an additional important parameter which can
be optimized to our advantage in a realistic experiment.
Physically, as we increase the linewidth, electrons from a
wider range of energy can participate in the transport process.
However, soon the cooling power tends to drop with further
increase in the linewidth because increasing the linewidth
above a threshold reduces the energy-filtering effect neces-
sary for the operation of our absorption refrigeration scheme.
Therefore there is an optimal linewidth γ = γ max which will
depend on the energy of the dots as well as the temperature of
the leads. We compute γ max numerically. We demonstrate this
optimization in Fig. 5(a), where each point in the curve corre-
sponds to an optimization over the linewidth γ . The optimal
γ which maximizes the cooling power for each value of r is
shown in Fig. 5(b). We observe that the allowed range of val-
ues for the left-dot energies shrinks (from above and below)
as the level width is increased. Interestingly, there is a critical
level width above which refrigeration becomes impossible.
Our numerical results further substantiate our choice to work
in the regime of vanishingly small level width since we find
that γ max is typically one or two orders of magnitude smaller
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than the temperature. This is in stark contrast with Ref. [35],
where the same device is used as an energy harvester. There,
the optimal level width for electric power generation is found
to be of the order of the temperature of the leads. This sub-
stantial difference is seemingly due to the different positions
of dot energies: In Ref. [35], dot energies are symmetrically
placed with respect to the average chemical potential of the
leads, while here, we have argued that refrigeration can only
be achieved if both dot energies are above (or below) the
common chemical potential of the leads (taken as the zero of
energy throughout our analysis).

Numerically analyzing the particle and energy currents as
functions of the linewidth γ , we find that their large-scale
variations with γ do not strongly depend on the dot ener-
gies. As already noted in Ref. [35], the particle current [69]
first increases with γ , reaching a maximum for γ ∼ kBTL,
but it then decreases, approaching zero as γ becomes larger.
The heat current typically decreases with γ and plateaus at
QL = −π2k2

B(T 2
H − T 2

L )/(3h) for relatively large linewidths,
γ � 10kBTL. More details about the behavior of currents for
large γ are given in Appendix C. Our numerics indicate
that we must restrict ourselves to cases where γ � kBTL.
More precisely, we find that the only cases where the de-
vice can operate as a refrigerator are those where the heat
current first increases with γ but then decreases after having
reached a maximum for γ = γ max. The possibility to use
the device as a refrigerator will then be determined by its
behavior for small γ , which is obtained using the limit in
Eq. (8) and has been extensively studied in this paper. We
have found that QL ≈ γ h̄−1EL[ f (EL, TL) − f (EL − μH, TH)]
for γ � kBTL, which means that the possibility for refriger-
ation at any value of γ will be determined by the sign of
the initial slope h̄−1EL[ f (EL, TL) − f (EL − μH, TH)], refrig-
eration being possible only if it is positive. Interestingly, we
note that the sign of this quantity has already been analyzed
in Eq. (18), which is simply a restatement of the second law
of thermodynamics in the limit γ � kBTL. The possibility for
our device to operate as a refrigerator is thus entirely deter-
mined by the fundamental laws of thermodynamics expressed
in the limiting case of vanishingly small linewidths.

C. Comparison with experiments

We now look at experimentally realistic conditions. The
simulation we base our discussion on is shown in Fig. 2(c).
The energy of the right dot considered is ER = 103μeV and
is kept fixed. We consider the temperature of the left lead to
be kept at TL = 2 K, the temperature of the right lead to be
kept at TR = 3 K, and the temperature of the cavity to be kept
at TH = 5TR. For these considerations, the stopping energy
of the left dot becomes E stop

L ≈ 63.4 μeV, and the optimal
cooing is obtained when Emax

L ≈ 31.7 μeV. The maximum
cooling power obtained at the optimal bias (EL = Emax

L ) is
Qmax

L ≈ 10 eV/s. We assume a linewidth γ = 10−4ER, which
approximates the results assuming a δ-function linewidth. We
demonstrate in Appendix D that the asymmetric case (when
γL �= γR) does not cause any major changes to these predic-
tions; for instance, the maximum cooling power is obtained
still at the middle of the allowed range for the dot energies EL

even when the linewidths are not exactly identical, which is

a likely scenario for the experimental implementation of our
refrigerator.

V. CONCLUSIONS

We presented a new quantum absorption refrigerator
scheme based on the quantum physics of resonant tunneling
through quantum dots. We provided a complete thermody-
namic characterization of the device and identified stopping
configurations of the refrigerator where the transport is ther-
modynamically reversible such that Carnot COP is achieved
while extracting zero cooling power. We also optimized the
operation of the refrigerator with respect to externally con-
trollable parameters for the refrigerator, such as the energy
of the dots, as well as their linewidth. Our absorption refrig-
erator can be integrated into circuits and can offer on-chip
integrable solutions to the increasing demand for cooling in
the subkelvin regime, by harvesting energy from dissipating
energy sources within a circuit. This is an additional benefit of
our cooling scheme, which presents itself as a novel approach
to recycle wasteful energy from some part of the circuit,
possibly left over from a cycle of computation, for cooling
other regions within the circuit. In contrast to the heat-engine
mode [35], the absorption refrigerator requires a smaller
linewidth.

Our present analysis has ignored many-body effects that
emerge with strong electron-electron interactions in the quan-
tum dot, but if present, they can have observable consequences
to electron transport, such as the Kondo effect [70–73] due
to the formation of a singlet between the conduction elec-
trons from the lead and the dot. In such cases, the Fermi
surface of the lead effectively extends to the quantum dot,
such that quasiparticles traverse the dot with unit probability,
resulting in increased conductance [74]. At low temperatures,
such quantum correlations can enhance the cooling effect by
achieving unit transmission through the dots—which makes it
an interesting direction of research to explore further, although
beyond the scope of our present analysis.

Different alternate implementations for our absorption re-
frigerator are possible; for instance, one can consider several
such absorption refrigerators operating in parallel to amplify
the cooling effect. Such practical solutions to harvesting dis-
sipated heat in electronic circuits are of supreme importance
to various quantum-computing platforms currently available,
with the potential to improve the performance of super-
conducting circuits, quantum-limited detectors, and charge
sensors used for various quantum information-processing ap-
plications.
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APPENDIX A: EXACT SOLUTION FOR μH

Note that Eq. (9) can be solved exactly to obtain a solu-
tion to the chemical potential of the cavity μH. To find the
solution, we define z = exp(−μH/kBTH) and use the short

235427-7



MANIKANDAN, JUSSIAU, AND JORDAN PHYSICAL REVIEW B 102, 235427 (2020)

notation fα = f (Eα − μα, Tα ) for α = L, R. Then, Eq. (9)
becomes

(
ze

EL
kBTH + 1

)−1 + (
ze

ER
kBTH + 1

)−1

= fL + fR ⇒ ze
EL

kBTH + ze
ER

kBTH + 2(
ze

EL
kBTH + 1

)(
ze

ER
kBTH + 1

)
= fL + fR. (A1)

It is straightforward to write this equation in the form az2 +
bz + c = 0, where we find

a = fL + fR, b = ( fL + fR − 1)
(
e− EL

kBTH + e− ER
kBTH

)
,

c = ( fL + fR − 2)e− EL+ER
kBTH . (A2)

There are two solutions to this equation given by z± = (−b ±√
b2 − 4ac)/(2a). Note that we always have b2 > 4ac since

a > 0 and c � 0, which ensures that the solutions z± are real.
However, this also implies that z− � 0, which therefore is an
unphysical solution as it would correspond to an imaginary
chemical potential. We conclude that the chemical potential
of the cavity reads

μH

kBTH
= ln 2 − ln

{(
1

fL + fR
− 1

)(
e− EL

kBTH + e− ER
kBTH

)

+
[(

1

fL + fR
− 1

)2(
e− EL

kBTH + e− ER
kBTH

)2

+ 4

(
2

fL + fR
− 1

)
e− EL+ER

kBTH

]1/2}
. (A3)

We emphasize that the above expression can be used in all
situations where the narrow-linewidth limit is justified since
its derivation did not require any additional approximation. In
particular, even though this work focuses on the absorption
refrigerator case where μL = μR = 0, the chemical potentials
μL and μR need not be equal.

APPENDIX B: RECTIFICATION CONFIGURATION

It is interesting to note that it is possible to drive a rectified
heat current even if there is no thermal bias between the two
leads, TL = TR = T . In this case, the second law of thermody-
namics reads

J

(
1

T
− 1

TH

)
� 0. (B1)

Since T < TH, this imposes J > 0; that is, j�E > 0. In this
situation, it is the relative position of the dot energies which
dictates the directions of both the particle current and the heat
flow: When EL > 0 and ER > 0, we have j > 0 and QL > 0
(electrons and heat flow from left to right) if ER > EL, while
QR > 0 and j < 0 (electrons and heat flow from right to left)
if ER < EL.

Focusing on the case j > 0, we realize that the only con-
dition to be satisfied by the dot energies is �E > 0; in other
words, rstop = 1. In the linear response regime, we find that

the cooling power is given by

QL = γ EL�E

8h̄kBTH

(
TH

T
− 1

)
. (B2)

For fixed ER, it reaches a maximum when EL = ER/2,

Qmax = γ E2
R

32h̄kBTH

(
TH

T
− 1

)
, (B3)

with the COP simply given by C = 1.

APPENDIX C: FLAT TRANSMISSION IN THE
LIMIT OF LARGE LINEWIDTH

The transmission function of a quantum dot becomes flat
in the limit of large linewidth,

Tα (E ) = γ 2

(E − Eα )2 + γ 2
≈ 1. (C1)

In practice, this approximation is relevant when γ is much
larger than temperature, γ 	 kBTH here. In this situation, the
particle currents read

jα ≈ 2

h

∫ ∞

−∞
dE [ f (E − μα, Tα ) − f (E − μH, TH)]

= 2

h
(μα − μH). (C2)

The conservation law in Eq. (9) then becomes

jL + jR = 0 ⇒ μH = μL + μR

2
. (C3)

Hence the particle current going through the device is

j = jL = − jR = μL − μR

h
. (C4)

Furthermore, we can compute the energy currents,

Jα ≈ 2

h

∫ ∞

−∞
dE E [ f (E − μα, Tα ) − f (E − μH, TH)]

= − π2k2
B

3h

(
T 2

H − T 2
α

) + 1

h

(
μ2

α − μ2
H

)
. (C5)

Using the expression for μH in Eq. (C3), we obtain

Jα = −π2k2
B

3h

(
T 2

H − T 2
α

) + μα − μᾱ

4h
(3μα + μᾱ ), (C6)

where ᾱ = R if α = L, and conversely.
In this paper, we have focused on the case of an absorption

refrigerator where μL = μR = 0. In such a situation, we find
μH = 0 for γ 	 kBTH. This implies that the particle current
vanishes in this limit, j = 0. In contrast, the energy current
remains finite,

Jα = −π2k2
B

3h

(
T 2

H − T 2
α

)
. (C7)

In particular, the heat current out of the cold reservoir L
is given by QL = JL = −π2k2

B(T 2
H − T 2

L )/(3h). Interestingly,
this limiting value does not depend on the dot energies. This is
natural since the Lorentzian resonances at the dots’ energies
are completely blurred out in the large-linewidth limit where
the transmission functions become flat. Moreover, we find that
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this heat current is always negative, which further substan-
tiates our claim that refrigeration is only possible for small
linewidths.

APPENDIX D: ASYMMETRIC LINEWIDTH

In the main text, we focused on the case where the
linewidth γL = γR = γ . Here, we consider the case where
γL �= γR, and we notice that this does not add any significant
changes to the predictions we make. For example, in the linear
response regime, we find that the chemical potential for the
cavity in the steady state reads

μH = − γLEL

γL + γR

(
TH

TL
− 1

)
− γRER

γL + γR

(
TH

TR
− 1

)
, (D1)

which reduces to Eq. (27) when γL = γR. The cooling power
in this case becomes

QL = γLγREL

4(γL + γR)h̄kBTH

[
ER

(
TH

TR
− 1

)
− EL

(
TH

TL
− 1

)]
,

(D2)

which reduces to Eq. (28) when γL = γR. Note that the max-
imum cooling power is still obtained when EL = rstopER/2,
and the maximum cooling power is

Qmax
L = γLγRE2

R

(
T −1

R − T −1
H

)2

16(γL + γR)h̄kB
(
T −1

L − T −1
H

) . (D3)
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