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A valley-contrasting Berry curvature in bilayer transition metal dichalcogenides with spin-orbit coupling can
generate valley magnetization when the inversion symmetry is broken, for example, by an electric field, regard-
less of time-reversal symmetry. A nontrivial Berry curvature can also lead to anomalous transport responses,
such as the anomalous Hall effect and the anomalous Nernst effect. Applied to a bilayer WSe2, an electric field
can tune the Berry curvature and orbital magnetic moment, which has important consequences for the orbital
magnetization and the anomalous Nernst responses. The orbital magnetization and its two contributions, one
due to the magnetic moment and one due to the Berry curvature, are calculated and interpreted in terms of
opposite circulating currents of the bands in the two layers. The valley anomalous Nernst coefficient and spin
Nernst coefficient are also calculated. We find that a finite electric field leads to peaks and dips in the Nernst
responses that have the signs of the Berry curvatures of the bands and are proportional to their magnitudes;
it also enhances the valley Nernst responses. These experimentally verifiable findings may be promising for
caloritronic applications.
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I. INTRODUCTION

In two-dimensional (2D) materials and transition metal
dichalcogenides (TMDCs) with hexagonal structure, an elec-
tron not only has spin but also a valley degree of freedom,
which acts as a pseudospin. Phenomena such as valley polar-
ization and valley- and spin-Hall effects have been discussed
for the K and K ′ = −K Dirac valleys at opposite corners
of the Brillouin zone [1–6]. The realization of these effects
is based on the control of properties that differ between the
two valleys [7], in particular the magnetic moment (m) and
the Berry curvature (�). For spinful electrons time-reversal
(T R) symmetry dictates that � has the same magnitude but
opposite sign in the two valleys for opposite spin states, i.e.,
�n,σ (K ) = −�n,−σ (−K ), where n is a band index and σ

labels a spin state. Space-inversion (P) symmetry requires
them to have the same sign, i.e., �n,σ (K ) = �n,σ (−K ). If both
T R and P are good symmetries, �n,σ (K ) = −�n,−σ (K ). The
symmetry properties for m are the same as for �. Therefore,
in order to have nonzero � and m one of the two symmetries
must be broken. A necessary condition for valley-contrasting
m and � is the P symmetry breaking [7], independent of
the T R symmetry. The Berry curvature is also allowed to be
nonzero in the presence of spin-orbit coupling (SOC). In this
case the spin-dependent spatial states with opposite spins have
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different orbital wave functions and there is no requirement
that �n,σ (K ) be zero.

The Berry curvature can be described as a pseudomagnetic
field in reciprocal space which drives the carriers in its di-
rection. A direct consequence is the valley-Hall effect (VHE)
[1,7], in which electrons at the two valleys drift to opposite
edges of the material in the presence of an in-plane electric
field due to the equal but opposite Berry curvatures at the
two valleys [8]. A nonzero Berry curvature in TMDCs also
leads to various anomalous transport phenomena, such as the
anomalous Hall effect (AHE) [6] and the anomalous Nernst
effect (ANE) [9]. TMDCs also exhibit strong SOC which,
together with the intrinsic broken P symmetry, leads to a
coupling of the spin and valley degrees of freedom [1,10]. On
the other hand, the layer degree of freedom in bilayer systems
can be described as a pseudospin. Pseudospin up (down) refers
to the state where the charge carrier is located in the upper
(lower) layer. For a SOC strength larger than the interlayer
hopping, a carrier is localized in either the upper or lower layer
resulting in spin-layer locking effect [11] in a particular valley,
and therefore the spin remains a good quantum number.

Bilayer TMDCs are AB stacked, i.e., one monolayer sits
on another but rotated by 180◦. In bilayer WSe2 the Se atoms
in the upper layer sit on top of the W atoms of the bottom
one. Pristine bilayers are therefore inversion symmetric. How-
ever, the P symmetry can be broken by applying an electric
field perpendicular to a bilayer; this causes a potential differ-
ence between the two layers and leads to valley-contrasting
Berry curvature and magnetic moment. In fact, the emergence
of valley-contrasting physical properties is a generic conse-
quence of the P symmetry breaking in 2D hexagonal lattices.
In such systems, the effects of the Berry curvature give rise to
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topological, electric [7], and thermoelectric [9] transport phe-
nomena. Important developments on thermoelectric transport
were based on the Berry-phase correction to the orbital mag-
netization (OM) at finite temperatures [9] and its role on the
intrinsic Hall current. In fact, the Berry-phase correction term,
which is of topological nature, eventually enters the transport
current and leads to an anomalous Nernst conductivity. Topo-
logical thermoelectric transport has been studied previously
in single and bilayer graphene [12], while for monolayer
TMDCs a mechanism for generation of pure spin current via
the spin-Nernst effect was described in Ref. [13]. Recently, the
Nernst response of monolayer and bilayer TMDCs was inves-
tigated in the presence of the Rashba SOC [14]. The ANE was
also investigated experimentally [15] and theoretically [16] in
Dirac and Weyl semimetals.

The purpose of this work is to investigate the Berry cur-
vature, the OM, and the topological Nernst effect in bilayer
WSe2 with broken P symmetry via gating. In the presence
of SOC the application of an electric field causes a splitting
of the spin-degenerate bands that now have opposite spin
polarizations at the two valleys as enforced by T R symmetry.
After briefly presenting the band structure, we calculate the
Berry curvature and orbital magnetic moment and explore
how they are affected by the electric field. We find that, for
either valley the electric field tunes the Berry curvature of the
spin-down bands but barely affects that of the spin-up ones.
The same holds for the orbital magnetic moment. We then
investigate the OM for each valley. When the electric field is
absent the OM for each valley vanishes as a consequence of
the simultaneous presence of T R and P symmetries. When it
is present though, the OM varies linearly with the chemical
potential EF but is constant in the band gap. The electric
field also leads to nonzero Nernst responses due to the non-
trivial Berry curvature of the bands. We evaluate the valley
anomalous Nernst coefficient (ANC) and spin-Nernst coeffi-
cient (SNC), as functions of EF , for zero and finite electric
fields at various temperatures. The electric field leads to peaks
and dips in the Nernst responses that are proportional to the
magnitudes of the Berry curvatures and to enhanced valley
Nernst signals.

In Sec. II we present the Hamiltonian of a bilayer WSe2,
briefly discuss its band structure, and evaluate the matrix
elements of the velocity operator. In Sec. III we discuss the
effects of the electric field on the Berry curvature and orbital
magnetic moment and make a comparison with two decoupled
monolayers. In Sec. IV we discuss the OM, and in Sec. V we
explore the ANE. We summarize and conclude in Sec. VI.

II. THEORETICAL MODEL

Ab initio studies of the band structure revealed that edges
of valence and conduction bands in bilayer TMDCs near the K
points are dominantly comprised of dxy, dx2−y2 , and dz2 states.
As a result, the effective Hamiltonian can be constructed by
adding interlayer coupling [10,11,17,18] to the k · p model
of monolayers established in Ref. [1]. We consider a bilayer
WSe2 with an interlayer coupling γ and an applied electric
field which induces a potential energy difference 2V between

the layers. The Hamiltonian near the K and K ′ valleys reads

H =

⎛
⎜⎝

δ1 h̄vF k− 0 0
h̄vF k+ δ2 0 γ

0 0 −δ2 + δλ h̄vF k+
0 γ h̄vF k− −δ1 − δλ

⎞
⎟⎠, (1)

where

δ1 = � + τ szλc + V, δ2 = −� + τ szλv + V,

δλ = τ sz(λv − λc). (2)

Further, k± = τkx ± iky, where k is the relative wave vector
with respect to the K points, and τ = ±1 for the K , K ′ valleys
of the bilayer bands. Also, vF = 5 × 105 m/s is the Fermi
velocity, 2� = 1.7 eV is the band gap of monolayer WSe2

[10], and γ = 0.067 eV is the interlayer hopping for holes.
The interlayer hopping for electrons vanishes at K points due
to the symmetry of the dz2 orbital. Also, sz denotes the Pauli
matrix for the z component of the spin. From Eq. (1) we
see that [sz, H] = 0, and thus sz is a good quantum num-
ber. The spin-up (↑) and spin-down (↓) states corresponding
to sz = ±1 are decoupled in bilayers, as interlayer coupling
conserves the spin. Further, λc = 7.5 meV is the SOC for
electrons and λv = 112.5 meV that for holes. Note that the
diagonal elements in Eq. (1) involve the terms τ szλc and
τ szλv , due to the fact that the heavy W atoms induce a strong
SOC with large spin splitting (especially for holes) leading to
spin-valley coupling. This necessarily leads to a simultaneous
spin flip in addition to large momentum transfer (K ←→ K ′)
during scattering of charge carriers between valleys, which
is of great importance for the realization of the valley spin
valve in 2D materials [19]. The SOC in Eq. (1) is due to
terms Hso,c = λcτ szμz and Hso,v = λvτ szμz in the conduction
and valence band of the bilayer, respectively, in the single
layer Hamiltonian of Ref. [1]. Here, the Pauli matrix μz is the
layer pseudospin which indicates that the SOC has a different
sign [10] in the two layers. This originates from the 180◦
rotation of the two layers with respect to each other. The
electrostatic potential V in Eq. (1) is due to the Hamiltonian
HV = V 1sz 1σ μz, where 1sz (1σ ) denotes the identity matrix in
the sz(σ ) space with σi(i = x, y) the Pauli matrices for the two
basis functions of the energy bands of a monolayer [1].

A. Eigenvalues and eigenfunctions

To obtain the eigenvalues and eigenstates of Eq. (1) we first
write k± = τ |k|e±iτϕk where tan(τϕk ) = τky/kx and |k| =
k = (k2

x + k2
y )1/2. Then setting equal to zero the determinant

corresponding to the Hamiltonian (1) leads to the quartic
equation for the eigenvalues E

E4 + a1E2 + a2E + a3 = 0; (3)

with εk = h̄vF k the coefficients a1, a2, a3 are given by

a1 = −δ2
1 − δ2

2 − (δ1 − δ2)δλ − δ2
λ − 2ε2

k − γ 2, (4)

a2 = (δ1 + δ2)[(δ1 − δ2)δλ + δ2
λ] + γ 2(δ1 − δ2 + δλ), (5)

a3 = (
δ1δ2 − ε2

k

)
(δ1 + δλ)(δ2 − δλ) − ε2

k δ1δ2

+γ 2δ1(δ2 − δλ) + ε4
k . (6)
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FIG. 1. Energy dispersion near the K valley for bilayer WSe2 in
the absence (left panel) and presence (right panel) of a perpendicular
electric field corresponding to a potential energy V = 0.4 eV. The
solid curves are for spin-up bands and the dash-dotted ones for spin-
down bands which are not labeled for clarity. Notice the enhanced
splitting of the valence spin subbands.

The solutions of Eq. (3) are

E τ sz

λμ (k) = 1

2
√

3

{
λ
[

− 2a1 + B + A

21/3

]1/2

+μ
[
−4a1−B− A

21/3
− λ

6
√

3a2√
−2a1+B+A/21/3

]1/2}
,

(7)

with λ = +1(−1) for the conduction (valence) band. The
pseudospin μ is the layer degree of freedom: μ = +1(−1)
for the upper (lower) layer. The constants A, B are given in
terms of the constant C = 2a3

1 + 27a2
2 − 72a1a3 as

A = [
C + [

C2 − 4
(
a2

1 + 12a3
)3]1/2]1/3

(8)

B = 21/3(a2
1 + 12a3

)
/A. (9)

In Fig. 1 we show the energy dispersion E τ sz

λμ (k) of bi-
layer WSe2 for the K valley versus k/kc where kc = π/a
and a = 3.32 Å is the lattice constant of monolayer WSe2.
The spin-up, conduction (valence) band energies in the top
(bottom) layer are denoted by Et

c,↑(Eb
c,↑) and Et

v,↑(Eb
v,↑). In

the absence of an electric field [see Fig. 1(a)] Kramer’s degen-
eracy is established [E �

n,↑(k) = E �
n,↓(k), where n = c(v) and

� = t (b)] by the combination of T R [E �
n,↑(k) = E �

n,↓(−k)]
and P [E �

n,↑(k) = E �
n,↑(−k)] symmetries. In the conduction

band the splitting between the twofold degenerate levels is es-
sentially given by the SOC strength 2λc of monolayer TMDCs
at k = 0. In the valence band the energy splitting would be 2γ

if the SOC was absent. However, the presence of the strong
SOC for holes causes significant increase in the energy split-
ting from 2γ to 2

√
γ 2 + λ2

v . For finite V the spin degeneracy
is lifted, due to the breaking of the P symmetry, and leads to
finite splitting of the spin subbands, as shown in Fig. 1(b). The
spin-up bands are shown by the solid lines and the spin-down
ones by the dash-dotted curves; the latter are not labeled for
clarity. The spin splitting due to a finite V is more pronounced
for the valence bands than for the conduction bands. This is
because the electric field enhances the effect of SOC resulting
in larger spin and layer splittings. Notice also that the band

gap is reduced as V increases. For the K ′ valley (not shown)
the spin subbands are reversed.

The eigenstates of H are four-component spinors, � =
( φ1 , φ2 , χ1 , χ2 )T where T denotes the transpose. Follow-
ing a standard diagonalization procedure we obtain

�λμk(r) = Nλμk

⎛
⎜⎜⎜⎜⎜⎝

εkτe−iτϕk

Eλμk−δ1
ηλμk

ηλμk

εkτeiτϕk

Eλμk+δ2−δλ

1

⎞
⎟⎟⎟⎟⎟⎠

eik·r
√

S
, (10)

where we suppressed the superscripts τ and sz for clarity;
Eλμk are the energy eigenvalues given in Eq. (7). We have
also defined the auxiliary quantity ηλμk as

ηλμk = (Eλμk + δ2 − δλ)(Eλμk + δ1 + δλ) − ε2
k

γ (Eλμk + δ2 − δλ)
. (11)

Note that ηλμk is purely real. Also, with S the area of the
sample, the normalization factor Nλμk is found to be

Nλμk =
{

η2
λμk

[
1 + ε2

k

(Eλμk − δ1)2

]

+1 + ε2
k

(Eλμk + δ2 − δλ)2

}−1/2

. (12)

B. Matrix elements of the velocity operator

With v = ∂H/∂p and the Hamiltonian (1) the operators vx

and vy read

vx = τυF

(
σx 0
0 σx

)
, (13)

vy = υF

(
σy 0
0 −σy

)
, (14)

with σi (i = x, y) the Pauli matrices for the two basis functions
of the energy bands of a monolayer [1]. For the calculations
we need the matrix elements, 〈�λμk|vν |�λ′μ′k′ 〉, ν = x, y and
�λμk given in Eq. (10). All calculations are done for a specific
valley and a specific spin state. We introduce the notation

〈�α|vν |�α′ 〉 = 〈α|vν |α′〉 = vν,αα′ , (15)

where α, α′ denote collectively the quantum numbers λ,μ, k,
i.e., |α〉 = |λμk〉 and |α′〉 = |λ′μ′k′〉. The matrix elements of
vν are diagonal in the index k, that is

vν,αα′ = vν,λμ;λ′μ′ (k)δkk′ , (16)

with

vx,λμ;λ′μ′ (k) = M

[(
εkeiτϕk

Eλμk − δ1
+ εke−iτϕk

Eλ′μ′k − δ1

)
ηλμkηλ′μ′k

+ εke−iτϕk

Eλμk + δ2 − δλ

+ εkeiτϕk

Eλ′μ′k + δ2 − δλ

]
,

(17)
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M = NλμkNλ′μ′kvF , and

vy,λμ;λ′μ′ (k)=Miτ

[(
− εkeiτϕk

Eλμk − δ1
+ εke−iτϕk

Eλ′μ′k − δ1

)
ηλμkηλ′μ′k

+ εke−iτϕk

Eλμk + δ2 − δλ

− εkeiτϕk

Eλ′μ′k + δ2 − δλ

]
.

(18)

Note also the equality

vν,λ′μ′;λμ(k) = v∗
ν,λμ;λ′μ′ (k) (19)

due to the hermiticity of the velocity operators. The matrix
elements (17) and (18) will be used in the evaluation of the
Berry curvatures and magnetic moments.

III. BERRY CURVATURE AND ORBITAL
MAGNETIC MOMENT

Below we calculate and discuss the Berry curvature and or-
bital magnetic moment of bilayer WSe2 since they determine
the behavior of the OM and that of the ANE.

A. Berry curvature

Recently there have been several works on the effects of
symmetry breaking [20] and tunability of the Berry curvature
[21] with important consequences for the spin- and valley-
Hall effects in monolayer and bilayer MoS2. There are also
important consequences for the OM, and the ANE, as we
discuss below. The Berry curvature [22] of a band labeled by
λ and μ is defined as

�λμ(k) = i〈∇kuλμ(k)| × |∇kuλμ(k)〉, (20)

where |uλμ(k)〉 = √
Se−ik·r|�λμk〉, and the valley and spin

indices, τ and sz, have been suppressed for clarity. It can be
expressed in a gauge-invariant form that is more convenient
for numerical computations. In 2D materials only the kz com-
ponent survives and takes the form

�λμ(k) = −2h̄2Im
∑
λ′μ′

(λ′ 
= λ)

〈uλμ|vx|uλ′μ′ 〉〈uλ′μ′ |vy|uλμ〉
(Eλμk − Eλ′μ′k )2 , (21)

where vν = (1/h̄)∇kν
H . Using the matrix elements of vx and

vy, given by Eqs. (17) and (18), Eq. (21) becomes

�λμ(k) = −2h̄2
∑
λ′μ′

(λ′ 
= λ)

Im
[
vx,λμ;λ′μ′ (k)v∗

y,λμ;λ′μ′ (k)
]

(Eλμk − Eλ′μ′k )2 . (22)

The Berry curvature of a band arises due to the restriction
to a single-band description, i.e., it can be regarded as the
result of the “residual” interaction of other adjacent bands. It
becomes large when other bands are close, which is evident
from Eq. (21), where a sum over all other bands is performed
weighted by the inverse energy difference squared. In bilayer
TMDCs the origin of the Berry curvature is the SOC and has
an interesting effect; namely, it leads to finite Berry curvature
even for V = 0. This is because the SOC term, though it
preserves T R and P symmetries, for a particular valley and

-0.8

-0.4

0

0.4

0.8

 [a
2
]

(a)

t
c,
t
v,
b
c,
b
v,

-0.4 -0.2 0 0.2 0.4
k / k

c

-0.8

-0.4

0

0.4

0.8

b c,
[a

2 ]

(b) V[meV]
0

7.5

10

40

-0.8

-0.4

0

0.4

0.8

 [a
2
]

(c)

t
c,

t
v,

b
c,

b
v,

0 0.1 0.2 0.3 0.4
V [eV]

-0.8

-0.4

0

0.4

0.8

 [a
2 ]

(d)

t
c,

t
v,

b
c,

b
v,

FIG. 2. Berry curvature �(k) near the K valley. Distributions of
�(k) have opposite signs in the K ′ = −K valley. (a) Berry curvature
of spin-down bands versus k/kc for zero electrostatic potential (V =
0) and (b) �b

c,↓ versus k/kc for increasing values of V . (c) Berry
curvature of spin-down bands versus V for k/kc � 0. (d) The same
as in (c) but for spin-up bands.

spin state it appears in the diagonal matrix elements of the
Hamiltonian Eq. (1) in the same way as the electric field does.
This is shown in Fig. 2(a) where we plot the Berry curvature
of spin-down bands for the K valley and V = 0 versus k/kc,
where kc = π/a and a is the lattice constant. The values of
the parameters are the same as those in Fig. 1 and we use
c(v) for the conduction (valence) band and t (b) for the top
(bottom) layer. It can be seen that the Berry curvature of a
conduction/valence band is strongly enhanced and peaked at
the valley extrema. The asymmetry of the Berry curvatures
of the bands with respect to the k axis is a consequence of
the broken particle-hole symmetry which originates from the
unequal values of the SOC for electrons and holes and also
because the interlayer coupling for electrons vanishes. Due
to the preservation of both T R and P symmetries, the Berry
curvatures for spin-up bands are just the reverse of those for
spin-down bands, i.e., ��

n,↑(k) = −��
n,↓(k), where n = c(v)

and � = t (b). Moreover, at the K ′ = −K valley (not shown)
the Berry curvature has the same magnitude but opposite sign,
as required by T R symmetry.

In Fig. 2(b) we illustrate the effect of the electric field,
which can tune the Berry curvature. We only show the
conduction-band Berry curvature of the bottom layer �b

c,↓.
As V increases from zero, �b

c,↓ becomes more concentrated
around the K valley and when V � 7.5 meV it becomes small
and reverses polarity thereafter (purple and blue lines for 10
and 40 meV). For higher V , it becomes positive and con-
siderably larger compared to the V = 0 case. At the same
time, the conduction-band Berry curvature of the top layer,
�t

c,↓, also decreases in magnitude and reverses polarity at
the same value of V . This is shown in Fig. 2(c) where we
plot the Berry curvature versus the potential V for k/kc � 0.
For V � 7.5 meV, which is the value of SOC for electrons,
�b

c,↓ = �t
c,↓. This is also the case for �b

v,↓ and �t
v,↓. However,

this time the polarity inversion occurs at V � 112.5 meV,
which is the value of SOC for holes. This is because the
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electric field turns the SOC effectively off for the spin-down
electrons/holes as V → λc/λv . This is clearly seen in the di-
agonal elements of the Hamiltonian (1) where, for the K valley
and spin-down electrons, the expressions −λc(v) + V for the
top layer and λc(v) − V for the bottom layer become zero once
V reaches λc or λv . The simultaneous polarity inversion of
the Berry curvatures that occurs at λc and λv should rather be
expected because the Chern number is a topological invariant.
Therefore, a peak inversion of the Berry curvature of a band
must be accompanied by an opposite peak inversion of the
Berry curvature of another band such that the Chern number
(summed over valleys and spins) retains its initial value.

On the other hand, the effect of the electric field on the
Berry curvature for spin-up bands is much weaker, as shown
in Fig. 2(d) where we plot the Berry curvatures versus V .
At the K ′ valley, the polarity inversion occurs for spin-up
electrons but not for the spin-down ones.

Bilayer vs monolayers

A better understanding of the Berry curvature properties
is reached by contrasting a bilayer WSe2 with two decoupled
monolayers. In the latter case, the Hamiltonian (1) is block
diagonal (γ = 0) and we can find the eigenfunctions and
eigenvalues for each layer separately. The eigenfunctions of
the top layer are given by

�λk(r) = 1[
(Eλk − δ1)2 + ε2

k

]1/2

(
εkτe−iτϕk

Eλk − δ1

)
(23)

and the eigenvalues by

Eλk = (δ1 + δ2)/2 + (λ/2)
[
(δ1 − δ2)2 + 4ε2

k

]1/2
, (24)

where the valley and spin indices τ and sz have been sup-
pressed. The corresponding eigenfunctions and eigenvalues
for the bottom layer are obtained from those of the top layer
by taking the complex conjugate and making the replacement
δ1 → −δ2 + δλ and δ2 → −δ1 − δλ. The Berry curvature for
the top layer is obtained from Eq. (21) with μ = μ′ = ±1.
The evaluation proceeds as in the bilayer case and gives the
analytic result

�t
c(k) = −τ

2h̄2v2
F (δ1 − δ2){

(δ1 − δ2)2 + 4ε2
k

}3/2 (25)

for the spin-dependent Berry curvature of the conduction
band and �t

v (k) = −�t
c(k) for the valence band. The Berry

curvature for the bottom layer is obtained from Eq. (25)
with the replacements δ1 → −δ2 + δλ and δ2 → −δ1 − δλ.
Importantly, the electric field has dropped out and thus it has
no effect.

In Fig. 3(a) we compare the Berry curvature of the spin-
down bands for the bilayer (solid and dashed lines) with that
for the monolayers. We used the same parameter values as in
Fig. 2(a). The Berry curvature �

t (b)
c(v),↓(k) for the decoupled

layers is shown by using � for conduction bands and ©
for valence bands. Green color corresponds to the top layer
and black color to the bottom layer. It is seen that the Berry
curvatures of the conduction bands in either the top or bottom
layer of the bilayer WSe2 are almost identical to those of
the decoupled monolayers. This is due to the weak SOC for
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2

FIG. 3. (a) Comparison of �(k) near the K valley for the bilayer
[solid and dashed curves, see Fig. 2(a)] with that for two monolayers.
In the latter case the � symbols show the results for conduction
bands, and the © symbols the results for valence bands. Green color
corresponds to bands in the top layer, black color to bands in the
bottom layer. (b) The same as in (a) but for interlayer coupling twice
as large, 2γ = 0.134 meV.

electrons. However, the strong SOC for holes combined with
the interlayer coupling γ causes the Berry curvature of the
valence bands of both layers to decrease.

It is instructive to make the same comparison when the
interlayer coupling becomes twice as large, i.e., γ → 2γ . This
is shown in Fig. 3(b). In this case the Berry curvatures of the
valence bands of the bilayer are substantially different from
those of the decoupled monolayers. The gradually smaller
magnitude of the Berry curvature of a band is due to the gradu-
ally smaller influence of other adjacent bands; their separation
increases as γ increases (see discussion in Sec. III A). We
remark that if SOC is neglected, the Berry curvatures of both
valence and conduction bands of the bilayer vanish. However,
in the decoupled monolayers the Berry curvature is nonzero,
as is evident from Eq. (25). We also notice that the Berry
curvatures of the decoupled layers are different from each
other. The physical origin of this lies in the different signs
[10] of the SOC in the two layers within a given valley. This
is a consequence of the fact that the two layers are rotated by
180◦ with respect to each other.
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FIG. 4. Orbital magnetic moment m(k) near the K valley in units
of Bohr magnetons μB = eh̄/2m. m(k) has distribution similar to that
of �(k) (see Fig. 2). (a) m(k) of spin-down bands versus k/kc and
V = 0. (b) mb

c,↓ versus k/kc for increasing values of V . (c) m(k) of
spin-down bands versus V for k/kc � 0. (d) The same as in (c) but
for spin-up bands.

B. Orbital magnetic moment

The orbital magnetic moment of Bloch electrons is
given by [22]

mλμ(k) = e

2ih̄
〈∇kuλμ(k)| × [H (k) − Eλμk]|∇kuλμ(k)〉.

(26)

It originates from the self-rotation of the electron wave packet
around its center of mass [9] and therefore carries orbital
angular momentum in addition to its spin angular momentum.
Using the identity

〈∇kuλμ|uλ′μ′ 〉 = 〈uλμ|∇kH |uλ′μ′ 〉
Eλμk − Eλ′μ′k

(27)

and inserting the unity operator 1 = ∑
λ′μ′ |uλ′μ′ 〉〈uλ′μ′ | we

can rewrite the kz component of Eq. (26) as

mλμ(k) = −h̄e
∑
λ′μ′

(λ′ 
= λ)

Im[vx,λμ;λ′μ′ (k)v∗
y,λμ;λ′μ′ (k)]

Eλμk − Eλ′μ′k
. (28)

The orbital magnetic moment of spin-down bands near the
K valley is plotted in Fig. 4(a) versus k/kc for V = 0. Its
distribution is similar to that of �(k). However, in contrast
to �(k), we notice that the magnetic moments of both con-
duction and valence bands in the top layer are positive while
in the bottom layer they are negative. The effect of the electric
field on the magnetic moments is shown in Fig. 4(b). We
only show the conduction-band magnetic moment, mb

c,↓, of
the bottom layer. We notice that, as V increases from zero,
mb

c,↓ changes sign at V � λc. This behavior is the same as
that for the Berry curvature, see Fig. 2(b). In Fig. 4(c) we
plot the magnetic moment versus the potential V for k/kc � 0.
Increasing the electric field from zero causes inversion of the
magnetic moments of the conduction/valence bands in the top
and bottom layers as V → λc/λv . The reason is the same as
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FIG. 5. (a) Orbital magnetic moment at ±K , mb
v (±K ) = mb

v,↓ +
mb

v,↑, of the valence band in the bottom layer versus electrostatic
potential V . (b) The same as in (a) but for the top layer.

that for �(k). The orbital magnetic moment of spin-up bands
is barely affected by the electric field, see Fig. 4(d).

A perpendicular electric field offers the possibility of
switching on/off and tuning the Berry curvature and orbital
magnetic moment near the Dirac valleys. This is illustrated in
Fig. 5(a) where we plot the orbital magnetic moment at ±K
valleys of the valence band in the bottom layer, mb

v (±K ) =
mb

v,↓ + mb
v,↑. Figure 5(b) is for the top layer, mt

v (±K ) =
mt

v,↓ + mt
v,↑. At V = 0, the combined effect of the T R and

P symmetries causes vanishing of the magnetic moment. For
nonzero values of V , the P symmetry is broken and conse-
quently nonzero mb(t )

v (±K ) appears near the band edge. In
the top layer the magnetic moments have opposite signs from
those in the bottom layer, which has important consequences
for the OM, as discussed in Sec. IV. We also notice that
m is an odd function of the electrostatic potential. Hence,
electrical control of valley-contrasting magnetic moment and
Berry curvature suggests the possibility of manipulating topo-
logical quantum phenomena in bilayer WSe2 and other similar
TMDCs. The results shown in Fig. 5 are very similar to those
obtained with density functional theory (DFT) calculations
for a bilayer MoS2 [17]. For electric field E = 10 mV/Å,
corresponding to V � 70 meV, we estimate m = 0.25 μB for
the bilayer WSe2, which is slightly larger than the DFT result
of m � 0.2 μB for the bilayer MoS2.

IV. ORBITAL MAGNETIZATION

The modern theory of OM [23,24] focuses on a crystalline
system of independent Bloch electrons in the presence of T R
symmetry breaking. In this theory, the OM originates from the
orbital magnetic moment of carriers and from a Berry curva-
ture correction [7,8]. It has been studied in various systems
including TMDCs [25], topological insulators [26], systems
with arbitrary band topology [27], and more recently in Weyl
semimetals [28].

On the other hand, in systems with T R symmetry but with
broken P symmetry, the intrinsic magnetic moment associated
with the valley pseudospin is analogous to the Bohr magneton
which is associated with the electron spin. In this context, the
OM is more appropriately called valley magnetization and can
be used in practical applications; for example, in 2D materials
with broken P symmetry, a population difference in the two
valleys may be detected as a signal of OM [7] whose sign is
different for K and K ′ electrons.
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FIG. 6. (a) Energy bands for V = 0.6 eV and (b) valley mag-
netization MK vs chemical potential EF , with its two contributions
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K . (c) Valley magnetization for K and K ′ valleys. The

shaded area is the gap. (d) Valley magnetizations MK and MK ′ versus
electrostatic potential V for EF = 0.

The free energy F in a weak magnetic field B is

F = − 1

β

∑
λμk

ln[1 + e−β(EM−EF )], (29)

where the electron energy EM = Eλμk − m(k) · B includes a
correction due to the orbital magnetic moment m(k). Further,
β = 1/kBT with kB the Boltzmann constant, T is the temper-
ature, and EF is the chemical potential. The OM of a band is
given by Mλμ = −(∂F/∂B)EF ,T = M(o)

λμ + M(b)
λμ where

M(o)
λμ = a2

4π2

∫
d2k

[
f ↑
λμ(k)m↑

λμ(k) + f ↓
λμ(k)m↓

λμ(k)
]
, (30)

M(b)
λμ = ea2

2πβh

∫
d2k{�↑

λμ(k) ln[1 + e−β(E↑
λμk−EF )]

+�
↓
λμ(k) ln[1 + e−β(E↓

λμk−EF )]}. (31)

Equation (30) is due to the thermodynamic average of the or-
bital magnetic moment, f ↑(↓)

λμ (k) is the Fermi function, and a
the lattice constant. Equation (31) is due to the center-of-mass
motion of the wave packet and results from the Berry phase
correction to the electron density of states [23].

The OM for the K valley, MK = ∑
λ,μ Mλμ, is plotted

in Fig. 6(b) versus the chemical potential EF for V = 0
(brown solid line) and for V = 0.6 eV (blue solid line).
The temperature is T = 300 K. The energy bands for V =
0.6 eV are shown in Fig. 6(a) where solid and dashed lines
represent spin-up and spin-down bands. The individual con-
tributions M(o)

K = ∑
λ,μ M(o)

λμ and M(b)
K = ∑

λ,μ M(b)
λμ are also

shown by the green dashed and magenta dashed-dotted lines,
respectively. For V = 0, the T R and P symmetries enforce
spin degeneracy of each band, so f ↑

λμ(k) = f ↓
λμ(k). On the

other hand, these symmetries require m↑
λμ(k) = −m↓

λμ(k) and

�
↑
λμ(k) = −�

↓
λμ(k) and therefore the OM vanishes. For V =

0.6 eV, we notice that for EF below the edge of the lowest
valence band [green line in Fig. 6(a)] the valley magneti-
zation MK is seen to be constant. This is due to the fact

that �t
v,↑(↓) have opposite signs from �b

v,↑(↓) as shown in
Figs. 2(c) and 2(d). This is also the case for the magnetic
moments as shown in Figs. 3(c) and 3(d). This means that the
valence bands Et

v,↑(↓) and Eb
v,↑(↓) carry opposite-circulating

currents that compete with each other giving rise to opposite
contributions to the valley magnetization. The small excess
amount of positive circulating current over that with negative
circulation leads to the small positive value of MK . After EF

crosses the edge of the lower valence band the magnetization
increases in absolute value because the circulating currents
of the higher valence band are left unbalanced. The valley
magnetization remains constant as EF scans the insulating
gap. This is consistent with the fact that M changes linearly,
when EF is varied in the gap, only if the Chern number is
nonzero, and remains constant otherwise. This is embodied in
the relation dM/dEF = (e/h)C [29,30], where C is the Chern
number. We have numerically verified that the Chern number
for each valley (summed over spin) vanishes, as expected for a
band insulator. Upon further increase of EF the magnetization
exhibits a symmetrical behavior as a function of it, as the
circulating currents of Eb

c,↑(↓) are unbalanced until EF crosses
the bottom of the higher conduction band Et

c,↑(↓).
The magnetization MK ′ for the K ′ valley is equal and oppo-

site to MK , as required by T R symmetry [see Fig. 6(c)] so that
the total magnetization vanishes. The shaded area shows the
band gap. In Fig. 6(d) we show that the valley magnetizations
MK and MK ′ change linearly with increasing potential V for
EF in the gap. Note that in the presence of P symmetry at
V = 0, MK and MK ′ vanish.

V. ANOMALOUS NERNST EFFECT

Conventionally, the Nernst effect [31] occurs in the pres-
ence of a longitudinal temperature gradient and an external
magnetic field, which provides a transverse velocity to the
electrons by the Lorentz force. This leads to the generation
of a transverse electric field. However, a nontrivial Berry cur-
vature �(k) of the bands can also give rise to Hall and Nernst
responses in each valley as a consequence of an anomalous
velocity term generated by �(k), leading to valley ANE and
AHE. In this respect, the ANE is the thermoelectric counter-
part of the AHE.

The anomalous Nernst response can be obtained using the
semiclassical wave packet methods taking into account the
OM of the carriers arising from the finite spread of the wave
function [9]. In this approach, an intrinsic Hall current results
when a temperature gradient is present, jx = αxy(−∇yT ),
from which a spin- and valley-dependent anomalous Nernst
coefficient (ANC) can be extracted as

ατ sz
xy = ekB

h̄

∑
λμ

∫
d2k

(2π )2
�

τ sz

λμ (k)Sτ sz

λμ (k), (32)

where Sτ sz

λμ (k) = − f (k) ln f (k) − (1 − f (k)) ln(1 − f (k)) is
the entropy density and f (k) the Fermi distribution function.
In contrast to the anomalous Hall conductivity σxy, which
depends only on the Berry curvature of the filled bands, the
anomalous Nernst coefficient αxy is a Fermi surface quantity,
because Sτ sz

λμ (k) vanishes for completely filled and completely
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FIG. 7. (a) ANC αv
xy for the K valley versus EF for increasing

values of electrostatic potential V , in units α0 = ekB/4π 2 h̄. The
temperature is T = 300 K. (b) The same as in (a) for various tem-
peratures and fixed V = 0.4 eV.

empty bands. The ANC for a specific valley reads

αv
xy = α0

∑
λμ

∫
d2k[�↑

λμ(k)S↑
λμ(k) + �

↓
λμ(k)S↓

λμ(k)], (33)

with α0 = ekB/4π2 h̄ and the integrand evaluated at τ = ±1.
The anomalous spin Nernst coefficient (SNC) is

αs
xy = αs

0

∑
λμ

∫
d2k[�↑

λμ(k)S↑
λμ(k) − �

↓
λμ(k)S↓

λμ(k)], (34)

where αs
0 = α0 h̄/2e = kB/8π2. We have multiplied by h̄/2e

to conform with the definition of a spin current [32].
The valley ANC is calculated from Eq. (33) by integrating

the Berry curvature up to kF . In Fig. 7(a) we show the ANC
for the K valley versus chemical potential for increasing val-
ues of V at T = 300 K. For V = 0, inversion symmetry is
preserved and therefore each band is spin degenerate. This
implies S↑

λμ(k) = S↓
λμ(k). On the other hand, as noted ear-

lier, �
↑
λμ(k) = −�

↓
λμ(k) and therefore αv

xy vanishes in this
limit. For V > 0, the inversion symmetry is broken and the
spin degeneracy is lifted, leading to finite αv

xy. The ANC
exhibits dip (peak) features as EF crosses the top of the lowest
(highest) valence band. Their magnitudes and signs are pro-
portional to those of the Berry curvatures of the respective
bands [see Figs. 2(c) and 2(d)]. In fact, the dips and peaks can
be enhanced by tuning the Berry curvature with the electric
field. The breakings observed after the dips/peaks are due
to the spin splittings of the subbands. They are proportional
to the interlayer hopping and strong SOC for holes and they
become more distinct for lower temperatures, as shown in
Fig. 7(b). For low enough temperatures they evolve into dou-
ble dips and double peaks, as a consequence of the sharper
distribution of the entropy density around the Fermi level.
However, in the conduction band the SOC for electrons is
much weaker and the double-dip (peak) features are not dis-
cernible, even at lower temperatures, due to the negligible
spin splitting of the subbands. We also notice in Fig. 7(b)
the increase in magnitude of the ANC as the temperature is
raised. To estimate the Nernst signal at T = 300 K, note that
α0 = ekB/4π2h̄ � 0.531 nA/K. For the highest peak αv

xy �
0.5α0 = 0.265 nA/K, which is comparable to αv

xy of TMDCs
[13,14] and to that of graphene [33].

In Fig. 8(a) we show the SNC for the K valley versus EF

for increasing values of V . The temperature is T = 300 K. For
V = 0, the inversion symmetry P is not broken and therefore
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FIG. 8. (a) SNC αs
xy for the K valley versus EF for increas-

ing values of electrostatic potential V , in units αs
0 = α0(h̄/2e). The

temperature is T = 300 K. (b) The same as in (a) for various temper-
atures and fixed V = 0.4 eV.

S↓
λμ(k) = S↑

λμ(k). However, �
↑
λμ(k) − �

↓
λμ(k) and hence αs

xy,
given in Eq. (34), is nonzero. This is allowed because both the
spin current and in-plane electric field transform in the same
manner under T R and P symmetries [34]. The SNC exhibits
dips and peaks due to the energy shift of the valence bands
that have the signs and are proportional to the magnitudes of
the respective Berry curvatures. However, this feature appears
inverted in the conduction band, i.e., a peak becomes a dip,
while, at the same time it is significantly degraded due to the
absence of interlayer hopping and the much weaker SOC for
electrons. For V > 0 we observe two dip-peak features in the
valence band due to the splitting of the spin subbands. They
are suppressed as a result of the smaller Berry curvatures of
the spin-down valence bands [see Fig. 2(c)]. The effect of tem-
perature is shown in Fig. 8(b) where we plot the SNC versus
EF for V = 0.4 eV and various temperatures. As expected,
the peaks and dips weaken significantly as the temperature de-
creases. To estimate the SNC at room temperature and V = 0,
the peak is αs

xy � 0.45 × 2α0(h̄/2e) = 0.24(h̄/e) nA/K (2 for
valley degeneracy).

At low temperatures, Eq. (33) can be approximated by the
semiclassical Mott relation [35],

αv
xy = −π2k2

BT

3e

dσ v
xy(EF )

dEF
, (35)

where

σ v
xy = e2

h̄

∑
λμ

∫
d2k

(2π )2
[ f ↑

λμ(k)�↑
λμ(k) + f ↓

λμ(k)�↓
λμ(k)]

(36)

is the valley Hall conductivity. Differentiating Eq. (36) with
respect to chemical potential EF , we can rewrite Eq. (35) as

αv
xy = −α0

(
π2

3

) ∑
λμ

∫
d2k[ f ↑

λμ(k)(1 − f ↑
λμ(k))�↑

λμ(k)

+ f ↓
λμ(k)

(
1 − f ↓

λμ(k)
)
�

↓
λμ(k)]. (37)

The Mott relation has been successfully applied in the de-
scription of thermoelectric transport in graphene systems
[12,26,36–38] even at higher temperatures and in agreement
with experimental data [39]. In Fig. 9(a) we compare the
valley ANC calculated from Eq. (37) with that obtained
from the exact equation Eq. (33). We use V = 0.4 eV and
T = 20 K. We notice that there is perfect agreement even
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FIG. 9. (a) ANC αv
xy for the K valley versus EF for V = 0.4 eV

and T = 20 K. Notice the perfect agreement of the result from the
exact equation Eq. (33) with that from the Mott relation Eq. (37).
(b) ANC αv

xy for the K valley versus T for V = 0.4 eV and EF =
0.5 eV. The deviation from the Mott result starts at ≈170 K.

though the temperature is not very low. The Mott relation
predicts that the thermoelectric conductivities have linear tem-
perature dependence for low temperatures. This is shown in
Fig. 9(b) where we plot the valley ANC αv

xy versus temper-
ature for EF = 0.5 eV using the Mott relation and compare
it with Eq. (33). Even though the Mott relation is valid
only for low temperatures, we notice that it agrees with
Eq. (33) up to ≈170 K. A similar agreement was reported in
Ref. [12] for grapheme monolayers. At higher temperatures,
σ v

xy(EF ) becomes smooth, and the contribution of the deriva-
tive dσ v

xy/dEF in the Mott relation becomes smaller leading to
slower (sublinear) increase of αv

xy.

VI. SUMMARY

Summarizing, we studied the Berry curvature, the OM, and
the ANE in a biased bilayer WSe2. Our results demonstrate
that P symmetry breaking by a perpendicular electric field can
be used to control the Berry curvature and orbital magnetic
moment with important consequences for the OM and the
ANE. In the absence of an electric field both the OM and the

ANC vanish in a particular valley due to the combined effect
of T R and P symmetries. In the presence of an electric field
they become finite due to the lifting of the spin degeneracy
of the bands. In particular, we found that the magnetization is
constant and small when the chemical potential EF is below
(above) the lowest (highest) valence (conduction) band. This
is because the valence bands of the top and bottom layer
carry opposite circulating currents that almost cancel when
EF is in these regions. In between the bands the magnetization
varies linearly with EF due to a strong imbalance of opposite
circulating currents and is constant in the band gap. The latter
occurs because the derivative of the OM, with respect to EF ,
is proportional to the Chern number, which is zero for a band
insulator.

The electric field can generate finite Nernst signals, which
exhibit peaks and dips as EF is varied, and thus can be tuned
by it. For relatively low temperatures double peaks and double
dips are clearly observed in the valence band due to the spin
splitting and the strong SOC. For zero electric field the SNC
can be nonzero with its magnitude larger in the valence band
due to the interlayer hopping and strong SOC for holes. The
magnitudes of the dip-peak features are proportional to those
of the Berry curvatures of the respective bands. The validity of
the semiclassical Mott relation was also verified in a range of
temperatures. Our work highlights the role of a gate electric
field on certain valley-dependent, topological properties and
it is pertinent to other bilayer TMDCs. A method to measure
the population imbalance at different valleys of TMDCs has
been developed recently, thus making possible the realization
of the findings of this work [40].
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