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Spin stiffness of a Fermi liquid in the ν = 1 quantum Hall regime
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Anomalous behavior of spin stiffness is revealed in ZnO-based two-dimensional electron systems (2DESs)
with strong Coulomb interaction and Wigner-Seitz parameter rs > 6. The spin stiffness is extracted directly from
the quadratic k dispersion of spin excitons at ν = 1 probed by inelastic light scattering. The resulting values are
found to be dramatically rescaled compared to the case of weakly interacting 2DESs—spin stiffness turned out
to be of the order of the cyclotron energy with the effective mass of Fermi-liquid quasiparticles. This result is
also confirmed by the exact diagonalization simulations.
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I. INTRODUCTION

The behavior of two-dimensional electron systems
(2DESs) with a strong Coulomb interaction sometimes breaks
down well-established models for their description. Thus, the
physics of the quantum Hall effect, full of spectacular events
and facts, has acquired a new stream of puzzles with the
advent of new ultrapure strongly interacting 2DESs based on
MgZnO/ZnO heterostructures [1]. The parametric space of
such electron systems is radically different from the widely
exploited GaAs/AlGaAs platform in terms of comparatively
stronger Coulomb interaction, a fivefold decrease in kinetic
energy, and an equally significant increase in Zeeman split-
ting. In addition to the appearance of new exotic phases of the
fractional quantum Hall effect [2], states with integer filling
factors also undergo qualitative transformations: the param-
agnetic state with ν = 2 undergoes ferromagnetic instability,
having a purely many-particle origin [3]. Similar events occur
with other even- and odd-integer filling factors [2,4]. Sur-
prisingly, the most stable quantum Hall ferromagnetic state
ν = 1 did not remain unchanged—the enhanced Coulomb
interaction has led to the opposite effect on the scale of the
exchange energy at the lowest Landau level (LL) [5]. All
these facts cannot be explained even qualitatively in terms of
single-particle electron states in the hierarchy of LLs—their
mixing is too significant. Alternatively, the electron recom-
bination spectra from LLs indicate that the state of strongly
interacting 2D systems is better described in the concept
of Fermi-liquid quasiparticles, surviving not only near the
surface of the Fermi sea but also in its depths [6,7]. This
equally refers to the Hall quantization of quasiparticles. The
microscopic mechanism of such a renormalization is still un-
known. Nevertheless, it is sometimes very helpful to consider
many-particle problems independently in terms of individual
electrons and in terms of Fermi-liquid quasiparticles and to
catch similarities and differences. In the context of studying
the many-particle interaction effects in quantum Hall systems,
the method of sensing the simplest collective excitations is

especially effective. The energy structure of such neutral exci-
tations, referred to as magnetoexcitons [8], depending on their
type, can include terms related to the cyclotron gap (upon
the transition of electrons between different LLs), the one-
particle Zeeman splitting parameter (for spin-flip process),
and the many-particle contribution, determining the magne-
toexciton dispersion. In the long-wavelength limit, the motion
of magnetoexcitons is least affected by residual disorder in
the system, and the many-particle contribution to their energy
reflects pure correlation and/or exchange corrections. This
is what makes it possible to effectively use the experimental
method of inelastic light scattering (or Raman scattering) for
direct probing of the many-particle contributions to the energy
of collective excitations.

The simplest type of magnetoexcitons at the LLs is the
intralevel spin exciton (SE). Its energy at k = 0 coincides
with the single-particle Zeeman energy, regardless of the value
of Coulomb correlations [9] (the so-called Larmor theorem),
and in the short-wavelength limit, the main contribution to its
energy is determined by the exchange energy of electrons at
the occupied LLs. It is not possible to directly measure this
exchange contribution to the energy of SEs due to the strong
influence of disorder on the energy of collective excitations at
large momenta and also due to the influence of spin-texture
excitations [10,11].

However, the same value of the exchange energy deter-
mines the spin stiffness of the system, which is the ascent
of the quadratic dispersion of SE at small momenta. The
dispersion can be measured directly by Raman scattering with
a variable momentum transfer. The spin stiffness for 2DES at
filling ν = 1 with small values of the interaction parameter
rs � 1 is given by the exchange energy of electrons at the
lowest LL � ∼ √

π/2e2/εlB, where lB is the magnetic length.
Here the Hartree-Fock approximation (HFA) [8,12] perfectly
explains the experiment in GaAs structures [13]. In the case
of 2DESs with strong Coulomb interaction rs � 1, even the
structure of the ground state ν = 1 is unknown due to the
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mixing of the LLs. However, the SE is still the lowest-energy
collective excitation with the Zeeman gap. The spin stiffness
for this case was previously estimated in the spirit of Landau’s
Fermi-liquid theory, and surprisingly, it drops to a value of
the order of cyclotron energy [14]. So far, this effect has not
been observed experimentally due to its subtlety for heavy-
fermion systems and the existing limitations on experimental
accuracy.

In this work, the attenuated dispersion of SEs in the
ferromagnetic state ν = 1 was explicitly measured by the
Raman scattering with high-precision resolution. The spin
stiffness parameter was studied on a set of MgZnO/ZnO
heterostructures that differ in the parameter of electron den-
sity, corresponding to rs > 6. It was found that at ν = 1, the
measured spin stiffness is drastically reduced compared to the
Coulomb energy scale. The quantitative answer suggests that
the softened value is not just of the order of single-particle
cyclotron energy; it is determined by the effective mass of the
Fermi-liquid quasiparticles. This stiffness serves as a measure
of the pure exchange energy in the quantum Hall ferromagnet
with strongly interacting electrons. The experimental findings
are supported by the calculations using the exact diagonal-
ization for a small number of electrons and independently, in
terms of the Fermi-liquid model.

II. EXPERIMENTAL TECHNIQUE

Experimental studies were performed on four
MgZnO/ZnO heterostructures grown by molecular beam
epitaxy [1]. A 2DES is formed in the ZnO layer near the
heterointerface, occupying one size-quantized subband.
Electron densities in samples ranged from 1.75 × 1011 to
3.5 × 1011 cm−2, and low-temperature mobilities exceeded
400 000 cm2/V s. The single-particle 2DES parameters,
which are essential for further consideration, were taken from
other experimental studies [15,16] and were the following:
Landé factor g∗ = 1.95, cyclotron mass mc = 0.3m0, and
dielectric constant εZnO = 8.5. The measurements were
carried out in a 3He vapor evacuation cryostat with a bath
temperature T = 0.35 K in magnetic fields up to 15 T. Optical
experiments were performed using a tunable Ti:sapphire laser
doubled in frequency with a wavelength in the range of
366–367 nm near the direct optical ZnO gap. In this case,
the magnetic field evolution of the photoluminescence signal
from 2D electrons was studied in order to determine the
magnetic field values corresponding to integer filling factors.
The dispersion of collective excitations was measured by
the resonant Raman scattering with a tunable transferred
momentum and unpolarized configuration. The scattering
geometry is illustrated in the inset in Fig. 1(b). Two quartz
multimode optical fibers were used for the optical access to
the sample: one for photoexcitation and the other for signal
collection. The fibers were mounted on a rotational stage,
enabling us to change their orientation to the sample surface.
The transferred momentum was set by the difference between
the projections of the incident and scattered photon momenta
to the 2D plane and reached values in the range 0.4 × 105 to
3.3 × 105 cm−1. The numerical aperture (NA) of the optical
fibers used in the experiment was NA = 0.11, which led to an

FIG. 1. (a) The cascade of spin exciton Raman spectra at ν = 1,
taken at different values of laser wavelengths. The gray bar depicts
the extracted average peak position and its standard deviation. The
Zeeman energy position is shown by a dashed line. (b) The SE
spectra at different values of the 2D momentum. The flags are set
on the determined peak positions. The inset illustrates the scattering
geometry and the rotational stage for tuning the 2D momentum.

easily calculated uncertainty of the transferred momentum.
Optical spectra were detected using a single spectrometer
(Monospec) in combination with a CCD camera providing a
spectral resolution of 0.05 meV.

To achieve higher momenta in the plane, some samples
were also tilted with respect to the magnetic field. Here the
influence of the parallel component of the magnetic field on
the character of collective excitations was considered insignif-
icant since the corresponding cyclotron energy is two orders
of magnitude lower than the intersubband splitting in ZnO
heterostructures [17].
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III. SPIN STIFFNESS OF A QUANTUM HALL
FERROMAGNET AT ν = 1

Figure 1 shows the Raman spectra of the spin exciton
at ν = 1 on the heterostructure with electron density ns =
2.85 × 1011 cm−2. The identification of the spin exciton in the
Raman spectra does not present a problem since this collec-
tive excitation has an energy close to single-particle Zeeman
splitting and also has a natural spectral width orders of mag-
nitude lower than the above-mentioned hardware resolution.
Therefore, in all the studied spectral data, the linewidth was
equal to the spectrometer resolution. For further refinement
of the detected SE energies, we used the method of statistical
averaging of the extracted Raman shifts over a sequence of
N ∼ 20–30 spectra measured at different laser wavelengths
with other experimental conditions being equal [see Fig. 1(a)].
In such a way, the average peak position E and the standard
deviation σE were extracted [both are shown as a gray bar in
Fig. 1(a)]. The latter determined the error in determining the
peak position and reached 3–4 μeV.

The Raman shift of the SE peak really evolves as a func-
tion of transferred 2D momentum k. This can be seen in the
sequence of spectra in Fig. 1(b), where the values of momenta
are indicated on spectral curves. The SE dispersion at ν = 1
for this sample is explicitly plotted in Fig. 2(a). To extract
the spin stiffness parameter from the dispersion data of SEs,
one should represent the long-wavelength fragment of the
dispersion in the form ESE = Ez + J/2 (qlB)2, where J is the
spin stiffness, lB is the magnetic length, and qlB is the dimen-
sionless wave vector. The experimental data in Fig. 2(a) are
compared with the analytical dispersion, obtained within the
HFA for ν = 1 (neglecting LL mixing). There spin stiffness
is JHFA = √

π/8e2/εlB, and the corresponding curve is shown
by the dashed line. The discrepancy is huge and needs to be
further analyzed on other samples. The SE-dispersion data are
obtained for all experimental samples, and the k-dependent
many-particle contributions are analyzed in Fig. 2(b). For the
convenience of comparing the variable part of the dispersion
dependence, the terms of the single-particle Zeeman energy
were subtracted. The best way to extract the spin stiffness
parameter J is to replot the k-dependent energy term using
(qlB)2 as the abscissa and fit it by the least-squares method
[Fig. 2(b)]. The resulting values of J are given as a function
of electron density in Fig. 3(b) (solid rhombs). The obtained
values are incommensurably lower than the calculated values
in the HFA model (the steep dotted curve on the graph).
This inconsistency clearly demonstrates the fact of strong
rescaling of the exchange energy due to LL mixing and the
need for the principally different theoretical approach for its
proper consideration. The dashed line shows the qualitatively
different analytical prediction for spin stiffness at ν = 1; it is
the value of the cyclotron energy, as estimated for the case
rs � 1 using the diagrammatic technique in Ref. [14]. It can
be seen from the plot that the experimental stiffness grows in
a close-to-linear manner and is, indeed, about h̄ωc and is even
smaller.

To describe the softened dispersion of SE, the formalism
of the perturbation theory in the parameter rs is not suitable
because for the case rs � 1 the influence of LL mixing is
great. Electron-electron correlations lead to a redistribution

FIG. 2. (a) Plot of the SE k dispersion in the sample with ns =
2.85 × 1011 cm−2. The fitting line is calculated by the least-squares
method; the dotted line is calculated within the HFA and is given for
comparison. The lower axis is given in dimensionless units of the
wave vector. (b) The SE dispersions in three samples are replotted
using (qlB )2 as the abscissa. The data points fall on a line, where the
slope yields an accurate value of the spin stiffness.

of the filling of the LLs, and not only the excited state but
also the ground state is unclear. The main starting points in
calculating the energy spectrum are the quantum numbers of
the system: the total spin and the total momentum. The dis-
tribution of electrons in the eigenstates of the system should
be taken into account self-consistently under the action of the
full Hamiltonian of interacting electrons. This procedure was
carried out here by the method of exact diagonalization [18] of
the electron spectrum on a finite number of electrons. We took
the single-particle band parameters m∗ and g∗, the permittivity
ε, the total electron density, and the filling factor. The effect
of nonlocality of the electron wave function in the lowest-
dimensional quantization subband on the Coulomb interaction
was also taken into account via the geometric form factor.
The latter was done by means of a self-consistent solution
of the Schrodinger and Poisson equations at a given electron
density. The exact diagonalization calculations were carried
out in the geometry of a torus with a rectangular magnetic
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FIG. 3. (a) Joint plot of the SE dispersion at ν = 1 with ex-
perimental data (solid circles) and exact diagonalization simulation
(open circles). The inset illustrates the SE formation scheme in the
representation of Fermi-liquid quasiparticles at weak magnetic field.
(b) Spin stiffness parameter as a function of the electron density. The
upper axis is given in units of magnetic fields, required for ν = 1.
The experimental data (solid rhombs) are compared to the results of
the exact diagonalization (open circles), screened ED (open trian-
gles), Hartree-Fock values (dotted curve), cyclotron energy (dashed
line), and the Fermi-liquid model, described in the main text (dash-
dotted line).

Bravais lattice, with a ratio of linear dimensions in the x-y
directions close to unity. For diagonalization at ν = 1, the
states of Ne = 10–13 distributed over NLL = 3 of the lowest
LLs were taken into account. Such a large number of LLs
taken into account is unusual for the exact diagonalization of
the quantum Hall problems. This was done here due to the sig-
nificant role played by virtual electron transitions between the
LLs. The convergence of the numerical answers was checked
by varying the parameters of Ne from 10 to 13. In general, the

combinatorial capacity of the Hilbert space of many-electron
states at such a number of LLs is very large; therefore, to
implement the calculations, the basis trimming approach [19]
was used, taking the finiteness of the mixing parameter rs into
account.

The results of calculating the SE dispersion for the pa-
rameters relevant for the sample with ns = 2.85 × 1011 cm−2

are superimposed on the corresponding experimental data in
Fig. 3(a), where the best-fit curves are also shown by solid
(experimental) and dashed (calculated) lines. Obviously, the
effect of the dispersion softening is achieved qualitatively and
even quantitatively. Similar calculations performed for the
parameters of all other samples made it possible to extract
the dependence of the calculated spin stiffness on the electron
density [open symbols in Fig. 3(b)] and compare it with the
experimental data (solid rhombs). For such large values of
the mixing parameter as rs ∼ 7–9, even taking into account
the N = 3 LLs is not entirely sufficient for the quantitative
calculation of many-particle effects. The virtual transitions
of electrons to even higher LLs can be taken into account
by reducing the Coulomb potential with the static dielectric
function V (q) = 2πe2/ε q ε(q). This approach, referred to
as the static screening approximation [20,21], was success-
fully exploited for simulations in a number of quantum Hall
problems for strongly interacting systems, including graphene
[22] and ZnO [5,23,24]. The calculations performed for the
screened potential with the dielectric function ε(q) taken in
the random-phase approximation are shown by open triangles
in Fig. 3(b) and are only ∼10% weakened relative to the
data with the bare Coulomb potential. It should also be taken
into account that discrete simulations for a small number of
electrons suffer from the coarsening of the calculated ener-
gies. In particular, for Ne = 13, the underestimation of the
exchange energy at ν = 1 in the rs � 1 limit is about ∼15%
relative to the analytical values obtained in the HFA. Thus,
one should treat the close match of ED data and experiment
in Fig. 3(b) as a mutual compensation of two errors opposite
in sign. At the same time, agreement within 20% seems to be
quite legitimate. A dramatic reduction of the spin stiffness (or
exchange energy) is evident from calculated data, whereas it is
not obvious in terms of entangled electron states, redistributed
over LLs (generally speaking, poorly defined).

The same situation can be considered in the formalism
of a 2D Fermi liquid in a weak magnetic field. Fermi-liquid
quasiparticles can have two opposite spin projections, and in
the ground state only one of the Fermi spheres, with Sz =
−1/2(↓), is filled [see the inset in Fig. 3(a)]. The states of
the same type, differing only in the projection of the spin,
should have the Zeeman splitting in energy. The simplest
neutral excitation, which is SE, can be represented as a set
of single-particle transitions from a filled Fermi sphere to an
empty one but to states with some shift of the wave vector
�k ⇒ �k + �q. The energy of such a one-particle transition is

E (�k, �q) = E↑(�k + �q) − E↓(�k) = Ez + h̄2(�k + �q)2

2m∗
FL

− h̄2�k2

2m∗
FL

.

Then the collective excitation energy will be a certain wave
packet, constructed from such single-particle transitions in
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accordance with some weight function f (�k):

ESE(q) = 〈0|
∑

�k
E (�k, �q) f (�k)|0〉 = h̄2 �q

m∗
FL

∑
�k

�k · f (�k)

+
[

Ez + h̄2q2

2m∗
FL

] ∑
�k

f (�k),

where summation is carried out over the entire Fermi sphere.
From the weight function f (�k), we need to know only its
normalization condition and its even character f (�k) = f ( �−k).
Then we easily get

ESE(q) = Ez + h̄2q2

2m∗
FL

. (1)

This simple formula implies that for SEs in a Fermi liquid,
the dispersion will be determined by the renormalized mass
of quasiparticles. It is interesting that the dispersion relation,
deduced in the theoretical study [14] using the diagrammatic
technique, is reduced to a similar form:

ESE(q) = Ez + h̄ωc

2
(qlB)2 = Ez + h̄2q2

2m∗
c

. (2)

The principal difference is that in the latter formula, the mass
is cyclotron. If that were the case, the collective excitation
SEs would be insensitive to interaction, which is unlikely in
a strongly interacting system. As is known from studies using
the method of cyclotron resonance [15], the cyclotron mass in
ZnO-based 2DESs is close in value to the conduction band
parameter mc ≈ 0.3m0. In contrast, the Fermi-liquid mass
of quasiparticles is significantly enhanced for ZnO systems
with high rs values. This effective mass was probed using
the magnetophotoluminescence method [6] and was extracted
as a ratio of 2D electron density to the measured Fermi
energy. The Fermi-liquid effective mass is enhanced approxi-
mately twofold in ZnO heterostructures with relevant electron
densities. Therefore, in Fig. 3(b) the spin stiffness was also
compared with expression (1) for the parameter m∗

FL = 0.6m0

(dash-dotted line). This gives excellent agreement with the ex-
perimental data and thus supports the idea of the Fermi-liquid
character of the SE dispersion.

IV. DISCUSSION

A similar answer about the rescaling of the exchange en-
ergy at rs � 1 was obtained in [5] via the probing of the
modified energy of the cyclotron spin-flip excitation at ν = 1.
However, the energy of that combined inter-LL excitation
had several many-particle contributions, including exchange
energies on initial and final LLs, the correlation energy. It was
impossible to separate them experimentally or analytically,
and therefore, the effect of softening the exchange contribu-
tions was described at the qualitative level, implying that they
are all of the same order of magnitude.

Here we are dealing with the simplest type of spin ex-
citations, the energy and dispersion of which include only
the pure exchange energy of the quantum Hall ferromagnet.
Thus, it became possible to quantitatively describe the spin

stiffness of the system, as well as to find out its relationship
with the Fermi-liquid parameters. Although it is experimen-
tally impossible to probe the unperturbed spin gap of the SEs
in the short-wavelength limit, it was verified using numer-
ical calculations that the dispersion of the SEs is softened
simultaneously in the long-wavelength and short-wavelength
limits.

Both examples of the transformation of collective spin-
flip excitations at ν = 1 point to a unified evolution of the
exchange energy contributions: the crossover between EC =
e2/εłB and h̄ωc. This is in qualitative agreement with the
analytical dependence, obtained within the framework of the
excitonic representation [25], for the exchange energy needed
for the formation of skyrmion-antiskyrmion pairs:

� =
√

π/2EC h̄ωc√
π/2EC + h̄ωc

=
√

4πRy∗

rs + √
π/4 r2

s

. (3)

The latter equality is rewritten in terms of the effec-
tive Rydberg energy and the dimensionless parameter rs =√

2 EC/h̄ωc for magnetic field corresponding to ν = 1. The
asymptote at rs � 1 naturally coincides with the Hartree-Fock
answer for the exchange energy on the lowest LL. In the
limit of strong interaction, however, it reaches the value of
the cyclotron energy. This extremely convenient formula was
derived, nonetheless, on the assumption that the structure of
the ground state remains unchanged—all electrons at ν = 1
are on the lowest LL. Actually, the redistribution of elec-
trons over a few LLs causes a significant polarizability of the
incompressible 2DES. This in turn weakens the interaction
between electrons and leads to the further reduction of the
many-particle energy terms. Qualitatively, this modification
of interaction can be considered within the static screening
approximation [20,21]. The functional dependence of many-
particle energies on rs at ν = 1 then turns out to be similar to
formula (3).

The ongoing modification of the quantum Hall state ν = 1
is interesting not only in terms of changing the energy scales
but also from the point of view of transforming its internal
structure. This can be seen by inspecting the pair correlation
function. The latter is calculated by exact diagonalization of
the ground state with NE = 10 and explicit accounting of
six LLs. Figure 4 shows an example of the obtained distri-
bution for the sample ns = 2.85 × 1011 cm−2 in comparison
with the well-known exact answer for the limit rs � 1. A
number of additional features can be seen in the behavior of
g(r). For a strongly interacting system it reveals a correlation
hole up to distances r ∼ 1.5lB, two times lower steepness at
r � lB, and a petal at r ∼ 2.5lB. Thus, the spread of electrons
over several different LLs inevitably suppresses the value of
the exchange integral—electrons just have different quantum
numbers. Meanwhile, the Coulomb correlations are strongly
modified relative to the classical case with weak interaction.
The appearance of additional petals in the function g(r) can be
regarded as a prerequisite for the transition from a liquid to a
strongly correlated Wigner crystal. Lowering the filling factor
to values ν < 1 will further suppress exchange interaction and
increase the role of correlations.
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FIG. 4. The pair correlation function of 2DES at ν = 1, calcu-
lated by exact diagonalization (solid curve) and HFA result (dashed
curve). The calculation parameters and the electron density are given
therein.

V. CONCLUSION

In conclusion, we observed anomalous behavior of spin
stiffness in the quantum Hall ferromagnet at ν = 1 with

strong Coulomb interaction and the Wigner-Seitz parameter
rs > 6. To achieve that, Raman scattering experiments were
performed on MgZnO/ZnO high-quality heterostructures,
containing 2DESs with different densities. The k dispersions
of spin excitons were explicitly measured. The spin stiffness
grows linearly with electron density and is reduced many-
fold with respect to the energy scale e2/εłB to values of
the cyclotron energy for the Fermi-liquid quasiparticles. This
answer was not known before, and in a certain sense it is
reassuring since the collective effects in a strongly interacting
electron system could hardly depend only on single-particle
band parameters. The Fermi-liquid effective mass is more
in the spirit of Landau’s theory. The simulations by exact
diagonalization agree well with the experimental data and also
confirm the Fermi-liquid values for spin stiffness.
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