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Nearly perfect spin filtering in curved two-dimensional topological insulators
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The spintronic properties of curved nanostructures derived from two-dimensional topological insulators
(2DTIs) are explored theoretically with density functional theory (DFT)-based calculations and tight-binding
models. We show that curved geometries make it possible to manipulate electron spins in ways that are
not available for planar 2DTI devices. We predict that, unlike planar 2DTI devices, curved 2DTI-related
nanostructures can function as highly effective two-terminal spin filters even in the absence of magnetic fields.
We construct a generalization to curved geometries of our previous tight-binding model of the wide band-gap
planar 2DTI bismuthene on SiC. The resulting model, applied to an ideal dome geometry with a free edge, is
shown to exhibit quantum spin Hall physics, including spin-polarized edge states. The model predicts nearly
perfect spin filtering by the dome for a particular two-terminal geometry in the absence of magnetic fields. Our
DFT calculations predict a Bi105Si105H15 dome of bismuthene with adsorbed silicon and hydrogen atoms to be
stable. Our tight-binding model, adjusted to match density of states given by DFT calculations, predicts that the
Bi105Si105H15 dome should exhibit quantum spin Hall physics and very effective spin filtering in a two-terminal
arrangement.

DOI: 10.1103/PhysRevB.102.235420

I. INTRODUCTION

In two-dimensional topological insulators (2DTIs), elec-
tron transport occurs via edge states when the Fermi level
is located in the bulk band gap [1–10]. These edge states
exhibit locking between the electron momentum and spin,
which results in a quantum spin Hall (QSH) effect [1–6],
i.e., the electric current is carried by spin-polarized electrons
with opposite spin orientations at the opposite edges of the
sample. The 2D QSH systems considered to date have been
planar [7–10]; curved 2D QSH systems have received little
if any attention theoretically or experimentally. In this paper,
we initiate the exploration of the physics of curved 2D QSH
systems theoretically by constructing tight-binding models of
finite nanostructures based on 2DTIs with curved geometries
and examining their properties. We find that curved geome-
tries offer additional degrees of freedom for manipulating the
orientations of the spins of QSH edge states that are not avail-
able for planar 2DTIs. In particular, while the spin orientation
of an electron traveling along the edge of a planar 2DTI nanos-
tructure remains fixed, we show that the spin orientation of an
electron traveling along the edge of a suitably curved 2DTI
can vary as a function of the position along the edge. Thus,
while the spin orientations induced by an electric current on
the opposite edges of planar 2DTIs are always antiparallel,
our work reveals that, for suitable curved geometries, the spin
orientations on opposite edges of the 2DTI can be tailored so
as to vary continuously from antiparallel to parallel depending
on the locations where the spin orientations are measured.
From the perspective of potential applications, it follows
that appropriately contacted curved 2DTIs can function as

two-terminal spin filters in the absence of magnetic fields
whereas to achieve spin filtering at zero magnetic field in a
planar 2DTI at least a three-terminal device is required.

II. CURVED BISMUTHENE NANOSTRUCTURES

Recent theoretical and experimental work has provided
strong evidence that monolayer bismuthene on SiC is a wide
gap 2DTI [11–19]. Tight-binding models of the bismuthene
monolayer employing basis sets consisting only of the val-
ence orbitals of the bismuth atoms but parameterized so as
to take into account the influence of the SiC substrate on
the bismuthene have been constructed [12–18]. These simple
models have succeeded in capturing the essential topological
insulator and QSH physics of this planar system [12–18].

Whether curved bismuthene monolayers chemically mod-
ified by suitable adsorbates can also exhibit topological
insulator and QSH physics is unknown at present. How-
ever, theoretical studies have suggested that approximately
spherical and cylindrical bismuthene nanostructures may be
stable [20–23]. Also, bismuth nanotubes have been synthe-
sized [24–31].

We have investigated curved bismuthene-based nanostruc-
tures further by means of density functional theory (DFT)
computer simulations as implemented in the GAUSSIAN 16
package with the B3PW91 functional and Lanl2DZ effective
core potential and basis sets [32]. The electronic energy and
ionic forces of our optimized geometries were converged
within 10−5 eV and 0.0008 eV/Å, respectively. Our simu-
lations indicate that an approximately spherical bismuthene
fullerene structure consisting of 180 Bi atoms comprised of Bi
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FIG. 1. Relaxed Bi105Si105H15 dome. 105 bismuth atom (blue)
bismuthene dome with zigzag edge stabilized by 105 silicon (red)
atoms viewed from the concave side. Edge Si atoms are passivated
with H atoms (black). Image prepared using MACMOLPLT software
[33].

hexagons and 12 symmetrically arranged Bi pentagons should
be stable and that a similar 180 Bi atom fullerene with 180
Si atoms in its interior, one Si atom bound to each Bi atom,
should also be stable. We attribute the stability of the latter
structure to the fact that the distance between nearest-neighbor
Si atoms is similar to the nearest-neighbor distance in crys-
talline silicon; we find that bismuthene fullerenes decorated
with Si atoms but having very different nearest-neighbor Si-Si
distances tend to be unstable. We also find that spherical
domes of bismuthene are unstable, being prone to collapse
into compact clusters of Bi atoms. However, interestingly, we
find that a particular bismuthene dome can be stabilized by the
addition of Si and H atoms. In Fig. 1, we show such a stable
structure of 105 Bi and 105 Si atoms obtained by relaxing
a truncated 180 Bi-Si atom spherical fullerene. A Si atom is
bound to each Bi atom on the concave surface of the dome;
the dome has a zigzag edge. The edge Si atoms are passi-
vated with hydrogen atoms. We refer to this nanostructure
as a Bi105Si105H15 dome. This suggests that making a curved
monolayer bismuthene nanostructure with a free edge may be
possible.

Whether such stable curved nanostructures based on mono-
layer bismuthene or other 2DTIs and having a free edge can
be realized experimentally remains an open question. Nev-
ertheless, it is of interest to explore the properties of such
prospective systems theoretically. Here we initiate this theo-
retical work by constructing and studying potentially relevant
tight-binding models. We construct a generalization of our
tight-binding Hamiltonian of planar bismuthene (modified
chemically by SiC) [15] to curved bismuthene nanostructures.
We show that for an ideal 105 Bi atom spherical dome ge-
ometry this basic model exhibits spin-polarized edge states, a
QSH effect, and nearly perfect spin filtering in a two terminal
arrangement.

We then modify this basic model in such a way as to
approximately reproduce the partial density of states (DOS)
on the Bi atoms obtained by our DFT calculations for the

TABLE I. The on-site orbital part Hi
α,α′ of the model Hamiltonian

matrix for atom i in Eq. (1). Here r̂ = (a, b, c) is the unit vector
normal to the surface of the curved topological insulator at Bi atom
i. The parameter values are Es = −10.22 eV and Er = −5.0 eV.

Hi
α,α′ 6s′ 6p′

x 6p′
y 6p′

z

6s Es 0 0 0
6px 0 a2Er abEr acEr

6py 0 baEr b2Er bcEr

6pz 0 caEr cbEr c2Er

relaxed Bi105Si105H15 dome shown in Fig. 1. We find that the
electronic structure and transport properties of this realistic
curved bismuthene-based nanostructure are more complex,
being strongly affected by both edge and bulk states, but that
it also exhibits a pronounced QSH effect and very effective
spin filtering in a two terminal arrangement.

III. GENERALIZATION OF THE TIGHT-BINDING
MODEL OF INFINITE MONOLAYER BISMUTHENE

ON SIC TO CURVED GEOMETRIES

The bismuth atoms of planar monolayer bismuthene on
SiC form a honeycomb lattice [11,12]. For bismuthene in the
x-y plane, the main contributions to the low-energy electronic
states are those of the Bi 6px, 6py, and 6s atomic valence
orbitals [12]. The tight-binding models of bismuthene on SiC
to date have employed basis sets consisting of only these
bismuth valence orbitals. In bismuthene on SiC, the Bi 6pz

valence orbital is shifted away from the Fermi level because
of the interaction with the SiC substrate [12]. For this reason,
it has been omitted in most tight-binding models of planar bis-
muthene on SiC. However, for curved bismuthene geometries,
the Bi 6pz orbital should be included in the theory. We do this
as follows.

Our generalized tight-binding model Hamiltonian is of the
form

Hiαs,i′α′s′ = Hi
α,α′δi,i′δs,s′ + HNN

iα,i′α′δs,s′

+ HSO
αs,α′s′δi,i′ + HR

αs,α′s′δi,i′ , (1)

where α and α′ denote the Bi 6px, 6py, 6pz and, 6s valence
orbitals of atoms i and i′, s and s′ are spin indices, Hi

α,α′ is
the on-site orbital part of the Hamiltonian matrix for atom i
omitting the spin-orbit and Rashba contributions, HNN

iα,i′α′ is the
Hamiltonian matrix element between orbital α′ on Bi atom i′
and orbital α on Bi atom i that is a nearest neighbor of atom i′,
HSO is the atomic spin-orbit interaction and HR is the Rashba
Hamiltonian. Following the reasoning in Ref. [12], only the
intra-atomic matrix elements of HSO and HR are considered
here.

The on-site orbital Hamiltonian matrix elements Hi
α,α′ are

given in Table I. Hi
α,α′ has energy eigenvalues Es and Er

corresponding to the orbital states |6s〉 and |6pr〉 = a|6px〉 +
b|6py〉 + c|6pz〉, respectively, where r̂ = (a, b, c) is the unit
vector normal to the surface of the curved topological insula-
tor at Bi atom i. The other two eigenvalues of Hi

α,α′ correspond
to the 6p states that are orthogonal to |6pr〉 and are both zero.
Thus |6pr〉, the 6p orbital whose symmetry axis is parallel to
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TABLE II. Nearest-neighbor Hamiltonian matrix elements HNN
iα,i′α′ in Eq. (1). In terms of the coordinates of the primed

and unprimed neighboring atoms, d = ((x′ − x)2 + (y′ − y)2 + (z′ − z)2)
1
2 ; l = (x′ − x)/d; m = (y′ − y)/d; n = (z′ − z)/d . Fitting param-

eter values are � = −0.81(1 − 1.583δ + 0.821δ2 ) eV, �′ = −1.00(1 − 1.087δ + 0.313δ2) eV, �′′ = −1.635(1 − 0.509δ − 0.187δ2 ) eV,

� = 0.55(1 − 1.361δ + 0.634δ2 ) eV, and δ = d − 3.089 Å.

HNN
iα,i′α′ 6s′ 6p′

x 6p′
y 6p′

z

6s � −�′l −�′m −�′n
6px �′l �′′l2 + �(1 − l2) (�′′ − �)lm (�′′ − �)ln
6py �′m (�′′ − �)lm �′′m2 + �(1 − m2) (�′′ − �)mn
6pz �′n (�′′ − �)ln (�′′ − �)mn �′′n2 + �(1 − n2)

the local normal to the surface of curved topological insulators
is shifted in energy relative to the other 6p orbitals by an
amount Er , emulating the shift of the 6pz orbital relative to
6px and 6py for planar bismuthene on SiC [12].

The nearest-neighbor Hamiltonian matrix elements HNN
iα,i′α′

are given in Table II. For δ = 0, they have been fitted to
the band structure [12] of planar bismuthene on SiC. For
geometries other than that of planar bismuthene on SiC, they
are assumed to depend on the Bi-Bi bond orientations as in the
Slater-Koster model [34] and to scale with the bond lengths as
in extended Hückel theory [35].

The intra-atomic matrix elements of the spin-orbit Hamil-
tonian can be approximated as [36,37]

HSO
αs,α′s′ = ζl

〈Cαs|S · L|Cα′s′〉
h̄2 , (2)

where S and L are the spin and orbital angular momentum
operators, and Cα is the cubic harmonic that corresponds to
orbital state α. ζl is the spin-orbit interaction strength and l
is the orbital angular momentum quantum number [38]. The
matrix 〈Cαs|S · L|Cα′s′〉/h̄2 is given in Table III. ζl is regarded
here as a model fitting parameter with value ζ1 = 1.8 eV for
the Bi 6p valence orbitals.

Rashba phenomena [39,40] are due to spin-orbit coupling
in systems whose symmetry is broken by the presence of
a surface or interface. The form of the intra-atomic Rashba
Hamiltonian matrix elements HR

αs,α′s′ for the present system
can be deduced by considering a contribution to ∇V (r) in
the general spin-orbit Hamiltonian [41] h̄

(2mc)2 σ · ∇V (r) × p
that points in the direction of the local normal to the curved
bismuthene surface. The resulting matrix elements are given
in Table IV.

The present model is a generalization of our previous
model [15] of the planar large gap topological insulator

TABLE III. Matrix elements of S·L
h̄2 that enter the intra-atomic

spin-orbit Hamiltonian matrix, Eq. (2). All matrix elements involving
the atomic s orbital are zero.

〈Cα s|S·L|Cα′ s′〉
h̄2 6p′

x ↑′ 6p′
x ↓′ 6p′

y ↑′ 6p′
y ↓′ 6p′

z ↑′ 6p′
z ↓′

6px ↑ 0 0 −i/2 0 0 1/2
6px ↓ 0 0 0 i/2 −1/2 0
6py ↑ i/2 0 0 0 0 −i/2
6py ↓ 0 −i/2 0 0 −i/2 0
6pz ↑ 0 −1/2 0 i/2 0 0
6pz ↓ 1/2 0 i/2 0 0 0

monolayer bismuthene on SiC. For a monolayer of bis-
muth atoms arranged on the planar honeycomb lattice of
bismuthene, this basic tight-binding model provides a good
approximation to the low-energy electronic structure of the
planar topological insulator monolayer bismuthene on SiC,
similar to that given by our previous model [15]. Specifically,
it yields a low-energy band structure of infinite planar 2D
bismuthene on SiC close to that shown in Fig. 1 of Ref. [15],
including the conduction band minimum at the � point, the va-
lence band maximum at K , the 0.86 eV indirect band gap, and
the 0.46 eV Rashba splitting of the valence band maximum.
For planar zigzag and armchair bismuthene nanoribbons, this
model also yields band structures similar to those in Fig. 2
of Ref. [15], including spin-polarized edge states in the bulk
band gap with spin-momentum locking, all as expected for
nanoribbons of 2D topological insulators.

IV. TRANSPORT

To study the spin Hall effect and spin filtering of curved
bismuthene-based topological insulators, we carry out elec-
tronic transport calculations within the Landauer formalism
[42,43] according to which the two terminal source-drain
conductance G of a nanostructure at zero temperature in the
linear response regime is given by

G = e2

h
T (EF), (3)

where the electron transmission probability through the
nanostructure at the Fermi energy is

T (EF) =
∑

α,i,β, j

|tβ, j,α,i(EF)|2 vβ, j

vα,i
. (4)

Here tβ, j,α,i is the amplitude for electron scattering at the
Fermi energy from state α of 1D lead i connected to the elec-
tron source to state β of 1D lead j connected to the electron
drain reservoir. vα,i and vβ, j are the corresponding subband
Fermi velocities.

Since in this paper we are interested in the spin Hall ef-
fect and spin filtering, we consider spin-unpolarized electrons
entering the device through the electron source contact and
calculate the spin-resolved probabilities T↑ and T↓ of spin-up
and spin-down electrons exiting through the drain contact at
the Fermi energy. T↑ and T↓ are obtained by restricting the sum
over β in Eq. (4) to spin-up and spin-down states, respectively,
while including both the spin-up and spin-down states in the
sum over α. The axis of quantization is the z axis.
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TABLE IV. Matrix elements of the intra-atomic Rashba Hamiltonian HR, Eq. (1). Here r̂ = (a, b, c) is the unit vector normal to the surface
of the curved topological insulator at Bi atom i.The fitting parameter value is R = 0.395 eV.

HR
αs,α′s′ 6s′ ↑′ 6s′ ↓′ 6p′

x ↑′ 6p′
x ↓′ 6p′

y ↑′ 6p′
y ↓′ 6p′

z ↑′ 6p′
z ↓′

6s ↑ 0 0 −iRb Rc iRa −iRc 0 iR(b + ia)
6s ↓ 0 0 −Rc iRb −iRc −iRa iR(b − ia) 0
6px ↑ iRb −Rc 0 0 0 0 0 0
6px ↓ Rc −iRb 0 0 0 0 0 0
6py ↑ −iRa iRc 0 0 0 0 0 0
6py ↓ iRc iRa 0 0 0 0 0 0
6pz ↑ 0 −iR(b + ia) 0 0 0 0 0 0
6pz ↓ −iR(b − ia) 0 0 0 0 0 0 0

The scattering amplitudes tβ, j,α,i are obtained by solving
numerically the Lippmann-Schwinger equation:

|ψ〉 = |φα,i
◦ 〉 + G◦(E )V |ψ〉. (5)

Here |φα,i
◦ 〉 is an eigenstate of the ith ideal 1D lead that is

decoupled from the nanostructure consisting of the quantum
dot and conducting contacts (if those are present), G◦(E ) is
the sum of the Green’s functions of the nanostructure and
1D leads if they are decoupled from the nanostructure, and
|ψ〉 is the corresponding exact scattering eigenstate of the
coupled system. V is the coupling Hamiltonian between the
nanostructure and the ideal 1D leads. A methodology for
numerically solving Lippmann-Schwinger equations such
as Eq. (5) within a tight-binding framework is described in
Appendix A of Ref. [44].

In the present paper, the ideal leads are represented by 1D
tight-binding chains. Each site of each chain is assumed to
have six orbitals, including spin. The on-site energies of these
chain orbitals are the same as the corresponding atomic orbital
energies Hi

αα of the 6px, 6py, and 6pz orbitals of the Bi atoms
described by the Hamiltonian Eq. (1). Only nearest-neighbor
Hamiltonian matrix elements between like orbitals of the 1D
chains and between the chains and adjacent Bi atoms of the
nanostructure are assumed to be nonzero. For simplicity, all
these nearest-neighbor Hamiltonian matrix elements are as-
sumed to have the same value t = −2.0 eV.

V. RESULTS

A. Predictions of model of Sec. III for ideal Bi105 dome

The predictions of the tight-binding model described in
Sec. III for a curved topological insulator whose structure is
that of an ideal 105 atom bismuthene fullerene dome formed
by truncating a 180-atom bismuthene sphere without any sub-
sequent relaxation of the atomic geometry are shown in Figs. 2
and 3. The geometry considered is shown in Fig. 2 where the
electron source (drain) electrode is attached to the light blue
(chartreuse) colored bismuth edge atoms.

The calculated electronic spectrum of this structure when
the bismuthene is decoupled from the contacts is shown in
the inset of Fig. 3. The states in the spectral gap of the 180-
atom bismuthene fullerene (marked in red) are edge states
that are confined to the vicinity of the edge of the 105-atom
bismuthene fullerene dome.

As has been discussed by Sheng et al. [45], it is possible
for a strong Rashba coupling to close the topological gap in
some systems. However, it has been well established both the-
oretically and experimentally that the Rashba term, although
large, is not sufficient to close the topological gap in planar
bismuthene on SiC [11–19]. Since the Rashba effect has a
similar origin (the Bi-Si interaction) in our model system as
in the planar bismuthene on SiC, it is reasonable to expect the
Rashba effect not to close the topological gap in the present
system either.

When contacts are attached to the 105-atom bismuthene
fullerene dome as shown in Fig. 2 and an electric current
flows, the calculated electron spin polarizations induced on

z 

source 

drain 

FIG. 2. View of the concave side of an ideal 105 atom bis-
muthene dome with zigzag edge formed by truncating a 180-atom
spherical bismuthene fullerene without subsequent relaxation. Light
blue (chartreuse) atoms are edge atoms connected directly to the
electron source (drain). Dark blue atoms are not contacted directly by
either the source or drain. The electrons entering the device from the
source electrode are initially spin-unpolarized. Red arrows indicate
the relative magnitudes and directions of the electron spin polariza-
tions induced on the individual atoms by an electron flux through the
structure from the electron source to the drain if the Fermi energy
is 0.4 eV above the valence band edge of bulk bismuthene on SiC.
The black arrow is the z-axis. Image prepared using MACMOLPLT

software [33].

235420-4



NEARLY PERFECT SPIN FILTERING IN CURVED … PHYSICAL REVIEW B 102, 235420 (2020)

0

1

2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

S
pi

n 
R

es
ol

ve
d 

T
ra

ns
m

is
si

on

Fermi Energy (eV)

0
2
4
6
8

10

-1 0 1 2

S
ta

te
s

Energy (eV)

BiSiC gap

Bi180 gap

T↑ 

T↓ 

FIG. 3. Spin-resolved Landauer transmission probabilities T↑
and T↓ of spin-up and spin-down electrons exiting through the drain
contact of the device shown in Fig. 2 at the Fermi energy, assuming
that spin unpolarized electrons enter from the electron source. Inset:
Histogram of eigenstates of the Hamiltonian of the device shown in
Fig. 2 when it is decoupled from the leads. The band gap predicted
by the present model for planar bismuthene on SiC is shown in blue.
The spectral gap predicted by the model for the spherical 180-atom
bismuthene fullerene geometry is shown in red. The states in the
spectral gap are edge states.

the Bi atoms by the electric current are shown by red arrows
in Fig. 2. Here the Fermi energy is at 0.4 eV in the inset of
Fig. 3, i.e., within the spectral gap of the complete-180 atom
spherical bismuthene fullerene. The electrons entering the de-
vice from the source electrode are initially spin-unpolarized.
However, as seen in Fig. 2, strong spin polarizations are
induced by the electric current on the bismuth atoms at the
edges of the 105 Bi atom dome between the source and drain
electrodes, as expected for the spin polarization induced by
electric currents carried by edge states in QSH systems.

Notice that in Fig. 2 the spin polarizations point radially
outward from the center of the dome for electrons traveling
counterclockwise along the edge of the dome from source
to drain but radially inward for electrons traveling clockwise
along the edge. Because of this, for the arrangement of elec-
trodes shown in Fig. 2, the spin polarizations of both the
clockwise- and counterclockwise-moving edge states point in
approximately the same direction (i.e., the negative z direc-
tion) where these two edges feed into the drain electrode. In
other words, both of the edge states feed spin-down electrons
into the drain contact. Thus all of the electrons entering the
drain electrode have approximately spin-down polarization.
Consequently, this two-terminal curved topological insulator
device functions as a nearly perfect spin filter.

This can be seen quantitatively in Fig. 3 where for Fermi
energies throughout most of the spectral gap of the 180-
atom bismuthene fullerene the spin-down transmission T↓ of
the 105 bismuth atom dome is close to 2 while the spin-
up transmission T↑ is close to zero. The maximum value of
spin polarization of the electrons entering the drain (defined
as T↓/(T↓ + T↑)) is ∼0.99 in Fig. 3. [More sophisticated
measures of the spin polarization are in general possible, as
described, for example, by Nikolić et al. [46] However, in

this paper our objective is to show that curved topological
insulators can function as nearly perfect spin filters. For this
purpose, it is sufficient to demonstrate that T↓/(T↓ + T↑) is
close to 1 (in some range of Fermi energy values) since
this implies that the z component of the spin polarization
of electrons entering the drain is much larger than the other
components. Our calculations accomplish this.]

By contrast, a planar 2D two-terminal bismuthene on
SiC topological insulator device does not exhibit such spin
filtering in a two-terminal arrangement because edge states
traveling on opposite edges always have opposite spin polar-
izations and the directions of those spin polarizations cannot
become aligned.

The structure of the bismuthene dome considered in Figs. 2
and 3 is idealized, being an unrelaxed truncated portion of the
180-atom bismuthene fullerene sphere. Also the tight binding
model used (that described in Sec. III) is a generalization of
the tight-binding models of infinite 2D bismuthene on SiC; no
adjustment of the tight binding parameters due to the presence
of the edge is included in that model.

B. Predictions of improved model for Bi105Si105H15 dome

We now consider the more realistic Bi105Si105H15 dome
nanostructure shown in Fig. 1, taking into account the relaxed
geometry as well as the influence of the Si and H on the
electronic structure of the bismuthene. We also provide an im-
proved treatment of the Bi105Si105H15 dome’s edge electronic
structure. We accomplish this by modifying the tight-binding
model described in Sec. III so as to bring the bismuthene DOS
that the model predicts near the Fermi level [in the absence of
the spin-orbit and Rashba terms of the Hamiltonian, Eq. (1)]
into agreement with that predicted by our DFT-based calcula-
tions for the relaxed Bi105Si105H15 dome nanostructure.

The black curve in Fig. 4(a) shows the bismuthene DOS for
the Bi105Si105H15 dome computed within DFT while the red
curve shows the corresponding DOS predicted by the model
presented in Sec. III omitting the spin-orbit and Rashba terms
from the Hamiltonian, Eq. (1). A striking difference between
these two curves is the presence of the strong peaks in the red
curve near E = 0.15 and 0.3 eV, within the prominent gap in
the DFT DOS (black curve) that extends from the Fermi level
(E = 0) to E ∼ 0.57 eV. The other peaks of the red curve in
Fig. 4(a) are in remarkably good agreement with the peaks of
the black curve, especially in view of the fact that no attempt
was made to fit the model in Sec. III to DFT calculations for
the Bi105Si105H15 dome. The anomalous peaks of the red curve
in Fig. 4(a) (those near E = 0.15 and 0.3 eV) are due to edge
states. We note in passing that the existence of the edge states
near E = 0.15 and 0.3 eV does not imply that the system
supporting them is a topological insulator in the absence of
spin-orbit coupling since in the absence of spin-orbit and
Rashba terms it does not exhibit a spin Hall effect.

The presence of the anomalous edge-state peaks of the red
curve in Fig. 4(a) (near E = 0.15 and 0.3 eV) suggests that the
model presented in Sec. III does not describe the electronic
structure of the edge of Bi105Si105H15 dome adequately. We
find that the DOS predicted by the tight-binding model can be
brought into good agreement with that of DFT if we incorpo-
rate into the model an effective edge potential such that the
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FIG. 4. Calculated bismuth density of states versus energy mea-
sured from the Fermi level (E = 0) for the relaxed Bi105Si105H15

dome shown in Fig. 1. (a) Black curve: Prediction of density
functional theory (B3PW91 functional with Lanl2DZ effective core
potential and basis sets). Red curve: Prediction of the tight-binding
model described in Sec. III omitting the spin-orbit and Rashba terms
from the Hamiltonian, Eq. (1). (b) Black curve: As in (a). Red curve:
Prediction of the tight-binding model described in Sec. III omitting
the spin-orbit and Rashba terms from the Hamiltonian, Eq. (1), but
with the on-site energies of all the orbitals of the 45 Bi atoms closest
to the edge of the structure upshifted by 1.4 eV. (c) Red curve: As in
(b) but including the spin-orbit and Rashba terms in the Hamiltonian.

energies Hi
α,α of all of the atomic orbitals of the 45 Bi atoms

that are closest to the edge of the Bi105Si105H15 dome are
shifted upward in energy by 1.4 eV. The tight-binding model
modified in this way (still omitting the spin-orbit and Rashba
terms) yields the DOS plotted in red in Fig. 4(b). As can be
seen in Fig. 4(b), a gap has opened in the DOS predicted by
the model, matching that predicted by DFT [the black curve in
Fig. 4(b)] and reasonably good agreement between the other
low energy features of the DOS predicted by DFT and the
modified model is retained. Interestingly, varying the values of
the other parameters of the model in Sec. III and/or changing
the profile of the edge potential from that described above
does not yield significantly better agreement between the DOS
predicted by the modified model and that yielded by DFT than
that displayed in Fig. 4(b).

Importantly, we conclude that near the edge an effective
edge potential should be included in our tight-binding Hamil-
tonian whereas the tight-binding hopping parameters do not
require substantial modification. The physical reasons why the
hopping parameters do not require adjustment appear to be
that (i) our tight-binding hopping parameters include the pz

Bi valence orbitals in addition to the px and py orbitals that
are sufficient to describe planar bismuthene on SiC, (ii) The
Slater-Koster-type dependence of the hopping parameters on
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FIG. 5. (a) Blue curve: Calculated spin polarization T↓/
(T↓ + T↑)) of electrons entering the electron drain electrode from
the Bi105Si105H15 dome versus Fermi energy, assuming that spin-
unpolarized electrons enter the Bi105Si105H15 dome from the source.
The source and drain electrodes are connected to the bismuth
atoms of the dome as in Fig. 2. The model Hamiltonian is as for
Fig. 4(c). The energies of the eigenstates of the Hamiltonian when
the Bi105Si105H15 dome is disconnected from the leads are shown
by the red tick marks at the top of the figure. The edge states are
indicated by asterisks (�). (b) Red curve: Calculated conductance
G = (T↓ + T↑)e2/h of the Bi105Si105H15 dome versus Fermi energy.

the Bi-Bi bond orientation implemented in Table II appears to
be adequate for this system, and (iii) the on-site Hamiltonian
as parameterized in Table I succeeds in appropriately captur-
ing the Bi p-orbital level splitting induced by the coupling
between the neighboring Bi and Si atoms even for the curved
bismuthene geometry.

Reintroducing the spin-orbit and Rashba terms of Eq. (1)
into the modified tight-binding model yields the DOS shown
in red in Fig. 4(c). That the spin-orbit and Rashba terms have
resulted in the presence of electronic states in the energy range
of the spectral gap of Fig. 4(b) is not surprising since the
magnitude of the spin orbit coupling parameter ζ1 = 1.8 eV
in Eq. (2) substantially exceeds the size of the spectral gap
in Fig. 4(b). Nevertheless, we regard the modification of the
tight-binding model prompted by our comparison between
the DOS of DFT and the model in the absence of spin orbit
coupling as a significant improvement of the model as applied
to the Bi105Si105H15 dome and especially the properties of its
edge. This becomes apparent when one considers spin filtering
by the Bi105Si105H15 dome, as will be explained next.

In Fig. 5(a), the blue curve shows the calculated spin po-
larization of electrons injected into the drain electrode from
the Bi105Si105H15 dome at the Fermi energy E in the linear re-
sponse regime, assuming that the electrons entering the dome
from the source electrode are spin unpolarized. The source
and drain electrodes are connected to the bismuth atoms of the
dome as in Fig. 2. The energies of the Hamiltonian eigenstates
of the dome when it is disconnected from the leads are shown
by the red ticks at the top of Fig. 5(a). The eigenstates that
are edge states are marked by asterisks (�). Values of the spin
polarization as high as T↓/(T↓ + T↑) ∼ 0.93 can be seen in
Fig. 5(a). The mechanism responsible for the largest values
of the spin polarization is similar to that illustrated in Fig. 2,
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i.e., the spin polarizations associated with the electric currents
carried by the edge states point radially outward from the
the dome for electrons traveling counterclockwise along the
edge of the dome from source to drain but radially inward for
electrons traveling clockwise along the edge. Because of this,
the spin polarizations of the clockwise- and counterclockwise-
moving edge become approximately aligned where these two
edges feed into the drain electrode and the dome functions as
a nearly perfect spin filter. The eigenstates of the Hamiltonian
that are not edge states [indicated in Fig. 5(a) by red ticks
without asterisks] do not support this spin-filtering mecha-
nism. Thus, when the Fermi level is close in energy to any
of these nonedge states, the value of the spin polarization of
the electrons entering the drain is sharply reduced. Notice that
unlike in Fig. 3 where all the states in the bulk spectral gap are
edge states, in Fig. 5(a) the edge states are interspersed with
nonedge states that are in fact the majority. However, since
the nonedge states have very small amplitudes on the bismuth
atoms at the edge of the dome, they couple very weakly to the
electrodes and consequently the transport resonances associ-
ated with them are narrow. Because of this, the influence of the
edge states and the strong spin filtering associated with them
predominates at energies between the spin polarization dips
associated with the nonedge states even at energies between
nonedge states where there is no edge eigenstate.

This is further clarified by considering the calculated
conductance G = (T↓ + T↑)e2/h of the Bi105Si105H15 dome
versus Fermi energy E shown by the red curve in Fig. 5(b).
This plot shows sharp conductance resonances or antireso-
nances at the energies of the nonedge Hamiltonian eigenstates.
However, no such features in the conductance are visible at the
energies of the edge eigenstates. This is due to the very strong
coupling of the edge eigenstates to the leads that results in
very strong broadening of the edge eigenstates. This in turn
means that the edge eigenstates influence the spin transport
strongly over wide energy ranges that are interrupted by nar-
row regions where the effects of the nonedge eigenstates are
crucial.

VI. SUMMARY

We have theoretically investigated the properties of curved
nanostructures derived from 2D topological insulators, a topic
that has not previously received experimental or theoretical
attention. We have shown that curved geometries make it
possible to manipulate the spin polarizations of electron edge
states in ways that are not possible for planar systems, open-
ing the way for the realization of previously unanticipated
devices. In particular, we have shown that it is possible to
bring the spin polarizations of electron edge states traveling
along opposite edges of curved nanostructures into alignment
and thus to realize nearly perfect two-terminal spin filters
operating in the absence of magnetic fields.

Our study has combined the construction and applica-
tion of appropriate tight-binding models and DFT-based

calculations. We generalized our previous tight-binding model
of the wide band-gap planar topological insulator bismuthene
on SiC to curved geometries. Our transport calculations based
on the resulting tight-binding model applied to an ideal spher-
ical bismuthene dome with a free zigzag edge showed this
model system to exhibit QSH physics: We showed this model
to support edge states propagating along the edge of the dome
within the bulk band gap of planar bismuthene on SiC. These
edge states have radially oriented spin polarizations that point
toward or away from the center of the dome, depending on
whether the edge state travels in the clockwise or counter-
clockwise direction. Thus, unlike for planar 2D topological
insulators (for which the directions of the spin polarizations of
the edge states are fixed), the directions of spin polarizations
of the edge states of the curved structure can vary, controlled
by the nanostructure’s geometry. Because of this, it is possible
for the spin polarizations of the clockwise and counterclock-
wise edge states traveling from the electron source electrode
to the drain to be parallel where the edge states enter the drain.
Thus, we predict that nearly perfect two-terminal spin filters
operating in the absence of magnetic fields can, in principle,
be constructed from curved topological insulators.

Our DFT-based calculations have addressed the question
whether chemically modified bismuthene domes exhibiting
such spintronic properties can be stable. We find that a bis-
muthene dome of 105 bismuth atoms with a zigzag edge
can be stabilized by the adsorption of a silicon atom to
each bismuth atom on the concave surface of the dome if
the edge silicon atoms are passivated with hydrogen. We
have carried out DFT-based calculations of the bismuth DOS
of this Bi105Si105H15 structure and have modified our tight-
binding model so its predicted DOS approximately matches
the corresponding DFT-based result. We find that the resulting
modified tight-binding model of Bi105Si105H15 exhibits both
edge states and nonedge states at energies in the bulk band
gap of planar bismuthene on SiC. However, our transport
calculations for this system predict the influence of the edge
states and the strong spin filtering mechanism associated with
them to predominate for several ranges of the Fermi energy,
including some Fermi energy ranges lying between the ener-
gies of consecutive nonedge states.

The results of our investigation show that curved nanos-
tructures based on 2D topological insulators should have
spintronic properties that differ qualitatively from those of
planar 2D topological insulators and that these distinctive
properties may have important practical applications. We have
identified a nanostructure that we predict to be stable and
to exhibit these properties. Based on our work, it is clear
that experimental and theoretical studies exploring this topic
further are warranted and would be of considerable interest.
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