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Transition-metal dichalcogenide (TMD) bilayers are a new class of tunable moiré systems attracting interest as
quantum simulators of strongly interacting electrons in two dimensions. In particular, recent theory predicts that
the correlated insulator observed in WSe2/WS2 at half filling is a charge-transfer insulator similar to cuprates
and, upon further hole doping, exhibits a transfer of charge from anionlike to cationlike orbitals at different
locations in the moiré unit cell. In this work, we demonstrate that in this doped charge-transfer insulator, tightly
bound charge-2e excitations can form to lower the total electrostatic repulsion. This composite excitation, which
we dub a trimer, consists of a pair of holes bound to a charge-transfer exciton. When the bandwidth of doped
holes is small, trimers crystallize into insulating pair density waves at a sequence of commensurate doping levels.
When the bandwidth becomes comparable to the pair binding energy, itinerant holes and charge-2e trimers
interact resonantly, leading to unconventional superconductivity similar to superfluidity in an ultracold Fermi
gas near Feshbach resonance. Our theory is broadly applicable to strongly interacting charge-transfer insulators,
such as WSe2/WS2 or TMD homobilayers under an applied electric field.
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Moiré superlattices [1–3] can be viewed as magnified crys-
tals whose unit cell is of nanometer instead of angstrom size.
Correspondingly, the relevant electronic phenomena in moiré
superlattices is governed by the coarse-grained moiré poten-
tial and the extended Coulomb repulsion, with characteristic
energy scale on the order of meV instead of eV. Thanks to
the increase of length scale and the reduction of energy scale,
moiré systems feature remarkable tunability through the con-
trol of twist angle and displacement field. A variety of moiré
materials have emerged as exciting venues for studying and
designing correlated electron phenomena with an unprece-
dented level of control [4–15].

Recently, moiré superlattices of transition-metal dichalco-
genide (TMD) layers [16] have attracted great interest as
quantum simulators of strongly correlated electron systems
in two dimensions [17–22]. By varying the twist angle, the
relative strength of the bandwidth and electron interaction can
be tuned, and a rich quantum phase diagram can potentially be
realized [23–26]. Encouragingly, transport and optical experi-
ments are starting to observe correlated insulating states in the
TMD heterobilayer WSe2/WS2 with n � 1 holes per moiré
unit cell [27–29]. In particular, the insulating state at n = 1
is theoretically identified as a charge-transfer insulator with a
cation and an anion at different locations in the moiré unit cell,
corresponding to localized Wannier orbitals at the primary
and secondary energy minimum of the moiré potential, re-
spectively [30,31]. While a charge-transfer insulator is similar
to a Mott insulator in terms of ground-state properties, the
key difference is that, upon doping a charge-transfer insulator
to n > 1, the additional charges fill a higher-energy orbital

in order to avoid double occupancy [32]. A famous exam-
ple of charge-transfer insulators is undoped cuprates [33,34],
for which a link between charge-transfer physics and high-
temperature superconductivity upon doping has long been
proposed and studied [35–37].

In this work, we present a microscopic theory of charge
pairing by Coulomb repulsion in TMD heterobilayers under
a range of fillings n > 1. This counterintuitive phenomenon
occurs when the charge-transfer gap at n = 1 is small, so
that two doped charges can lower their energy by polarizing
their surroundings to form a tightly bound charge-2e “trimer”
that consists of three holes on adjacent cations surrounding
an electron on an anion. We show that the trimer costs less
energy than two spatially separated holes for realistic forms of
electron-electron interaction. When the single-particle band-
width is small, we predict the formation of periodic density
waves of trimers at certain doping levels n = 1 + p/q > 1
(p, q are integers), whose periodicity is commensurate with
the moiré lattice. As the bandwidth of holes increases and
becomes comparable with the binding energy of trimers, holes
and trimers coexist and interact resonantly to form a strong-
coupling superconductor, similar to a strongly interacting
superfluid in a Fermi gas near Feshbach resonance [38,39].
Our theory of pair density waves and superconductivity in
TMD heterobilayers is asymptotically exact in a certain
regime of strong interaction and small doping.

We start by describing the single-particle electronic struc-
ture of TMD heterobilayers (e.g., WSe2/WS2). Here, the
topmost valence band of WSe2 is reconstructed into a set of
moiré bands by the periodic moiré potential resulting from
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the 4% lattice mismatch with WS2. Importantly, the moiré
potential has two inequivalent local minima located at the AA
and AB stacking regions, giving rise to two sets of localized
Wannier orbitals. The AA (AB) orbital has a lower (higher)
on-site energy for holes and can be regarded as anionlike
(cationlike).

Thus, the low-energy physics of a TMD heterobilayer can
be faithfully mapped onto a two-dimensional diatomic crystal
with one cation and one anion per unit cell. The effective
Hamiltonian takes the form of an extended Hubbard model
on the honeycomb lattice [30]:

H = HK + H0, HK =
∑

i j,s=↑↓
ti j c†

isc js,

H0 =
∑
j∈B

� n j +
∑

i

U ni↑ni↓ + 1

2

∑
i �= j

Vi j nin j, (1)

where the A and B sublattices (colored black and red in
the figures) correspond to the anion and cation, respec-
tively. c†

i creates a hole in the moiré valence band with
charge e > 0, and ni = ni↑ + ni↓. � > 0 is the energy dif-
ference of cation and anion orbitals. For WSe2/WS2, � =
14.9 meV is extracted from first-principles band-structure
calculations [30,40].

I. TRIMERS

The hopping integrals ti j decrease exponentially as the
moiré period LM increases. The on-site and extended two-
body interactions U,Vi j > 0 are given by Coulomb integrals
in the Wannier basis [30,40]. Since U and Vi j decrease
as power-law functions of LM, electron-electron interactions
dominate over single-particle hopping at large LM. In this
strong-coupling regime, the on-site repulsion U is the largest
relevant energy scale. At the filling n = 1, the system is in
an insulating state where all anions are singly occupied and
cations unoccupied; i.e., n0

i = 1 for i ∈ A and n0
i = 0 for

i ∈ B.
Upon doping to n > 1, the additional n − 1 charges have

to occupy the cations in order to avoid the large energy cost of
double occupancy. To study the many-body physics at finite
doping, we first identify the relevant charged excitations at
n = 1. For this purpose, it is useful to rewrite H0 in terms of
δni ≡ ni − n0

i , the change of occupation relative to the ground
state:

H0 =
∑
i∈A

Vaδni +
∑
j∈B

(� + Vc)δn j + 1

2

∑
i �= j

Vi j δniδn j . (2)

We have taken the U = ∞ limit so that double occupancy is
forbidden. Then, there exist two types of elementary excita-
tions: (1) electrons on the A sublattice of anions with δn = −1
(charge −e), and (2) holes on the B sublattice of cations with
δn = 1 (charge +e). Vc (Va) is the self-energy of a hole (elec-
tron) due to its electrostatic interaction with all other charges
in the ground state, defined by Vc (Va) = ∑

j∈A Vi j with i ∈
B (A) [41]. The Coulomb energies Vi j decrease rapidly due
to screening effects when the distance between sites i and j
exceeds the distance to nearby metallic gates.

It follows from Eq. (2) that adding a hole to the charge-
transfer insulator costs energy Ee − μ, where Ee = � + Vc

FIG. 1. Phase diagram showing which of the three charged ex-
citations (hole, electronic polaron, or trimer) in the charge-transfer
insulator at n = 1 has the lowest energy per unit charge as a function
of the fundamental gap Ed [defined in Eq. (3)] and the ratio of next-
nearest-neighbor to nearest-neighbor repulsion: V2/V1. The dashed
lines separate regions where the second lowest energy per charge
excitation changes. The bottom panel depicts these excitations where
filled circles denote a hole, while an empty circle denotes a hole that
is missing from the charge-transfer insulator ground state. Anions
and cations are colored black and red, respectively. See Fig. 5 for
more information.

and μ is the chemical potential for holes. Likewise, adding
an electron costs energy E−e + μ with E−e = −Va. Transfer-
ring a charge from an anion to its adjacent cation creates a
charge-transfer exciton, which carries an electric dipole. Its
energy cost Ed is less than the sum of the electron and the
hole energies:

Ed = Ee + E−e − V1 = � + Vc − Va − V1, (3)

where V1 denotes the nearest-neighbor repulsion (see top right
of Fig. 1). Ed > 0 defines the fundamental gap of the charge-
transfer insulator to local neutral excitations.

Two holes cost energy 2Ee when they are spatially sepa-
rated. Alternatively, consider binding two adjacent holes with
a neutral charge-transfer dipole. The result is a charge-2e
composite excitation consisting of three adjacent holes on
cations surrounding an electron at the center anion, a “trimer”
(see bottom of Fig. 1). Its energy cost, written as Et = 2Ee −
εb, differs from the two separate holes by a pair binding
energy εb:

εb = −Ed + 2V1 − 3V2

= −� + 6V ′
2 − 3V2 − 3V3 + · · ·

≈ −� + 3V2 − 3V3 + · · · , (4)

where the second-nearest-neighbor interactions V ′
2 and V2 are

within the A and B sublattice respectively, and · · · denotes in-
teractions at larger distance. In the second and third equalities,
we have used Eq. (3) and V ′

2 ≈ V2.
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Importantly, in a range of realistic material parameters �

and Vn (see Fig. 1), εb is positive so that a charge-2e trimer
costs less energy than two individual holes. The energy gain
here comes mostly from the simple fact that pairing two holes
into a trimer frees up three second-neighbor pairs in the sys-
tem, which results in the −3V2 energy reduction in Eq. (4). It is
remarkable that despite the direct mutual repulsion, two doped
holes can, at the expense of energy �, tightly bind together
with a charge-transfer exciton to lower the total electrostatic
repulsion energy.

As an example, for slightly twisted WSe2/WS2 with a
moiré period LM = 7 nm and a distance to top and bottom
gates equal to LM, a calculation using Wannier functions
finds V1,V ′

2,V2,V3 = 1.2998, 0.4599, 0.4780, 0.3239 in units
of e2/(εLM), where ε is the permittivity of the dielectric envi-
ronment [40]. The Coulomb energies at larger separation are
much smaller. The trimer binding energy is then found to be
εb = −14.9 + 72.8

ε
meV.

The finding of charge pairing from Coulomb repulsion in
a moiré superlattice is our first main result, which forms the
basis for our theory at finite doping. Notably, previous works
found an effective attraction between two added charges in
small Hubbard-model clusters at intermediate U/t [42–44]
or with extended interactions [45]. In this study of extended
moiré systems, the pair binding energy is already manifest
in the strong-coupling limit ti j = 0 without explicitly invok-
ing any charge fluctuation or weakly coupled clusters. Note,
however, the fact crucial to our analysis that doped charges
occupy quantized orbitals localized around discrete lattice
points, rather than taking arbitrary positions in the continuum.
It is this quantum-mechanical effect that leads to the quantized
energy of trimers.

We also mention in passing that, besides holes and trimers,
other composite excitations can be energetically favorable in
certain parameter ranges. These include (1) the electronic
polaron (q = e), which is a bound state of a hole and a dipole,
and (2) higher-charge excitations with q � 3e. By comparing
the energy cost of different types of charged excitations at
filling n = 1, we identify the excitation with the least energy
per unit charge—the cheapest charge excitation (see Fig. 1).

II. PAIR DENSITY WAVES

Building on these results on few-body excitations, we
now study the many-body physics of TMD heterobilayers at
fillings n = 1 + δ with small δ > 0, which are doped charge-
transfer insulators. In particular, we develop an analytically
controlled theory to predict pair density waves and supercon-
ductivity under appropriate conditions.

For large moiré periods where the Coulomb interaction
dominates the kinetic energy, a periodic array of charge ex-
citations of the least cost is favored. If the cheapest excitation
is a charge-e hole, then the ground state of H0 will be a com-
mensurate charge density wave at, e.g., the dopings δ = 1/7,
1/4, or 1/3, shown in Figs. 2(a), 2(c), and 2(e). Similar charge
density waves have been discussed in the context of twisted
bilayer graphene [46] and extended Hubbard models [47–49].

On the other hand, if the cheapest charge excitation is a
charge-2e trimer, then the ground state of H0 is a pair density
wave [50] with a commensurate periodicity at dopings such

(a) δ = 1/7 ≈ 0.143
q = 1, r1 = 2, r2 = 1

(b) δ = 1/8 = 0.125
q = 2, r1 = 4, r2 = 0

(c) δ = 1/4 = 0.25
q = 1, r1 = 2, r2 = 0

(d) δ = 2/7 ≈ 0.286
q = 2, r1 = 2, r2 = 1

(e) δ = 1/3 ≈ 0.333
q = 1, r1 = 1, r2 = 1

(f) δ = 1/3 ≈ 0.333

FIG. 2. Examples of (a, c, e) commensurate charge and (b, d,
f) pair density waves at various fractional fillings n = 1 + δ. The
charge q and integers r1 and r2 from Eq. (5) are listed for the
triangular Wigner crystals of holes (q = e) and of trimers (q = 2e).

as δ = 1/8, 2/7, or 1/3, shown in Figs. 2(b), 2(d), and 2(f).
In particular, the pair density wave at δ = 2/7 [shown in
Fig. 2(d)] can be viewed as the closest packing of trimers
with negligible intertrimer interaction (involving only Vn�5),
in contrast to Fig. 2(f) (which involves Vn�2). Possible evi-
dence of such a state can be seen from the Berkeley group’s
recent data (see Fig. 7). Furthermore, possible evidence for
one of the δ = 1/3 states was observed in Ref. [29].

More generally, we predict that at low temperature, clean
TMD heterobilayers with a large moiré period should exhibit
a sequence of insulating density wave states at the following
fillings when a commensurate triangular lattice of charge ex-
citations is formed:

n = 1 +
q

r2
1 + r1r2 + r2

2

b1
b2

.
(5)

The integer q > 0 is the charge per excitation, and the integers
ri � 0 specify the Bravais lattice vector r1b1 + r2b2 of the
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FIG. 3. Energy spectrum of the dispersive hole band and the
trimer. (a) When the trimer energy per charge, Et/2, lies below
the hole band bottom, a pair density wave (PDW) or Bose-Einstein
condensate of trimers is expected. Inset: A third-order trimer hop-
ping process. (b) When Et/2 lies close to the hole band bottom,
low-energy holes interact resonantly with trimers, leading to super-
conductivity. Inset: A second-order process in which a trimer decays
into two holes separated by a distance 2LM.

commensurate density wave, with b1, b2 denoting the two lat-
tice vectors of the moiré honeycomb lattice shown in Eq. (5).

III. RESONANTLY PAIRED SUPERCONDUCTIVITY

While Coulomb repulsion favors density waves, the single-
particle hopping term HK favors charge delocalization. In the
following, we study the competition between Coulomb energy
and kinetic energy in the interesting and experimentally rele-
vant parameter regime εb > 0, where the trimer has a lower
energy than two separated holes in the limit ti j = 0 (the trimer

region of Fig. 1). For simplicity, we consider the scenario in
which the system is fully spin polarized, which is experimen-
tally realized in WSe2/WS2 under a small magnetic field (less
than 1 T at 1.6 K) [27]. Note that an applied magnetic field will
not weaken charge pairing since charge pairing occurs through
electrostatic interactions and without double occupancy.

Single-particle hopping ti j between cation sites on the tri-
angular sublattice leads to a dispersive band of doped holes.
Then, the lowest-energy hole excitation is in the delocalized
state at the bottom of this band. Its energy is Ee − εK , where
εK > 0 is proportional to the hopping integral t . In contrast,
as a composite excitation, the trimer can only hop via a high-
order process involving high-energy intermediate states [see
Fig. 3(a)]. In the strong-coupling regime, the trimer hopping
integral is on the order of t3/V 2 with V ∼ e2/εLM and thus
likely negligible.

With ti j �= 0, it is important to consider the hybridization
between trimers and holes. This occurs when a constituent
e charge in a trimer hops back to the center anion, leaving
behind two adjacent holes in a high-energy state due to their
strong mutual repulsion V2. To lower their energy, these two
remaining holes tend to hop away from each other. Thus,
converting a trimer into two weakly interacting holes that
are sufficiently apart requires at least a second-order process,
shown in Fig. 3(b). Due to the large energy barrier in the
pathway between the trimer and two free holes, the trimer
remains a long-lived quasibound state.

Therefore, at finite doping, we are faced with a mixture
of charge-e holes and charge-2e trimers that are hybridized
and at a total charge density δ. For small doping δ, the typical
distance between doped charges is much larger than the moiré
period LM; hence the underlying moiré lattice only plays a mi-
nor role. Thus, the essential low-energy physics is captured by
a boson-fermion model in the continuum, which we introduce
for doped charge-transfer insulators:

Hδ =
∫

dr
∑
σ=±

ψ†
σ

(
−∇2

2m

)
ψσ + ε0 φ†φ + g (φψ

†
+ψ

†
− + φ†ψ−ψ+) − μ n(r) + 1

2

∫
dr′ V (|r − r′|) n(r)n(r′)

with n(r) =
∑
σ=±

ψ†
σψσ + 2φ†φ, (6)

where ψ and φ denote the itinerant hole and immobile trimer,
respectively.

According to band-structure calculations for WSe2/WS2,
ti j > 0 between nearest-neighbor cations. Hence the band of
doped holes has two degenerate minima at corners of the
moiré Brillouin zone ±K = (0,± 4π

3LM
) [30], which are de-

noted by the valley index σ = ± in Eq. (6). m ∝ 1/t is the
effective mass at the band bottom. ε0 = −εb + 2εK with εK ∝
t is the energy difference between a trimer and two delocalized
holes at the band bottom. Since the hopping integral t changes
significantly with the moiré period, the detuning parameter ε0

is tunable by varying the twist angle.
Two types of interactions are included in our model Hamil-

tonian Hδ and play dominant roles in the low-density regime
δ 
 1: (1) the extended Coulomb interaction V (r), whose

range is determined by the distance to metallic gates, and (2)
the local hybridization g between holes and trimers. The form
of the hybridization is dictated by symmetry. The trimer state
with maximal spin is invariant under threefold rotation around
the center anion and odd under reflection which exchanges
a pair of holes (fermions). Therefore, the trimer hybridizes
with a valley-singlet pair of holes ψ

†
+ψ

†
−, which transforms in

the same way (note that reflection interchanges ±K). Despite
being a weak local interaction, the hole-trimer hybridization
can have dramatic consequences for our system at low density.

Our model exhibits an enormously rich phase diagram
resulting from the interplay of (1) the kinetic energy of holes,
(2) the binding energy of trimers, (3) Coulomb repulsion be-
tween charges, and (4) the hybridization between holes and
trimers. In particular, we show that pair density wave and
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superconducting ground states emerge in certain parameter
regimes.

If the hopping integral t in the microscopic Hamiltonian (1)
is small compared to the binding energy of trimers εb > 0
[see Fig. 3(a)], then the kinetic energy of holes is of mi-
nor importance. Therefore, ε0 ≈ −εb < 0, and doped charges
go into trimers. At finite charge density up to δ = 1/3, the
(screened) Coulomb repulsion V (r) between charges leads to
a Wigner crystal of charge-2e trimers, which takes a trian-
gular lattice structure. At the dopings specified by Eq. (5),
this trimer Wigner crystal is commensurate with and pinned
by the moiré potential. The resulting state is a gapped and
insulating pair density wave. At sufficiently low doping where
the average distance between trimers exceeds the range of
V (r), the density wave state becomes fragile and potentially
unstable to Bose condensation of trimers when their small
hopping amplitudes are taken into account.

As the hopping integral t increases, the bottom of the hole
band is lowered and eventually falls below Et/2, as shown
in Fig. 3(b). Correspondingly, the bare detuning parameter
ε0 changes from negative to positive. The true detuning pa-
rameter ε is renormalized by the hole-trimer hybridization:
ε = ε0 − o(g2) [51]. At negative detuning ε < 0, there exists a
true bound state of two e charges, which is a superposition of a
trimer and a cloud of two holes. At positive detuning ε > 0, no
such bound state exists. However, when the detuning is small,
low-energy holes and trimers are strongly hybridized. Two e
charges at low energy or large de Broglie wavelength scatter
resonantly in the s-wave valley-singlet channel. Such resonant
interaction is universally characterized by a large scattering
length, which can exceed the range of screened Coulomb
repulsion V (r). The scattering length is positive (negative) for
ε > 0 (ε < 0) and diverges at ε = 0.

The physics of the resonant interaction via the trimer chan-
nel is reminiscent of a Feshbach resonance in an ultracold
Fermi gas [38]. Under the resonant condition, the ground
state of our system at low doping is a superconductor with
same-spin pairing in the valley-singlet channel (correspond-
ing to f -wave pairing symmetry on the honeycomb lattice).
A crossover between the Bose-Einstein condensate (BEC)
and Bardeen-Cooper-Schrieffer (BCS) regimes [39] can be
achieved as a function of doping density δ and the detuning
ε. See Appendix A for a mean-field theory analysis and more
microscopic details.

It should be noted that the origin of the resonant inter-
action in our system is completely different from the case
of cold atoms. Unlike the molecule formed by two atoms in
empty space, the trimer is a charge-transfer excitation in a
many-body “vacuum” at the filling n = 1. It is remarkable that
spin-polarized superconductivity can be realized in a solid-
state system with purely Coulomb repulsion. We emphasize
that our prediction of superconductivity is rigorous in the
regime of weak kinetic energy (t 
 V ), polarized spins, small
doping (δ 
 1), and resonance (small ε0). These limits can
be reasonably achieved in moiré TMD systems. It will be
interesting to consider relaxing some of these assumptions
(e.g., polarized spins) in future work since other possibilities
are likely outside of this regime.

Note that these limits are not as applicable to cuprates,
which are antiferromagnetic at zero doping and become

superconducting only under a sufficient doping after antifer-
romagnetism is destroyed.

IV. DISCUSSION

To summarize, we developed a strong-coupling theory to
predict electron pairing from repulsion via charge-transfer ex-
citations in TMD heterobilayers. We further predict insulating
pair density wave states at a sequence of doping levels. Fi-
nally, we show that with the increase of electron itinerancy, the
resonant interaction between itinerant holes and local charge-
2e pairs leads to unconventional superconductivity. Since our
theory is based on a general doped charge-transfer insula-
tor, our theory is broadly applicable to other charge-transfer
insulating moiré materials, such as MoS2/MoS2 and other
TMD homobilayers in an electric field [26,52,53]. Charge-
transfer physics occurs when U > �, where U is large due
to localized orbitals in moiré TMD bilayers [54] and �

can be arbitrarily small in TMD homobilayers where it is
proportional to the applied electric field. Our pairing mech-
anism may also shed light on other moiré materials, such
as twisted graphene multilayers, where charge redistribution
under doping may be important [55,56] and spin-polarized su-
perconductivity may have been observed [57,58]. We hope our
prediction of fascinating correlated states in moiré materials
can stimulate further activity and find experimental realization
soon.
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APPENDIX A: ADDITIONAL DETAILS

In this Appendix, we provide extra details on the low-
energy excitations, followed by a mean-field theory analysis
of the superconducting states starting from the lattice model in
Eq. (1). We consider the low-density and strongly interacting
limit

n − 1 = δ 
 1 and ti j 
 V2, (A1)

where Vn is the Coulomb repulsion between nth-nearest neigh-
bors (see Fig. 4). We also assume that the spins are fully
polarized, e.g., by an external magnetic field.
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FIG. 4. nth-nearest neighbors on a honeycomb lattice. Through-
out this work, Vn denotes the Coulomb repulsion between nth-nearest
neighbors. We sometimes differentiate between V AA

n and V BB
n for

repulsions between a pair of sites on the A or B sublattice. nth-nearest
neighbors are separated by an with an=1,2,3,4,5/a1 = 1,

√
3, 2,

√
7, 3.

LM = a2 is the moiré period.

1. Electrostatics

In Fig. 1 of the main text, we showed which of the follow-
ing three excitations has the smallest energy per charge, E/q:

hole (q = 1) : E−e,

trimer (q = 2) : Et = 2Ee + Ed − 2V1 + 3V BB
2 ,

electronic polaron (q = 1) : Eep = Ee + Ed − V1 + V BB
2 .

(A2)

Remarkably, for the above three excitations, this only requires
knowing Ed/V1 and V BB

2 /V1; � and all Vn are effectively
absorbed into these two ratios.

FIG. 5. (a) A detailed excitation phase diagram of the lowest
energy per charge (E/q) excitation. The red dots mark estimates for
a slightly twisted WSe2/WS2 inside a dielectric environment with
permittivity ε = 3 and for different distances d to metallic gates.
In the “other” region, other excitations have the least E/q, such as
the charge-3e excitation shown in (b). The bottom left region (white
with red stripes) is inaccessible (when Vn�3 = 0) as it would require
� < 0. The dashed lines are drawn for Vn�3 = 0. See Appendix A 1
for more details.

FIG. 6. Possible instabilities of the charge-transfer insulator.
(a) A Wigner crystal of dipoles, which is a possible state when the
dipole energy is negative, Ed < 0. (b) The charge density wave that
occurs in the CDW region (white) of Fig. 5 when Vn�4 = 0 and
V3 
 V2.

It is remarkable that charge-2e pairing can occur from just
repulsive interactions. The nontrivial charge-transfer insulat-
ing background is essential for the trimer stability; a trimer
is not stable in the vacuum [59]. As an aid to intuition, we
give an even simpler example of how this can occur in a finite
system in Appendix B.

In Fig. 5, we show a more detailed diagram of the small-
est E/q excitation when arbitrary excitations are considered.
We also check for instabilities (shown in Fig. 6) of the
charge transfer insulator, which occur in the “CDW” region
of Fig. 5 and when Ed < 0. The energy of other excitations
and these instabilities depend on more than just Ed/V1 and
V BB

2 /V1. Therefore, we show the locations of these other exci-
tations and instabilities for the simple case when Vn�3 = 0.
In Fig. 5, dashed lines are used to depict boundaries that
assume Vn�3 = 0.

We also estimate where in the phase diagram a slightly
twisted WSe2/WS2 with a moiré period LM = 7 nm could
be, which we show in Fig. 5 using red dots. The locations
are calculated using � = 14.9 meV and the values of Vn are
shown in Table I. � and Vn were calculated using Wannier
orbitals and a Coulomb interaction V (r) that is screened by a
pair of metallic gates, each a distance ±d from the TMD het-
erobilayer [40]. By modeling the gates as perfect conductors,
the screened Coulomb interaction can be calculated using the

TABLE I. The values of Vn (in units of e2

εLM
= 205.7

ε
meV with

LM = 7 nm) used to estimate the location (denoted by red dots in
Fig. 5) of slightly twisted WSe2/WS2 in the excitation phase dia-
gram: (a) d = 4 mm, (b) d = 7 mm.

n 0 1 2 3

(a) d = 4 nm
V AA

n 3.7769 0.2292
V AB

n 0.9479 0.1340
V BB

n 2.9828 0.2472
(b) d = 7 mm

V AA
n 4.2407 0.4599

V AB
n 1.2998 0.3239

V BB
n 3.4132 0.4780
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FIG. 7. Resistance of the Berkeley group’s WSe2/WS2 moiré
device as a function of gate voltage, which determines the electron
filling, n. The figure is copied from Ref. [28]. We add vertical lines
to indicate various Wigner crystal fillings. The blue line at filling
n = 9/7 is particularly interesting because it shows a large resistance
peak at the same filling as the pair density wave in Fig. 2(d). Energet-
ically favorable charge density waves at filling n = 3/2 are shown in
Fig. 8.

method of image charges, yielding [60]

V (r) = e2

ε

∑
z∈Z

(−1)z√
r2 + (2dz)2

. (A3)

When r � d , V (r) decays exponentially.
In Fig. 7, we point out possible experimental evidence of

insulating pair density waves of trimers from recently ob-
served resistivity peaks [28]. See also Ref. [29] for evidence
for additional charge orders.

2. Mean-field theory of superconductivity

Here, we study the mean-field theory of trimer supercon-
ductivity. Suppose that we are near the edge of the trimer
region of the phase diagram, so that the trimer binding energy,
εb [Eq. (4)], is small:

0 < εb 
 V2. (A4)

We also assume that excitations other than the charge-e hole
and charge-2e trimers (such as the dipole and electronic po-
laron) have a large energy cost ∼V2 so that they can be
ignored.

The low-energy Hamiltonian thus consists of only the mo-
bile holes ck on the cations, and bosonic trimers ba centered
on the anions:

Heff =
∑

k

ε(k)c†
kck + (ε0 − 2μ)

∑
a

b†
aba

− g̃(k − k′)

2
√

N

∑
k,k′

(b†
k+k′ckck′ + H.c.) + · · · , (A5)

(a) δ = 1/2 (b) δ = 1/2

FIG. 8. A charge density wave state at doping δ = 1/2 that is
typical of the (a) hole and (b) trimer regimes of the excitation phase
diagram in Fig. 5.

where b†
k = N−1/2 ∑

a eik·ab†
a and N is the number of anion

sites.
The first term gives the dispersion of the holes, which

hop on the triangular lattice of cations. At low density
(δ 
 1), ε(k) can be expanded about its band minima ±K =
(0,± 4π

3LM
):

ε(k ± K) = 1

2m
k2 − μ + O(k3), (A6)

m ≈ 2L2
M/27t2, where tn is the hopping energy between nth-

nearest neighbors. We have shifted ε(k) so that ε(±K) = 0.
The second term sets the energy cost of trimers. b†

a creates
a trimer centered at the anion a, and b†

k creates a trimer with
momentum k. ε0 ≈ 6t2 − εb is the energy difference between
a trimer and two holes at the band minima ±K.

The last term accounts for the conversion between
a trimer and a pair of holes. The triangular symmetry
of the cation sublattice constrains the conversion ampli-
tude to the following form: g̃(q) = g̃

∑3
i=1

2
3
√

3
sin(q · ri ) +

· · · , where “· · · ” denotes higher-order moments and ri =√
3 sin( 2π

3 i)x̂ − √
3 cos( 2π

3 i)ŷ are second-nearest-neighbor
displacements. The normalization is such that g̃(K) =
−g̃(−K) = g̃(−2K) = g̃. g̃ can be calculated perturbatively;
the leading contribution comes from the process shown in
Fig. 3(b) and has amplitude g̃ ∼ t1t2/V2 [61].

Expanding Heff about the band minima ±K leads to

Heff ≈
∑
k,±

εkc†
k,±ck,± + (ε0 − 2μ)

∑
a

b†
aba

− g̃√
N

∑
k,k′

(b†
k+k′ck,−ck′,+ + H.c.) + · · · , (A7)

where ck,± ∼ ck±K denotes the new fermion operators ex-
panded about ±K and εk = 1

2m k2 − μ is the dispersion.
The “· · · ” in Heff denotes other terms that could be

included in Heff. We ignore these terms in the following mean-
field analysis because we do not expect these terms to be
relevant in the resonantly paired superconductivity regime of
interest. To justify this, consider two potentially important
kinds of terms that we are omitting. The first is a trimer kinetic
energy term, −tt

∑
a′a b†

a′ba, where tt ∼ t3/V 2 is the trimer
hopping energy, resulting from the perturbative process shown
in Fig. 3(a). However, we expect that near resonance, this term
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is negligible compared to the effective boson mass resulting
from the coupling g̃ to the fermions. The second potentially
important terms are 4-fermion interactions, such as Vi jnin j .
However, we soon see [from Eq. (A17)] that near resonance,
the fermion and boson operators scale as c ∼ b ∼ O(

√
δ)

at low density δ. Therefore, the first term in Heff is O(tδ);
the third term contributes O(δ3/2g̃) ∼ O(δ3/2t2/V2); and a
4-fermion interaction would contribute O(δ2V ). Thus, we ex-
pect that the 4-fermion interaction is negligible when δ2V 

δ3/2t2/V , i.e., at the sufficiently low doping δ 
 (t/V )4.

To make a connection to Hδ in Eq. (6) of the main text,
note that ψ† ∼ L−1

M c† and φ† ∼ L−1
M b†. Then g in Hδ and g̃ in

Heff [Eq. (A7)] are related by g ∼ LMg̃. In the following, we
use lattice units where the distance between nearest-neighbor
sites is 1, so that the distance between next-nearest neighbors
is LM = √

3.
To make analytical progress, we consider the following

mean-field approximation:

b†
aba = b†

a〈ba〉 + 〈b†
a〉ba − 〈b†

a〉〈ba〉
+ (b†

a − 〈b†
a〉)(ba − 〈ba〉)

≈ b†
a〈ba〉 + 〈b†

a〉ba − 〈b†
a〉〈ba〉,

b†
k+k′ck,−ck′,+ ≈ 〈b†

k+k′ 〉ck,−ck′,+. (A8)

With this approximation, the low-energy Hamiltonian be-
comes quadratic:

HMF =
∑

k

(
c+k,+
c†
−k,−

)†( +εk −�b

−�b −εk

)(
c+k,+
c†
−k,−

)

+ ε0 − 2μ

g̃2
�2

b,

�b = g̃〈ba〉. (A9)

�b is the superconducting order parameter. �b > 0 is as-
sumed to be positive (without loss of generality).

The ground-state energy density is

EMF

N
= −

∫
E

D(E )
√

E2 + �2
b + ε0 − 2μ

g̃2
�2

b, (A10)

D(E ) =
∫

k
δ(E − εk ) =

{
2πm −μ < E < W
0 otherwise, (A11)

where D(E ) is the density of single-particle states, and
∫

k =∫
d3k

(2π )2 	(W − εk ) integrates over momentum states with en-
ergy εk < W . W is a UV cutoff which can be taken to be
W = (2πm)−1 − μ ≈ (2πm)−1 so that

∫
E D(E ) = 1; this is

roughly equal to the bandwidth 9t2 ≈ 2m−1. Evaluating the
integral yields

EMF

N
= −πm

[
W

√
W 2 + �2

b + �2
b log

(
W +

√
W 2 + �2

b

)

+ μ

√
μ2 + �2

b + �2
b log

(
μ +

√
μ2 + �2

b

)

− 2�2
b log �b

] + ε0 − 2μ

g̃2
�2

b. (A12)

The superconducting order parameter �b can be calculated
by minimizing the energy as a function of �b, which yields

�b =
√

W 2 + μ2 + 2W μ cosh ε0−2μ

πmg̃2

sinh ε0−2μ

πmg̃2

. (A13)

�b depends strongly on the chemical potential μ, which
can be obtained from the filling constraint:

δ = δc + 2δb, δc = 〈c†
i ci〉 = 4πmμ,

δb = 〈b†
aba〉 ≈ �2

b

g̃2
, (A14)

where δc is the density of holes. δb is the density of
bosonic trimers, which we approximate at the mean-field
level: 〈b†

aba〉 ≈ 〈b†
a〉〈ba〉 = �2

b/g̃2.
There are two regimes: (1) BCS superconductivity when

ε0−2μ

πmg̃2 � 1, and (2) resonantly paired superconductivity when
ε0 ≈ 2μ.

a. BCS superconductivity regime

When ε0−2μ

πmg̃2 � 1, the order parameter can be approximated
as

�b ≈ 2
√

W μ exp

(
−ε0 − 2μ

2πmg̃2

)
(A15)

and a BCS superconductivity regime occurs where �b is very
small [62]. As a result, the boson density is very small (δb 

δ), which allows us to approximately solve for the chemical
potential from Eq. (A14):

μ ≈ δ

4πm
. (A16)

This regime is very similar to BCS superconductivity. This
can be understood by integrating out the boson to obtain a 4-
fermion interaction g̃′c†

+c†
−c−c+ with g̃′ ∼ g̃2

ε0−2μ
. In terms of

g̃′, the order parameter �b scales exactly the same as the BCS
order parameter (in two spatial dimensions): �b ∼ �BCS ∼√

W μe−1/Dg̃′
, where D = 2πm is the density of states from

Eq. (A11).
Note that in this regime, the boson density is very small,

so the g̃ coupling term in Heff [Eq. (A7)] contributes very
little to the energy. Therefore, in this regime, the terms in the
“· · · ” of Heff are likely to play an important role and possi-
bly result in other kinds of symmetry breaking. So although
BCS-like superconductivity results when the “· · · ” terms are
dropped, a more detailed analysis is needed to determine the
true ground state in this regime when the “· · · ” terms are
included.

b. Resonantly paired superconductivity regime

The boson density diverges as the chemical potential ap-
proaches its maximum value: μ → ε0/2. Approximating μ ≈
ε0/2 allows us to solve for the boson density δb in Eqs. (A14),
which can be used to express the order parameter [63]:

�b ≈ g̃
√

δb, δb ≈ 1
2δ − πmε0. (A17)
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FIG. 9. Ground states of the four-site cluster model in Eq. (B1)
with � = V1. Valence skipping (where charge of the ground state
jumps by 2) [65] occurs along the thick line. Black and red dots
denote filled orbitals with ni = 1.

Due to the significantly larger boson density, the order pa-
rameter �b ∼ g̃ is immensely larger in this resonantly paired
regime than in the BCS regime where �b ∼ e−1/g̃2

[Eq.
(A15)].

APPENDIX B: VALENCE SKIPPING IN A
FOUR-SITE CLUSTER

A toy model for trimer stability is obtained by considering
a four-site cluster [64] of the Hamiltonian H0 in Eq. (1) at a
chemical potential μ:

(B1)

Each site either has 0 or 1 fermions, ni = 0, 1, which is
physically relevant when a large on-site Hubbard interaction
prevents double occupancy.

The ground-state phase diagram of the four-site cluster is
shown in Fig. 9. The “no trimer” region is analogous to a
change-transfer insulator, while the “trimer” region is anal-
ogous to a trimer excitation of the change-transfer insulator.

The ground states are easiest to understand in an ideal limit
where V2 = 0, � = V1, and μ = 3

2V1. Then H4 = V1 (n1 −
1
2 )(n2 + n3 + n4 − 3

2 ), and it is simple to see that the “no
trimer” and “trimer” states are degenerate ground states.

[1] R. Bistritzer and A. H. MacDonald, Moiré bands in twisted
double-layer graphene, Proc. Natl. Acad. Sci. U.S.A. 108,
12233 (2011).

[2] L. Balents, General continuum model for twisted bilayer
graphene and arbitrary smooth deformations, SciPost Phys. 7,
048 (2019).

[3] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro
Neto, Graphene Bilayer with a Twist: Electronic Structure,
Phys. Rev. Lett. 99, 256802 (2007).

[4] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional superconduc-
tivity in magic-angle graphene superlattices, Nature (London)
556, 43 (2018).

[5] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi,
E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated
insulator behaviour at half-filling in magic-angle graphene su-
perlattices, Nature (London) 556, 80 (2018).

[6] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das,
C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold,
A. H. MacDonald, and D. K. Efetov, Superconductors, orbital
magnets and correlated states in magic-angle bilayer graphene,
Nature (London) 574, 653 (2019).

[7] G. Chen, L. Jiang, S. Wu, B. Lyu, H. Li, B. L. Chittari,
K. Watanabe, T. Taniguchi, Z. Shi, J. Jung, Y. Zhang,
and F. Wang, Evidence of a gate-tunable Mott insulator in
a trilayer graphene moiré superlattice, Nat. Phys. 15, 237
(2019).

[8] Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R. Polski,
Y. Zhang, H. Ren, J. Alicea, G. Refael, F. von Oppen, K.
Watanabe, T. Taniguchi, and S. Nadj-Perge, Electronic corre-
lations in twisted bilayer graphene near the magic angle, Nat.
Phys. 15, 1174 (2019).

[9] C. Shen, Y. Chu, Q. S. Wu, N. Li, S. Wang, Y. Zhao, J. Tang, J.
Liu, J. Tian, K. Watanabe, T. Taniguchi, R. Yang, Z. Y. Meng,
D. Shi, O. V. Yazyev, and G. Zhang, Correlated states in twisted
double bilayer graphene, Nat. Phys. 16, 520 (2020).

[10] S. Carr, S. Fang, H. C. Po, A. Vishwanath, and E. Kaxiras,
Derivation of Wannier orbitals and minimal-basis tight-binding
Hamiltonians for twisted bilayer graphene: First-principles ap-
proach, Phys. Rev. Research 1, 033072 (2019).

[11] H. C. Po, L. Zou, T. Senthil, and A. Vishwanath, Faithful tight-
binding models and fragile topology of magic-angle bilayer
graphene, Phys. Rev. B 99, 195455 (2019).

[12] M. Koshino, N. F. Q. Yuan, T. Koretsune, M. Ochi, K. Kuroki,
and L. Fu, Maximally Localized Wannier Orbitals and the Ex-
tended Hubbard Model for Twisted Bilayer Graphene, Phys.
Rev. X 8, 031087 (2018).

[13] J. Kang and O. Vafek, Symmetry, Maximally Localized
Wannier States, and a Low-Energy Model for Twisted Bi-
layer Graphene Narrow Bands, Phys. Rev. X 8, 031088
(2018).

[14] G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, Origin of
Magic Angles in Twisted Bilayer Graphene, Phys. Rev. Lett.
122, 106405 (2019).

[15] X.-C. Wu, C.-M. Jian, and C. Xu, Coupled-wire description of
the correlated physics in twisted bilayer graphene, Phys. Rev. B
99, 161405(R) (2019).

[16] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A.
Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater. 2,
17033 (2017).

[17] L. Wang, E.-M. Shih, A. Ghiotto, L. Xian, D. A. Rhodes, C.
Tan, M. Claassen, D. M. Kennes, Y. Bai, B. Kim, K. Watanabe,
T. Taniguchi, X. Zhu, J. Hone, A. Rubio, A. Pasupathy, and
C. R. Dean, Correlated electronic phases in twisted bilayer
transition metal dichalcogenides, Nat. Mater. 19, 861 (2020).

235423-9

https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.21468/SciPostPhys.7.4.048
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/s41586-019-1695-0
https://doi.org/10.1038/s41567-018-0387-2
https://doi.org/10.1038/s41567-019-0606-5
https://doi.org/10.1038/s41567-020-0825-9
https://doi.org/10.1103/PhysRevResearch.1.033072
https://doi.org/10.1103/PhysRevB.99.195455
https://doi.org/10.1103/PhysRevX.8.031087
https://doi.org/10.1103/PhysRevX.8.031088
https://doi.org/10.1103/PhysRevLett.122.106405
https://doi.org/10.1103/PhysRevB.99.161405
https://doi.org/10.1038/natrevmats.2017.33
https://doi.org/10.1038/s41563-020-0708-6


KEVIN SLAGLE AND LIANG FU PHYSICAL REVIEW B 102, 235423 (2020)

[18] Q. Shi, E.-M. Shih, M. V. Gustafsson, D. A. Rhodes, B. Kim,
K. Watanabe, T. Taniguchi, Z. Papić, J. Hone, and C. R. Dean,
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