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Heat transport in overdamped quantum systems
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We obtain an analytical expression for the heat current between two overdamped quantum oscillators interact-
ing with local thermal baths at different temperatures. The total heat current is split into classical and quantum
contributions. We show how to evaluate both contributions by taking advantage of the timescale separation
associated with the overdamped regime and without assuming the usual weak-coupling and Markovian approxi-
mations. We find that nontrivial quantum corrections survive even when the temperatures are high compared to
the frequency scale relevant for the overdamped dynamics of the system.
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I. INTRODUCTION

In classical and statistical physics, the overdamped limit is
an extremely useful approximation that allows us to simplify
problems where the dynamics of a system is dominated by the
friction due to its interaction with an environment. This can
be understood based on the canonical example of a Brownian
particle, where the limit of strong friction induces a timescale
separation in which the momentum degree of freedom relaxes
much faster than the position. In such a case, the Fokker-
Planck equation describing the stochastic evolution of both
degrees of freedom can be reduced to the Smoluchowski
equation for the evolution of the probability density of the
position alone [1].

For quantum systems, an analogous procedure proves to
be more demanding. This is because, in general, tractable
descriptions for the reduced dynamics of open quantum sys-
tems can be obtained only for weak coupling between the
system and the environment. In contrast, by definition, the
overdamped limit is a strong-coupling regime (however, this
does not prevent weak-coupling master equations from pro-
viding approximate descriptions of overdamped dynamics
under some conditions [2]). In spite of this, a quantum version
of the Smoluchowski equation was first obtained by Anker-
hold and collaborators [3,4] using path integral techniques.
Those results, as well as later extensions to time-dependent
systems [5], consider only equilibrium environments; that
is, the system in question interacts only with a single
thermal bath.

More recently, some efforts in stochastic and quantum
thermodynamics have also focused on understanding the im-
pact of strong-coupling effects in both in-equilibrium and
out-of-equilibrium settings [6–18]. In this paper we explore
the overdamped limit of a quantum system in contact with
a nonequilibrium environment; that is, we consider a sit-
uation in which the system simultaneously interacts with
two thermal baths at different temperatures. Specifically, we
consider an electrical circuit composed of two parallel RLC
circuits coupled by a mutual inductance (see Fig. 1). Here,

the resistors represent the thermal baths into which energy
can be dissipated. If they are at different temperatures, then
the system will reach a nonequilibrium stationary state in
which heat flows from the hot to the cold resistor. We are
interested in studying the properties of this heat current in
the overdamped limit where dissipation dominates, which in
this case is achieved for CiR2

i � Li. For this purpose, we
will exploit the fact that for linear systems like this one an
exact integral expression for the heat currents can be obtained,
and in some cases it can be evaluated analytically [19,20]. In
this way, we are able to split the heat current into classical
and quantum contributions and to analyze their behavior in
different regimes. We obtain analytical expressions for both
contributions that fully take into account non-Markovian ef-
fects. Interestingly, we show that the quantum corrections to
the heat current do not necessarily vanish in the limit where
both temperatures are high with respect to the slow frequency
scale (the only one relevant for the dynamics of the circuit in
the overdamped regime). The surviving quantum corrections
are nontrivial and depend logarithmically on the temperatures.
We show that these results are, indeed, accurate by comparing
them to exact numerical computations.

This paper is organized as follows. In Sec. II, we describe
our model of quantum circuits and introduce the expression
for the steady-state heat currents for general harmonic net-
works. Next, in Sec. III we give the result for the classical and
quantum contributions to the steady-state heat current in terms
of the circuit parameters. The evaluation of the heat currents
in the overdamped regime is then done in Sec. IV together
with the analysis of different regimes.

II. THE MODEL AND ITS SOLUTION

We begin by building a quantum model of the circuit in
Fig. 1. For this, we will represent each resistor using the usual
Caldeira-Leggett model. In this model, a resistor is consid-
ered an infinite array of independent LC circuits or harmonic
modes. In this way, using the usual procedure for canonical
quantization [21,22], it is possible to obtain the following
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FIG. 1. Two magnetically coupled RLC circuits.

Hamiltonian for the full system (see Appendix A for more
details):

H = q2
1

2C1
+ q2

2

2C2
+ L1L2

L1L2 − M2

(
φ2

1

2L1
+ φ2

2

2L2
− M

L1L2
φ1φ2

)

+
∑
m1

(
q2

m1

2Cm1

+ (φm1 − φ1)2

2Lm1

)

+
∑
m2

(
q2

m2

2Cm2

+ (φm2 − φ2)2

2Lm2

)
. (1)

Here, q1 and q2 are quantum-mechanical operators associ-
ated with the charge on the capacitors, while φ1 and φ2

are operators associated with the total magnetic flux through
the inductors. They satisfy the usual commutation relations
[q j, φk] = ih̄δ j,k . In a similar way, {qm1 , φm1} and {qm2 , φm2}
are sets of conjugate operators associated with each of the in-
dividual modes in the Caldeira-Leggett model of each resistor.
These individual modes are characterized by capacitances Cmk

and inductances Lmk , which are, in principle, arbitrary. They
enter in the definition of the spectral density associated with
the resistors, defined below.

In the following it will be convenient to write the different
terms of the previous Hamiltonian in matrix form. In fact, we
can write

H = Hsys +
∑

α

(Henv,α + Hint,α ), (2)

with

Hsys = qT C−1

2
q + φT L−1

2
φ, (3)

Henv,α = qT
α

C−1
α

2
qα + φT

α

L−1
α

2
φα, (4)

Hint,α = −φT L̄−1
α φα. (5)

Here, Hsys, Henv,α , and Hint,α are the Hamiltonians of the
system, the thermal baths, and the interaction between the
system and the baths, respectively. The index α ∈ {1, 2} iden-
tifies a resistor or thermal bath in the environment. Moreover,
q = (q1, q2)T and φ = (φ1, φ2)T are column vectors of the
charge and flux operators of the system, respectively, and the
matrices appearing in Hsys are defined by

C =
(

C1 0
0 C2

)
, L0 =

(
L1 −M

−M L2

)
, (6)

and

L−1 = L−1
0 +

(∑
m1

L−1
m1

0

0
∑

m2
L−1

m2

)
. (7)

In a similar way, qα and φα are column vectors formed by the
charge and flux operators of the αth bath, and Cα and Lα are di-
agonal matrices containing the capacitances and inductances
of each bath. Finally, the matrices L̄−1

α are given by

L̄−1
1 =

(
L11 L12 · · · L1N

0 0 · · · 0

)
, (8)

L̄−1
2 =

(
0 0 · · · 0

L21 L22 · · · L2N

)
. (9)

The system described so far is a particular case of an
open harmonic network. The nonequilibrium thermodynam-
ics of these systems has been extensively studied before
[7,8,13,19,20,23–26] since owing to their linearity exact an-
alytical results can be obtained. The central quantities in this
study will be the heat currents associated with each thermal
bath, i.e., the average rates at which energy is interchanged
between the system and each bath. They can be defined as
(heat currents are considered to be positive when they enter
the system)

Q̇α = − 1

ih̄
〈[Henv,α, Hint,α]〉, (10)

where the mean value is taken with respect to the instanta-
neous global state. Given an initial state, the heat currents
Q̇α will depend nontrivially on time during relaxation, after
which they will reach stationary values. Typically, one as-
sumes an uncorrelated initial state ρ0 = ρsys ⊗ ρenv in which
each of the baths in the environment is in a thermal state
ρ th

α at inverse temperature βα = (kbTα )−1, i.e., ρenv = ⊗αρ th
α .

Under this assumption, it can be shown that in the long-
time limit the average heat currents can be expressed as (see
Appendix B)

Q̇α = h̄

2

∑
α′ �=α

∫ ∞

0
dω ω fαα′ (ω)

× [coth (βα h̄ω/2) − coth (βα′ h̄ω/2)], (11)

where fαα′ (ω) is the heat transfer matrix element and reads

fαα′ (ω) = π

2
Tr[Iα (ω)g(iω)Iα′ (ω)g†(iω)]. (12)

In the previous expression, Iα (ω) is the spectral density of the
αth bath. It is a 2×2 matrix with elements

[Iα (ω)]kl =
∑

n

(
L̄−1

α

)
kn

(
L̄−1

α

)
ln(ωαCα )−1

nn δ[ω − (ωα )nn],

(13)

where ω2
α = L−1

α C−1
α is a diagonal matrix with the squared

natural frequencies of the modes in the αth bath. Also, g(s)
in Eq. (12) is the Laplace transform of the circuit Green’s
function,

g(s)−1 = Cs2 + γ (s)s + L−1
0 , (14)
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where γ (s) is the Laplace transform of the dissipation kernel.
It is given by

γ (s) =
∫ ∞

0

I (ω)

ω

s

s2 + ω2
dω (15)

in terms of the total spectral density I (ω) = ∑
α Iα (ω). Note

that, according to these definitions, in the long-time limit we
always have

∑
α Q̇α = 0. This expresses nothing more than

the conservation of energy, and it follows from Eq. (11) and
the fact that the heat transfer matrix fαα′ (ω) is symmetric
upon α ↔ α′.

Even if the model is fully quantum, the fact that the system
is linear makes its dynamics equivalent to the classical one
[27]. Thus, the Green’s function of Eq. (14), which appears
in the heat transfer matrix of Eq. (12), is just the one solving
the classical equations of motion and has no dependence on h̄,
which appears only in the noise spectrum 2h̄ω coth(βα h̄ω/2).
In fact, an expression similar to Eq. (11) could be obtained
by just computing the classical transfer function of the circuit
between the two ports to which the resistors are connected
and considering the resistors to be sources of Johnson-Nyquist
noise [28,29]. An important difference, however, is that even if
they are classical, the exact equations of motion for the system
are actually nonlocal in time due to the non-Markovian effects
induced by the environment [see Eq. (B1) in Appendix B].
This fact is missed by a classical circuit treatment but is fully
taken into account here, as we explain below.

The frequency integral in Eq. (11) can be solved ana-
lytically in certain cases. As shown in Ref. [20], when the
spectral densities of all baths are of the Lorentz-Drude form,
the integral can be evaluated in terms of the eigenvalues and
eigenvectors of a cubic eigenvalue problem. Thus, we will
assume the following spectral density for the baths:

Iα (ω) = 2

π

1

Rα

ω ω2
c

ω2 + ω2
c

Pα, (16)

with

P1 =
(

1 0
0 0

)
, P2 =

(
0 0
0 1

)
. (17)

Note that by Eq. (16), in a continuous limit of Eq. (13)
the parameters L̄α and Cα are determined by the values Rα

of the resistances and also the frequency cutoff ωc. Interest-
ingly, the previous results are valid for any value of ωc, which
controls the autocorrelation time of the environment (the
Markovian approximation corresponds to the limit ωc → ∞).
Thus, our results will automatically include non-Markovian
effects. Finally, with the previous choice for the spectral den-
sities, the function γ (s) in Eq. (15) becomes

γ (s) =
(

P1

R1
+ P2

R2

)
ωc

s + ωc
. (18)

III. CLASSICAL AND QUANTUM CONTRIBUTIONS
TO THE HEAT CURRENT

The previous ingredients enable us to find the heat current
in terms of the circuit parameters. By plugging the definitions

of the spectral densities into Eq. (12) we find

f1,2(ω) = 2

π

(
1

R

ω ω2
c

ω2 + ω2
c

)2

|g12(iω)|2, (19)

where g1,2(s) is the off-diagonal element of g(s). For sim-
plicity we will consider the case of a symmetric circuit, i.e.,
R1 = R2 = R, C1 = C2 = C, and L1 = L2 = L. Then, we ob-
tain, from Eq. (14),

g12(s) = M

A

[(
Cs2 + L

A
+ 1

R

s ωc

s + ωc

)2

−
(

M

A

)2]−1

, (20)

where A = L2 − M2. As a consequence, the transfer function
can be finally written as

f1,2(ω) = 2

π
ω2ω4

c

(
RM

A

)2 1

|u+(iω) u−(iω)|2 , (21)

with

u±(s) = (s3 + ωcs2)RC +
(

R

L ± M
+ ωc

)
s + R

L ± M
ωc.

(22)

We can already see how an exact expression for the heat
current can be obtained. Since the transfer function f1,2(ω)
was expressed as a rational function, the frequency integral in
Eq. (11) can be evaluated via the residue theorem in terms of
the poles of f1,2(ω). In order to deal with the poles of the
functions coth(βα h̄ω/2) at the Matsubara frequencies, it is
convenient to write them in terms of digamma functions [30]
(see Appendix C):

π coth

(
βα h̄ω

2

)
= 2π

βα h̄ω
− iψ

(
1 − iβα h̄ω

2π

)

+ iψ

(
1 + iβα h̄ω

2π

)
. (23)

We note that the terms containing digamma functions vanish
in the high-temperature limit. Thus, this decomposition in-
duces a splitting of the heat current into a high-temperature
contribution and a low-temperature correction, which we de-
note as classical and quantum contributions, respectively.
Therefore, we have

Q̇1 = Q̇cl
1 + Q̇q

1, (24)

where

Q̇cl
1 =

(
1

β1
− 1

β2

)∫ ∞

0
dω f12(ω), (25)

Q̇q
1 = ih̄

2π

∫ ∞

−∞
dωω f12(ω)

[
ψ

(
1 − iβ2h̄ω

2π

)

− ψ

(
1 − iβ1h̄ω

2π

)]
. (26)

Although the previous integrals could, in principle, be evalu-
ated exactly [20], the procedure and the final result are greatly
simplified in the overdamped limit in which we are interested.
Thus, we now discuss this approximation and the frequency
scales involved.
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IV. EVALUATION OF THE HEAT CURRENT
IN THE OVERDAMPED LIMIT

The classical equation of motion for a single parallel RLC
circuit is

φ̈ + γ φ̇ + ω2
0φ = 0, (27)

where φ is the flux variable in the inductor and the relevant
frequency scales are given by the damping rate γ = 1/RC and
the natural frequency ω0 = 1/

√
LC. The corresponding char-

acteristic equation has roots �± = −(γ /2) ± (γ 2/4 − ω2
0 )1/2.

The overdamped limit corresponds to γ 
 ω0, and it can be
reached, for instance, by reducing the value of the capacitance
so that C � L/R2. In that regime we have �+ � −ω2

0/γ and
�− � −γ + ω2

0/γ , which in absolute value are the damp-
ing rates of the magnetic flux φ and charge q, respectively,
and therefore, |�+| � |�−|. This is the timescale separation
characteristic for overdamped systems, which means in this
case that the charge relaxes much faster than the flux. Also,
note that the flux damping rate ωd � ω2

0/γ = R/L becomes
independent of C. A similar analysis holds for each normal
mode of the two coupled RLC circuits by just replacing L
by L ± M. We can express the functions u±(s) in Eq. (22) in
terms of γ and ω± = ωd/(1 ± M/L),

u±(s) = (s3 + ωcs2)/γ + (ω± + ωc)s + ω±ωc. (28)

We see that the overdamped limit tends to reduce the
weight of the cubic and quadratic terms, although they will
always dominate for high frequencies. However, we also
note that in the frequency integral of Eq. (11), the fac-
tor coth (βα h̄ω/2) − coth (βα′ h̄ω/2) will cut off frequencies
higher than ωth = kb maxα{Tα}/h̄. From this it follows that the
cubic and quadratic terms can be disregarded with respect to
the other two whenever

ωth � γ , (γω±)1/2, (γω±ωc)1/3. (29)

Thus, under those conditions, we can consider

u±(s) � (ω± + ωc)s + ω±ωc, (30)

where the only remaining relevant frequency scales are ω±
and ωc. We note that the conditions in Eq. (29) can always be
fulfilled by increasing γ and that they do not restrict in any
way the ratios between ωth, ω±, and ωc. However, they pose
a restriction on the maximum value of the temperatures, and
Table I specifies some temperature ranges relevant in the over-
damped regime. This will become important later when we
show that quantum effects survive even when the temperatures
are high with respect to h̄ω±/kb. Using the approximation of
Eq. (30), the integrals in Eqs. (25) and (26) can be readily
evaluated. For the classical contribution to the heat current,
we obtain

Q̇cl
1 = kb

2
(T1 − T2)

(
M

L

)2
ωc

ωc + ωd

λ+λ−
ωd

, (31)

where λ± is the only root of u±(s),

λ± = − ωc ω±
ωc + ω±

. (32)

The evaluation of the quantum contribution is not as straight-
forward, and its details are explained in Appendix C. The final

TABLE I. Different temperature ranges in the overdamped
regime. We consider that the thermal frequency ωth characterizes
the temperatures of both baths; that is, both the temperatures are
of the same order. High temperatures are in the range addressed
by the classical Smoluchowski equation or overdamped Langevin
equations. For intermediate temperatures, the bath temperatures sit in
between the frequency gap associated with the overdamped regime,
while low temperatures are low compared to the lowest frequency
scale of the system. Other ranges can be considered, for example,
mixed conditions in which one of the bath temperatures is low while
the other is high or taking into account values of ωth comparable
to γ .

Range

High temperatures ω± � γ � ωth

Intermediate temperatures ω± < ωth � γ

Low temperatures ωth < ω± � γ

result is

Q̇q
1 = h̄

π

(
M

L

)2(
λ+λ−
ωd

)2

ln

(
T2

T1

)

+ h̄

4π

ωc

ωc + ωd

M

L

{
λ2

+

[
ψ

(
1 − β1h̄λ+

2π

)

−ψ

(
1 − β2h̄λ+

2π

)]
− λ2

−

[
ψ

(
1 − β1h̄λ−

2π

)

−ψ

(
1 − β2h̄λ−

2π

)]}
. (33)

Equations (31) and (33) are the central results of this work.
They make it possible to compute the heat current in the
overdamped regime without assuming the weak-coupling or
Markovian approximations and thus complement previous re-
sults in similar systems that are either numerical or limited
by the mentioned approximations [23–26]. We observe that
the classical contribution is proportional to the temperature
difference 
T = T1 − T2, whereas the quantum contribution
depends on T1 and T2 in a nonalgebraic way, as expected.
In Fig. 2 we compare the exact heat current obtained by
numerical integration of Eq. (11) with the one obtained by
using Eqs. (31) and (33) for different values of T1 and T2 as
a function of γ /ωd (M/L = 1/2 and ωc = 5ωd ). We see that
the two results match as γ /ωd is increased.

We will now take some relevant limits in order to simplify
the previous expressions. The Markovian limit (ωc → ∞) can
be easily obtained by replacing the factors ωc/(ωc + ωd ) by 1
in Eqs. (31) and (33) and noting that the roots λ± satisfy

lim
ωc→∞ λ± = −ω±. (34)

From Eq. (32) we see that the effect of a finite cutoff is
equivalent to reducing the values of the frequencies ω± or,
correspondingly, ωd .

To analyze the low-temperature regime we consider
the limit |λ±|/ωth 
1 (note that this condition implies
ωth �ω±, ωc). We use the following expansion of the
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FIG. 2. Heat current with respect to γ /ωd . Solid lines show the
exact heat current in terms of the different values of baths temper-
atures T1 and T2. The dashed lines are the heat current in the over-
damped limit. This plot is sketched for M = 1, L = 2, ωc = 5ωd ,

ωd = 1.

digamma function for large x:

ψ (x) ≈ ln x − 1

2x
− 1

12x2
+ 1

120x4
+ O(x5), (35)

The contribution of the first logarithmic term cancels the first
term in Eq. (33). Moreover, the contribution of the second
term cancels the classical part of the heat current, while those
coming from the third term vanish. Thus, the only remaining
contributions originate from the term ∝ 1/x4, so the final
result for the low-temperature heat current is

Q̇low
1 = 2

15

(
π

h̄

)3(M

L

)2 k4
b

ω2
d

(
T 4

1 − T 4
2

) + O
(
T 6

1/2

)
. (36)

Considering T1/2 = T ± 
T/2 and to lower order in 
T ,
we can express this result as Q̇low

1 = TGQ
T , where
GQ = πk2

bT/3h̄ is the fundamental unit of thermal con-
ductance [28,31,32] and T = (4π2/5)(M/L)2(kbT/h̄ωd )2 is
a temperature-dependent transmission coefficient. Also, we
would like to point out that Eq. (36) is independent of the cut-
off frequency. This is natural since for low temperatures only
low-frequency modes contribute to the heat current, while
the cutoff frequency controls the high-frequency region of
the spectral densities. It is worth mentioning that one would
also obtain the exact same expression for the heat currents at
the low-temperature limit in the weak-coupling regime, i.e.,
γ � ω± (see Appendix D). This again is due to the fact that
at low temperatures only the low-frequency response of the
system is relevant. In Fig. 3 we show the behavior of the total
heat current when the bath temperatures are decreased. For
low temperatures, we can see that the heat current is, indeed,
well approximated by Eq. (36).

FIG. 3. Comparison between total heat current (green solid line)
and the low-temperature regime expression (blue dashed line) with
respect to the different values of T1. Here, we set T2 = T1/2; thus, we
lower the two temperatures at the same time with a constant ratio.
We can observe that, when the temperatures are lowered, the two
expressions will coincide. M = 1, L = 2, ωc = 5ωd , ωd = 1.

Turning to the regime of intermediate temperatures, where
|λ±|/ωth � 1, we employ the following expansion of the
digamma function for small values of x,

ψ (1 + x) = −η + π2x

6
+ O(x2), (37)

where η is the Euler-Mascheroni constant. We then find
the following high-temperature expansion of the quantum
contribution:

Q̇q
1 = h̄

π

(
M

L

)2(
λ+λ−
ωd

)2

ln

(
T2

T1

)
+ h̄2

48

ωc

ωc + ωd

×M

L
(λ3

+ − λ3
−)

(
1

T2
− 1

T1

)
+ O

(
T −2

1/2

)
. (38)

Surprisingly, we see that the dominant term does not neces-
sarily vanish for |λ±|/ωth → 0. The reason for this is that
under the constraints given in Eq. (29), one can assume that
the temperature is high compared to the slow frequency scale
ωd , but it must remain low compared to the fast frequency
scale γ . In other words, the temperature sits in the middle
of the timescale separation associated with the overdamped
regime. Thus, to the first nontrivial order the total heat current
for high temperatures is

Q̇high
1 = Q̇cl

1 + h̄

π

(M

L

)2(λ+λ−
ωd

)2

ln
(T2

T1

)
. (39)

Figure 4 shows the behavior of the quantum contribution with
respect to the growth of the temperature. When both bath
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FIG. 4. The quantum contribution to the heat currents for differ-
ent values of T1 is sketched with respect to T2. We can see that, for
high values of T1 and T2, the quantum correction is not vanishing
and it will coincide with a nontrivial logarithmic expression (black
dashed line). This plot is sketched for M = 1, L = 2, ωc = 5ωd ,

ωd = 1.

temperatures are increased, we can still observe a nonzero
quantum correction to the heat currents.

V. CONCLUSIONS

We have investigated the heat current between two
overdamped quantum harmonic oscillators interacting with
local thermal baths without invoking the weak-coupling and
Markovian approximations. Exploiting the timescale separa-
tion associated with the overdamped regime, we were able
to obtain closed analytical expressions for the heat current,
identifying quantum and classical contributions. These analyt-
ical results might offer a useful benchmark to test Markovian
embedding schemes or other approximate methods, for ex-
ample, the one developed in [33]. Although our results are
valid for general harmonic systems, we have explicitly con-
sidered an electronic implementation. This is justified by the
fact that low-temperature electronic circuits are a promising
platform to study quantum energy transport [29,34–38]. We
found that in the overdamped regime a range of intermediate
temperatures opens up between the low-temperature and high-
temperature regimes usually considered. Our results indicate
that in this intermediate range there are significant quantum
corrections to the classical heat current, which survive even
if the temperatures are high compared to the only relevant
frequency scale of the system dynamics.
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APPENDIX A: COUPLED RLC CIRCUIT HAMILTONIAN

The Hamiltonian of a LC circuit can be written such that

H = φ2

2L
+ q2

2C
. (A1)

In this notation, q and φ will play the role of momentum
and position conjugate variables, respectively. To quantize
the LC circuit, we need to replace the classical variables of
the Hamiltonian (A1) with their quantum counterparts. In the
other words, the Poisson bracket of the flux and charge in the
circuit would be

{φ, q} = ∂φ

∂φ

∂q

∂q
− ∂q

∂φ

∂φ

∂q
= 1. (A2)

As shown by Dirac the value of a classical Poisson bracket
imposes its corresponding quantum commutator

{φ, q} → 1

ih̄
[φ̂, q̂]. (A3)

Thus, we see that transforming the classical Hamiltonian into
its quantum version will also be backed by the uncertainty
relation between flux and charge variables as they play the
role of position and momentum, respectively.

The dissipative part would be the resistor attached to the
LC circuit. However, adding the Hamiltonian of this part is
not trivial. To write the full Hamiltonian of an RLC circuit,
we will employ the Caldeira-Leggett model for the Brownian
motion. The resistor can be considered a circuit consisting of
an infinite array of independent LC circuits, each playing the
role of harmonic oscillators of the bath (Fig. 5). Considering
the RLC circuit in Fig. 5, we can write the full Hamiltonian
describing the circuit such that

H = �2

2L
+ q2

2C
+

∑
m

q2
m

2Cm
+ (φm − �)2

2Lm
. (A4)

In the above expression, the flux variables � and φm corre-
spond to the node fluxes. The node flux is defined as the time
integral of the voltage along the path connecting the node
and the ground. q and qm are also the charges in capacitors
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FIG. 6. Two magnetically coupled circuits.

C and Cm. The last term in the Hamiltonian can also be
realized as the normalizing term to ensure that there will be
no inconsistency in the minimum of the potential energy.

Next, we will magnetically couple two quantum RLC cir-
cuits by putting them in proximity to each other. Indeed, the
coupling occurs due to the presence of a flux running in one
circuit which is caused by the other inductor. This leads to
the mutual inductance between the two inductors of the two
circuits. Before considering two coupled RLC circuits, we first
look at two simple coupled circuits in Fig. 6. We denote the
total flux passing through the lth circuit by φl , with l = {1, 2}.
The total flux is the sum over the flux φll produced by the
inductor Ll and the mutual flux φlk between the circuits with
k = {1, 2}. We may write this such that

φl =
∑

k

φlk . (A5)

To find the Hamiltonian of the coupled circuits, we use Kirch-
hoff’s law for voltages to obtain

v1 = φ̇1 = L1
di1
dt

+ φ̇12, (A6)

v2 = φ̇2 = L2
di2
dt

+ φ̇21, (A7)

where v1 and v2 are the voltages associated with the two
capacitors and i1 and i2 are the currents for each circuits. For
mutual flux we can write

φ̇12 = dφ12

di2

di2
dt

= M12
di2
dt

,

φ̇21 = dφ21

di1

di1
dt

= M21
di1
dt

, (A8)

where M12/21 = dφ12/21

di2/1
is the mutual inductance between the

two circuits and it can be proved that M12 = M21 = M.
To calculate the energy stored in the two coupled circuits,

we first assume that i2 = 0 and i1 is increased up to an arbi-
trary value I1. Then the power stored in the left circuit is

p1 = v1i1 = i1L1
di1
dt

. (A9)

Then the total energy will be

E1 =
∫

p1dt =
∫ I1

0
i1di1 = 1

2
L1I2

1 . (A10)

Now, we assume that i1 = I1 is constant, and we change i2
from zero to I2. Since i2 is changing, the mutual voltage
induced in the left circuit is Mdi2/dt , and therefore, the total

power will become

p2 = v2i2 + I1M
di2
dt

= i2L2
di2
dt

+ I1M
di2
dt

; (A11)

thus, the energy stored in the circuit can be written as

E2 =
∫

p2dt = L2

∫ I2

0
i2di2 + I1

∫ I2

0
Mdi2

= 1

2
L2I2

2 + MI1I2. (A12)

We can write the total energy of the circuits as the sum over
E1 and E2 such that

E1 + E2 = 1
2 L1I2

1 + 1
2 L2I2

2 + MI1I2. (A13)

Adding the energy with respect to the capacitors to this en-
ergy, we can write the Hamiltonian as

H = q2
1

2C1
+ q2

2

2C2
+ 1

2
L1i2

1 + 1

2
L2i2

2 + Mi1i2. (A14)

Above, we replaced arbitrary currents I1 and I2 by i1 and i2.
We can see that M is the coupling constant between the two
circuits.

To find the Hamiltonian of the two RLC circuits, like what
we did in Eq. (A4), we attach two resistors to both ends of
the coupled LC circuits. We can replace currents in Eq. (A14)
with their flux variables by using the relation φll = Ll il . By
doing so the Hamiltonian of this model will then become

H = q2
1

2C1
+ q2

2

2C2
+ φ2

11

2L1
+ φ2

22

2L2
+ M

L1L2
φ11φ22 +

∑
m1

q2
m1

2Cm1

+ (φm1 − φ1)2

2Lm1

+
∑
m2

q2
m2

2Cm2

+ (φm2 − φ2)2

2Lm2

. (A15)

Next, we will eliminate the flux terms φll to write it in terms
of the total flux φl . To do so we use the following relations
between the fluxes:

φ12 = M12i2 = M

L2
φ22, (A16)

φ21 = M21i1 = M

L1
φ11. (A17)

These relations together with Eq. (A5) give

φ11 = L1L2

M2 − L1L2

(
M

L2
φ2 − φ1

)
,

φ22 = L1L2

M2 − L1L2

(
M

L1
φ1 − φ2

)
. (A18)

We can now replace these transformations in Eq. (A15) to find
the Hamiltonian of our model such that

H = q2
1

2C1
+ q2

2

2C2
+ L1L2

L1L2 − M2

[
φ2

1

2L1
+ φ2

2

2L2
− M

L1L2
φ1φ2

]

+
∑
m1

(
q2

m1

2Cm1

+ (φm1 − φ1)2

2Lm1

)

+
∑
m2

(
q2

m2

2Cm2

+ (φm2 − φ2)2

2Lm2

)
. (A19)
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APPENDIX B: STEADY-STATE HEAT CURRENTS

Using the Heisenberg equations of motion, we can find the
integro-differential equation for each variable of the system,
and then they can be solved using the Green’s function matrix
of the system g(t, t ′), which satisfies the integro-differential
equation,

C
∂2

∂t2
g(t, t ′) + L−1

0 g(t, t ′) +
∫ t

0
γ (t − τ )

∂

∂τ
g(τ, t ′)dτ

= δ(t − t ′), (B1)

with the initial condition g(0, t ′) = 0. Note that the term in-
volving the dissipation kernel γ (t ) is nonlocal in time and
takes into account the non-Markovian effects induced by the
environment. This kernel is given by

γ (t ) =
∑

α

∫ ∞

0
dω

Iα (ω)

ω
cos ωt, (B2)

where, for the Markovian Ohmic dissipation, this kernel will
become a δ function which is time local.

Assuming that the Green’s function g(t, t ′) is an expo-
nentially decaying function with respect to t , the correlation
functions between the system variables, i.e., φ and q, will be
independent of the initial state of the total system for large
t . To capture the correlation functions, we use the covariance
matrix σ such that

σ =
[
σ (φ,φ) σ (φ,q)

σ (q,φ) σ (q,q)

]
. (B3)

In terms of the Green’s function g(t, t ′), one can obtain

σ (n,m)(t ) = h̄

2

∫ t

0

∫ t

0
g(n)(t, t1)να (t1 − t2)g(m)(t, t2)T dt1dt2,

(B4)

where

να (t ) =
∫ ∞

0
dωIα (ω) cos(ωt ) coth

(
h̄βαω

2

)
(B5)

denotes the noise kernel. Also, σ (0,0) = σ (φ,φ), σ (0,1) = σ (φ,q),
σ (1,1) = σ (q,q), and g(n) is the nth derivative of g. Consider-
ing a situation in which the spectral density is a continuous
function of ω, we can write the covariance matrix for the
steady-state limit, i.e., t → ∞, such that

σ (n,m) =Re
∫ ∞

0

h̄

2
ωn+min−mg(iω)να (ω)g(−iω)T Cdω, (B6)

where σ (n,m) is the covariance matrix in the asymptotic state,
να (ω) is the Fourier transform of the noise kernel, and g(s) is
the Laplace transform of the Green’s function, which can be
obtained using Eq. (B1) such that

g(s)−1 = Cs2 + γ (s)s + L−1
0 , (B7)

where γ (s) is the Laplace transform of γ (t ).
Now we turn to analyze the heat flow through the system.

Since there exists no external drive in the system, the heat
current is directly related to the change in the mean value of
the energy of the system, and for the steady state one can write

Q̇α = Tr[PαL−1σ (φ,q)(t )C−1]. (B8)

To calculate the local heat current, we first write σ (φ,q)(t )
by using

να (t1 − t2) = Re
∫ ∞

0
να (ω)e−iω(t1−t2 )dω, (B9)

where να (ω) = Iα (ω) coth( h̄βαω

2 ). Replacing this in Eq. (B4),
we can see in the limit t → ∞ we can write∫ ∞

0
g(t, t1)e−iωt1 dt1 = g(iω); (B10)

thus, we have

σφq(t ) = − Re
∫ ∞

0

h̄

2
g(iω)να (ω)iωg(−iω)T Cdω. (B11)

Inserting this equation into Eq. (B8), we have the local heat
current expression for the steady-state limit,

Q̇α = h̄

2

∑
α′

∫ ∞

0
ω fαα′ (ω) coth

(
h̄βα′ω

2

)
dω, (B12)

where we have used the fact that Re(−iX ) = Im(X ). The heat
transfer matrix element fαα′ is written such that

fαα′ (ω) = ImTr[PαL−1g(iω)Iα′ (ω)g(−iω)T ]. (B13)

Here, we have PαL−1 = PαL−1
0 + L−1

α . Placing this
relation into the above equation, we can see that
Tr[PαL−1

α g(iω)Iα′ (ω)g(−iω)T ] = 0 because L−1
α is a

symmetric matrix and g(iω)Iα′ (ω)g(−iω)T is antisymmetric,
and the trace of their product will be vanishing. That said, we
can write the heat transfer matrix as

fαα′ (ω) = ImTr
[
PαL−1

0 g(iω)Iα′ (ω)g(iω)†
]
. (B14)

To expand the above relation a bit further, we first take the
Laplace transform of Eq. (B1) such that

g(s)−1 = Cs2 + γ (s)s + L−1
0 . (B15)

Writing L−1
0 in terms of g(s)−1, we have

L−1
0 = g(s)−1 − Cs2 + γ (s)s. (B16)

Placing the above equation into Eq. (B14) with s = iω,
we have

fαα′ (ω) = ImTr[PαIα′ (ω)g(iω)†]

+ Imω2Tr[CPαg(iω)Iα′ (ω)g(iω)†]

+ ImiωTr[Pαγ (iω)g(iω)Iα′ (ω)g(iω)†]. (B17)

The first term vanishes because PαIα′ (ω) = 0 for α �= α′. The
second will also be vanishing because it is a product of two
symmetric and antisymmetric matrices. In the third term, the
matrix g(iω)Iα′ (ω)g(iω)† is Hermitian, so we have to calculate
only Im[iωγ (iω)] = Re[ωγ (iω)] = π

2 I (ω). Thus, we have

fαα′ (ω) = π

2
Tr[Iα (ω)g(iω)Iα′ (ω)g(iω)†]. (B18)

Inserting this matrix back into Eq. (B12), we have

Q̇α = h̄

2

∑
α′ �=α

∫ ∞

0
ωdω fαα′ (ω)

[
coth

(
h̄βαω

2

)

− coth

(
h̄βα′ω

2

)]
. (B19)
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FIG. 7. Upper half plane contour. The dots are the poles of the digamma function.

APPENDIX C: QUANTUM CORRECTION
TO THE HEAT CURRENT

To calculate the quantum contribution to the heat currents
we will analytically solve the integral in Eq. (26). To do so,
we will have to take into account the poles of the digamma
function in addition to the poles of f12(ω). In fact the poles of

the function ψ (1 − ix) are all located on the lower half of the
imaginary axis, i.e., x = −i,−2i,−3i, . . . . The poles of the
heat transfer matrix element λ± and their conjugates λ∗

± are on
the imaginary axis. However, since we would like to exclude
the contribution from the digamma function poles, we choose
the integration contour to run on the upper half plane, which
covers only λ±. Thus, we can write the integral such that

Q̇q
1 = ih̄

2π

∫
c

dω ω f12(ω)

[
ψ

(
1 − iβ2h̄ω

2π

)
− ψ

(
1 − iβ1h̄ω

2π

)]
+ ih̄

2π

∫
∞

dω ω f12(ω)

[
ψ

(
1 − iβ2h̄ω

2π

)
− ψ

(
1 − iβ1h̄ω

2π

)]
.

(C1)

The first integral is done over the contour c in Fig. 7 by using the residue theorem. The second integral is the contribution for
ω → ∞. In this limit we need to expand the digamma function using

ψ (1 ± ix) � ln (± ix) ∓ i

x
(C2)

for x → ∞. Since the integrand is vanishing as 1/ω, we need to keep only the logarithmic term in the asymptotic digamma
functions. Placing this expansion into the second integral in Eq. (C1), we have

ih̄

2π

∫
∞

dω ω f12(ω)

[
ψ

(
1 − iβ2h̄ω

2π

)
− ψ

(
1 − iβ1h̄ω

2π

)]
= − ih̄

π

(
M

L

)2(
λ+λ−
ωd

)2 ∫
dω

1

ω
ln

(
β1

β2

)
. (C3)

We change the variable ω = �eiθ , and we integrate over the semicircle on the upper half plane for 0 � θ � π and � → ∞;
thus, we have

ih̄

2π

∫
∞

dω ω f12(ω)

[
ψ

(
1 − iβ2h̄ω

2π

)
− ψ

(
1 − iβ1h̄ω

2π

)]
= h̄

π

(
M

L

)2(
λ+λ−
ωd

)2

ln

(
T2

T1

)
. (C4)

Hence, by adding the above result and the integral over the contour we obtain Eq. (26).

APPENDIX D: WEAK-COUPLING LIMIT

To study the weak-coupling limit of the problem at low temperatures, we still use the Ohmic dissipation but in the Markovian
limit (ωc → ∞). In that case the spectral density and the dissipation kernel simplify into

Iα (ω) = 2

π

ω

Rα

Pα, (D1)

γ (s) = 1

R
(P1 + P2). (D2)
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Placing the above equations into the heat transfer matrix element fαα′ (ω), we have

f1,2(ω) = 2

π

(
M

L

)2
ω2

ω2
d

(ω+ω−)2 1

|u+(iω) u−(iω)|2 , (D3)

where in the weak-coupling regime we have

u±(ω) = − 1

γ

(
ω − iγ

2
+ √

γω±

)(
ω − iγ

2
− √

γω±

)
. (D4)

Employing the heat transfer matrix element, we may calculate the classical and quantum contributions to the heat currents in
Eqs. (25) and (26) using the same method as in Appendix C. Nevertheless, we are interested in the low-temperature limit of the
heat currents. Therefore, the classical contribution will be vanishing, and the heat current up to the first nonvanishing order of
the quantum correction can be written as

Q̇low
1 =512

15

(
π

h̄

)3(M

L

)2 k4
b

ω2
d

(
ω+ω−

(γ + 4ω+)(γ + 4ω−)

)2(
T 4

1 − T 4
2

) + O
(
T 6

1/2

)
, (D5)

where in the weak-coupling limit of γ � ω± the above expression is the same as (36).
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