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Spin polarization recovery and Hanle effect for charge carriers interacting
with nuclear spins in semiconductors

D. S. Smirnov ,1,* E. A. Zhukov ,1,2 D. R. Yakovlev ,2,1 E. Kirstein ,2 M. Bayer ,2,1 and A. Greilich 2

1Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
2Experimentelle Physik 2, Technische Universität Dortmund, 44221 Dortmund, Germany

(Received 10 September 2020; revised 14 November 2020; accepted 17 November 2020; published 9 December 2020)

We report on theoretical and experimental study of the spin polarization recovery and Hanle effect for the
charge carriers interacting with the fluctuating nuclear spins in the semiconductor structures. We start the
theoretical description from the simplest model of static and isotropic nuclear spin fluctuations. Then we describe
the modification of the polarization recovery and Hanle curves due to the anisotropy of the hyperfine interaction,
finite nuclear spin correlation time, and the strong pulsed spin excitation. For the latter case, we predict the
appearance of the resonant spin amplification in the Faraday geometry and of the quantum Zeno effect. The set
of the experimental results for various structures and experimental conditions is chosen to highlight the specific
effects predicted theoretically. We show that the joint analysis of the spin polarization recovery and the Hanle
effect is a very valuable tool for addressing carrier spin dynamics in semiconductors and their nanostructures.
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I. INTRODUCTION

The discovery of the optical orientation in semiconductors
by G. Lampel in 1968 set the starting point of the optical spin
studies [1]. Since then, the spin of the charge carriers and
related mechanisms of its relaxation, have been the subject
of intense investigations [2,3]. These are important not only
from the fundamental point of view but also for the spintronics
applications.

Depending on the specifics of the semiconductor materi-
als and their heterostructures, one can study the carrier spin
dynamics by its response to the external influence, such as
electric or magnetic fields, temperature, the power and polar-
ization degree of the optical excitation. A variety of methods is
available for that: optical orientation [2], time-resolved pump-
probe schemes to measure short [4,5] or long time scales [6,7],
Hanle effect [8] and its extension for the pulsed excitation [9],
the spin inertia method [10,11], the spin noise spectroscopy
[12], etc.

Furthermore, intrinsic parameters, like the degree of the
carrier localization and the concentration of carriers, deter-
mine the degree of influence of concurrent mechanisms on
the spin dynamics [13]. For strongly localized carriers, the
significance of the spin-orbit interaction is reduced, while
the interaction with the nuclear spin bath becomes decisive
[14,15].

In this paper, we focus on two methods, where the mag-
netic field is used to impact the average spin polarization
under the depolarizing influence of the unpolarized nuclear
spin bath. Spin dynamics in zero or very weak magnetic fields
are determined by the hyperfine interaction. By applying the
transverse magnetic field (in respect to the spin orientation
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direction), the Hanle effect is observed. By contrast, the lon-
gitudinal magnetic field effectively decouples the carrier spins
and the nuclei and results in the increase of the spin polariza-
tion, which is described by the so-called polarization recovery
curve (PRC).

The first studies of the magnetic field effects on the electron
spins in the fluctuating nuclear surrounding were presented
in Refs. [14,16]. These were followed by the experimental
demonstrations of the PRC method used to determine the
effect of the fluctuating nuclear fields on the electron [17,18]
or hole [19,20] spins.

Here we consider the analysis of both the PRC and Hanle
methods being applied together and demonstrate the added
value of such an approach. We provide a theoretical and exper-
imental study and analyze an extended variety of mechanisms
controlling PRC and Hanle signals’ relations.

The paper is organized as follows: The theoretical part
starts in Sec. II with discussion of the most basic influence
of the nuclear spin fluctuations on the spin dynamics. It is
then followed by the discussion of the different extensions.
These include the anisotropic hyperfine interaction in Sec. III
and finite nuclear spin correlation time in Sec. IV. In Sec. V
the additional effects caused by a pulsed excitation are con-
sidered. The experimental part is organized as follows: In
Sec. VI A we give a short description of the studied samples,
in Sec. VI B the experimental techniques used to measure the
Hanle and PRC are described, and Sec. VII presents the exper-
imental results and relates them to the specifics mechanisms.
In Sec. VIII we conclude the paper.

II. BASIC MODEL

Let us consider the basic central spin model (left inset
in Fig. 1) [21], which captures the essence of the spin po-
larization recovery and Hanle effects for localized charge
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FIG. 1. Spin polarization calculated after Eqs. (7a) (solid blue
curve) and (7b) (solid red curve) for transverse and longitudinal mag-
netic field, respectively. The dashed curves show the approximations
(11). The left inset shows the QD with randomly oriented nuclear
spins and a single electron spin. The right top and bottom insets
illustrate the spin precession with the frequency �tot (blue arrow)
in the Faraday and Voigt geometries, respectively.

carriers [15]. We consider a single localized electron (the
case of heavy holes is discussed in Sec. III) with the envelop
wave function �(r). The present theory also describes homo-
geneous ensembles of electrons, which are all in the same
conditions. The system Hamiltonian includes the hyperfine
interaction with the host lattice nuclei and spin interaction
with external magnetic field B:

H =
∑

i

Ai|�(Ri )|2υ0IiS + h̄�LS. (1)

Here S is the electron spin, i enumerates the nuclear spins
Ii located at positions Ri with the hyperfine interaction con-
stants Ai, υ0 is the unit cell volume, and �L = geμBB/h̄ is
the Larmor spin precession frequency of the electron with ge

being the effective electron g factor, μB the Bohr magneton,
and h̄ the reduced Planck constant. In this Hamiltonian we
assume the hyperfine interaction and the electron g factor to
be isotropic, which is usually the case for the electrons in
GaAs-like semiconductors. We neglect the nuclear Zeeman
splitting, because it is much smaller than the electron one (see
Sec. IV for its possible effects). The Hamiltonian (1) can be
rewritten as

H = h̄(�N + �L )S, (2)

where

�N = 1

h̄

∑
i

Ai|�(Ri )|2υ0Ii (3)

is the resident charge carrier spin precession frequency in
the Overhauser field. We recall that here we consider the
localized electrons, while the holes will be considered in the
next section.

In the absence of nuclear spin polarization, the nuclear
field is zero on average. However, due to the finite number
of nuclei interacting with the localized electron, there are
stochastic nuclear spin fluctuations, which are characterized

by the probability distribution function

F (�N ) = 1

(
√

πδ)3
exp

(
−�2

N

δ2

)
, (4)

where δ determines the dispersion: 〈�2
N 〉 = 3δ2/2, with the

angular brackets denoting the statistical averaging. In the the-
oretical analysis we use the angular frequencies only. For the
independent and randomly oriented nuclear spins from Eq. (3)
we obtain the typical electron spin precession frequency in the
nuclear field

δ = υ0

h̄

√
2

3

∑
i

A2
i |�(Ri )|4Ii(Ii + 1). (5)

Usually, the number of nuclei in the electron localiza-
tion volume is large. Each nuclear spin precesses with the
frequency Ai|�(Ri )|2υ0/h̄, which is much smaller than δ.
Therefore, the nuclear spins can be considered as “frozen”
on the time scale of the electron spin precession [14,22].
As a result, the electron spin dynamics can be described as
precession with the constant frequency �tot = �N + �L. The
spin dynamics S(t ) should be averaged over the distribution
function (4) to obtain the average signal for many repeated
measurements or many localized electrons [14].

We consider the spin polarization S0 created at t = 0 along
the z axis. After spin initialization, the spin precession begins.
Due to the random magnitude of the nuclear field, the electron
spin components perpendicular to �tot dephase during the
time T ∗

2 ∼ 1/δ. At longer times, the average spin is con-
tributed only by the spin component parallel to �tot:

〈Sz〉 =
〈
�2

tot,z

�2
tot

〉
S0. (6)

The two other spin components are zero on average: 〈Sx〉 =
〈Sy〉 = 0. In the model under consideration the average spin
in Eq. (6) does not decay with time. In every real system, ad-
ditional mechanisms unrelated with the hyperfine interaction,
such as spin-orbit and electron-phonon interactions [23,24],
destroy it during a spin relaxation time, which we denote τs.
It will be important for the results described in Sec. IV and
will be discussed there in more detail. Here we assume that
τs � 1/δ, so Eq. (6) holds at 1/δ � t � τs.

The Hanle and PRC are given by the dependence of the
average spin 〈Sz〉 on the magnetic field in Voigt and Faraday
geometries, respectively (the light propagation axis coincides
with the direction of the spin polarization z). For convenience,
we denote the ratio 〈Sz〉/S0 as H (�L ) and P(�L ) for these two
cases, respectively. Calculation of the average in Eq. (6) yields

H (�L ) = δ2

2�2
L

[
1 − δ

�L
D

(
�L

δ

)]
, (7a)

P(�L ) = 1 − 2H (�L ), (7b)

where D(x) = exp(−x2)
∫ x

0 exp(y2)dy is the Dawson integral.
Noteworthy, in this model, P(�L ) + 2H (�L ) = 1. The corre-
sponding curves are shown by solid lines in Fig. 1. One can
see that for zero magnetic field

〈Sz〉 = S0/3. (8)
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In the limit of the strong transverse magnetic field one has
for the Hanle curve

〈Sz〉 = 0. (9)

Qualitatively, in the strong transverse magnetic field, �L � δ,
the total spin precession frequency �tot is parallel to the mag-
netic field, so its z component vanishes, see upper right inset
in Fig. 1. In this case the initial spin polarization S0 dephases
completely, and Eq. (7a) yields zero.

In the limit of a strong longitudinal magnetic field, the total
spin precession frequency is parallel to the z axis, lower right
inset in Fig. 1. So, for �L � δ, one has

〈Sz〉 = S0. (10)

In this case, the initial spin polarization does not dephase and
Eq. (7b) yields Eq. (10).

In zero magnetic field, one can say that the nuclear field can
be parallel either to the x, y, or z axis. In the first two cases the
spin polarization dephases completely, while for the latter one
it does not dephase. As a result one obtains 1/3 of the initial
spin polarization, Eq. (8).

The Hanle and PRC given by Eqs. (7) can be approximated
by the Lorentzians:

H (�L ) ≈ 2

3

δ2

2δ2 + �2
L

, (11a)

P(�L ) ≈ 1

3

2δ2 + 3�2
L

2δ2 + �2
L

. (11b)

These approximations are shown in Fig. 1 by the dashed
curves and agree very well with the exact calculations (the
maximum difference is of the order of 1%).

In this section, we provided the basic description of the
Hanle and polarization recovery effects. In the following sec-
tions, we introduce various generalizations of this model.

III. ANISOTROPIC HYPERFINE INTERACTION

In Sec. II we assumed that the distribution function of the
spin precession frequency �N is isotropic, Eq. (4). However,
for example, in GaAs type semiconductors for holes in the
� valley [15] and for electrons in the X valley [25,26] the
hyperfine interaction is anisotropic. Generally, the random
nuclear field is described by the distribution function

F (�N ) = 1

π3/2δxδyδz
exp

(
−�2

N,x

δ2
x

− �2
N,y

δ2
y

− �2
N,z

δ2
z

)
, (12)

where δx, δy, and δz are independent parameters.
Let us consider δx = δy = δ and δz = λδ with λ being the

anisotropy parameter, which is relevant for heavy holes. In
zero magnetic field, from Eqs. (6) and (12) we obtain the
dependence of the spin polarization 〈Sz〉 on the anisotropy
parameter λ [27]

〈Sz〉
S0

=

⎧⎪⎪⎨
⎪⎪⎩

λ2(
√

λ2−1−arctan
√

λ2−1)
(λ2−1)3/2 , λ > 1

1/3, λ = 1
λ2(−

√
1−λ2+arctanh

√
1−λ2 )

(1−λ2 )3/2 , λ < 1

, (13)

FIG. 2. The spin polarization in zero magnetic field, �L = 0,
calculated after Eq. (13) as a function of the anisotropy parameter
λ. The schematics show the distributions of the random nuclear field
for the corresponding values of λ in the coordinate frame shown in
the inset, see Eq. (12).

the cases of λ < 1 and λ > 1 can be obtained one from
another by the analytic continuation. Note the difference be-
tween arctan(x) and arctanh(x) functions. This dependence
is shown in Fig. 2. The spin polarization monotonously in-
creases from 0 to 1 as λ varies from 0 to ∞.

In the limit λ � 1, the nuclear field is distributed in the
(xy) plane (see the corresponding inset in Fig. 2), so the av-
erage spin polarization is zero, similarly to the case of strong
transverse magnetic field. In the limit λ � 1, the nuclear field
is parallel to the z axis (see the corresponding inset in Fig. 2),
so 〈Sz〉 = S0, similarly to the strong longitudinal magnetic
field. In the case of λ = 1 one has 〈Sz〉 = S0/3, in agreement
with Eq. (8) for the isotropic case.

The Hanle and PRC can be described analytically in the
case of the strong anisotropy. In the limit λ � 1, we obtain

H (�L ) = λ2[ln(2/λ) − 1] exp

(
−�2

L

δ2
z

)
� 1, (14a)

P(�L ) = |�L|
δ

{
sin

( |�L|
δ

)
Ci

( |�L|
δ

)

+ cos

( |�L|
δ

)[
π

2
− Si

( |�L|
δ

)]}
, (14b)

where Si(x) and Ci(x) are sine and cosine integral functions,
respectively. These expressions are shown in Fig. 3(a) by blue
and red dashed curves. One can see that in this limit the spin
polarization in zero magnetic field is small: 〈Sz〉/S0 � 1, as
discussed above. The typical width of both curves is of the
order of δ. In this limit the Hanle curve is Gaussian, while the
PRC is similar to the sharp Lorentzian form. The solid curves
in Fig. 3(a) show the numerical calculations after Eqs. (6) and
(12) for λ = 0.1 for comparison.

In the opposite limit of λ � 1, we find the approximate
expressions

H (�L ) = 1 − √
π

|�L|
δz

exp

(
�2

L

δ2
z

)
erfc

( |�L|
δz

)
, (15a)

P(�L ) = 1 − π

2λ
exp

(
−�2

L

δ2
z

)
≈ 1. (15b)
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(a)

(b)

FIG. 3. (a) Hanle and PRC (red) calculated after Eq. (6) for the
parameters δx = δy = δ and δz = 0.1δ (λ = 0.1). The dashed curves
show Eqs. (14). (b) The same curves for δx = δy = δ and δz = 10δ

(λ = 10) and approximations (15).

These results are shown in Fig. 3(b). The typical width of
the curves is of the order of δz = λδ � δ [note the difference
in the scales of the horizontal axes in panels (a) and (b)]. The
shapes of the curves are opposite to the previous limit: PRC
is Gaussian, and Hanle curve is sharp, as one can see from
Eqs. (15).

Generally, one can say that the polarization recovery and
suppression require �L to be larger than the largest parameter
among δx, δy, and δz. One can describe in a similar way the
cases of δx �= δy = δz or δy �= δx = δz. This situation is rele-
vant for electrons in the X valley. In (In,Al)As/AlAs quantum
dots (QDs), the lowest state of the conduction band can belong
to one of the two X valleys oriented along [100] and [010]
crystallographic axes [28]. In this case, the hyperfine interac-
tion is stronger along the valley axis than along the two other
directions [26]. The Hanle curve is anisotropic and its width
depends on the relative orientation of the magnetic field and
the valley direction. If the two in-plane X valleys are equally
populated, this anisotropy can be hidden in experiment. But
strain applied along [100] or [010] axis can lead to the valley
splitting and preferential occupation for one of them, which
will uncover the hidden anisotropy.

Experimentally, electrons and holes can coexist in the same
sample [29]. Provided they are independent, their contribu-
tions to the Hanle and PRC should be summed up. It is

important to discuss the relative signs of these two contribu-
tions to the observed spin signals. We assume that the spin
polarization is created resonantly using the optical orientation
[30]. Afterwards the spin polarization can be probed via ellip-
ticity of Faraday rotation of linearly polarized probe pulses.
Due to the optical selection rules, only one of the electron
and hole spin components interacts with the light of the given
helicity. This determines the signs of spin orientation and
the ellipticity signal both for electrons and holes [31]. As a
result, the ellipticity has always the same sign for electrons
and holes. The sense of the Faraday rotation is determined by
the detuning of the probe pulses from the optical resonance of
the QDs, and it is the same for the same sign of the detuning.
Due to the inhomogeneous broadening in the ensembles of
localized electrons and holes, they can provide the Faraday
rotation angle both of the same and opposite signs.

To summarize this section, the anisotropy of the hyperfine
interaction can lead to the suppression of either Hanle or
polarization recovery effect and to the change of the shapes
of these dependencies. The widths of these curves are of the
same order and are determined by the largest component of
the nuclear field.

IV. NUCLEAR SPIN CORRELATION TIME

In the previous sections, we limited ourselves to the model
of frozen nuclear spin fluctuations. Generally, the spin of an
electron obeys the Bloch equation

dS
dt

= [�N (t ) + �L] × S − S
τs

, (16)

where τs is the spin relaxation time introduced in Sec. II.
Equation (16) implies that the electron longitudinal (T1) and
transverse (T2) spin relaxation times are equal. The average
spin polarization is given by

〈Sz〉 ≡
∫ ∞

0
Sz(t )

dt

τs
. (17)

If the time dependence of �N (t ) can be neglected and
τsδ � 1, this definition coincides with the average used in the
previous sections, and the corresponding results are valid. If
by contrast the spin relaxation time τs is much shorter than
1/δ, there is no polarization recovery effect, and the Hanle
curve H (�L ) has a simple Lorentzian form with the width
1/τs.

In this section we will study the role of the finite nuclear
spin correlation time τc under the assumption of τsδ � 1 (for
the isotropic hyperfine interaction). Typically, τc is also longer
than the typical electron spin precession period (1/δ). The
nuclear spin dynamics can be caused by the Knight field of
the electrons, by the nuclear dipole-dipole interaction, or by
the interaction of the nuclear quadrupole moment with the
strain and random electric fields in the structure [15,32,33].

We consider the simplest model of nuclear spin dynamics,
which assumes random abrupt changes of the nuclear field
with the typical correlation time τc between the states de-
scribed by the distribution function (4) [10]. In this case the
noise of �N (t ) is the telegraph noise.

Solution of Eq. (16) averaged over the nuclear fields can be
found using the Fourier transform [34,35]. The average spin
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defined by Eq. (17) is given by the Fourier component at zero
frequency. The result for both the transverse and longitudinal
magnetic fields can be written in the form:

〈Sz〉
S0

= (1 − A)(A + τc/τs)τc/τs − B2/(1 + τs/τc)

(A + τc/τs)2 + B2
, (18)

where

A =
〈

�2
tot,x + �2

tot,y

�2
tot + (1/τs + 1/τc)2

〉
, (19a)

B = 1

�L

(
1

τc
+ 1

τs

)〈
�L�tot

�2
tot + (1/τs + 1/τc)2

〉
(19b)

with angular brackets denoting average over the distribution
function (4), as above.

For the longitudinal magnetic field we obtain B = 0 and

A = δ2

2�2
L

+
√

πδ

4�2
L

erfcx(ξ )

(
i
δ2

�L
− 2

τc
− 2

τs

)
+ c.c., (20)

where ξ = (1/τc + 1/τs)/δ − i�L/δ and erfcx(ξ ) =
exp(ξ 2) erfc(ξ ) is the scaled complementary error function.
Similarly, for transverse magnetic field we obtain

A = 1

2
− δ2

4�2
L

+
√

πδ3

8�3
L

erfcx(ξ )

×
[
−i + 2

�L

δ2

(
1

τc
+ 1

τs

)
+ 4i

(
�L

δ2

)2( 1

τc
+ 1

τs

)2]
+ c.c., (21a)

B =
√

π i

2�L

(
1

τc
+ 1

τs

)
erfcx(ξ ) + c.c. (21b)

Thus the Hanle and polarization recovery effects for the
finite nuclear spin correlation time can be described analyti-
cally, although the expressions are cumbersome.

In the limit τc � τs the nuclear spin dynamics can be
neglected, so Eq. (18) reduces to Eq. (7). For the moderate
nuclear spin correlation time, τs � τc � 1/δ, for zero mag-
netic field we find from Eq. (17)

〈Sz〉
S0

= τc

2τs
, (22)

which is small. Indeed, in this regime the spin polarization
disappears on average after a few nuclear field reorientations
at t ∼ τc, which is much shorter than τs. For transverse and
longitudinal magnetic fields we obtain

H (�L ) = τc

τs

�L/δ − D(�L/δ)

2(�L/δ)3 − �L/δ + D(�L/δ)
, (23)

P(�L ) = �2
L

�2
L + δ2τs/τc

, (24)

where the Dawson function D(x) is defined below Eq. (7).
Using the numeric approximations (11), one can also rewrite
the former expression as follows:

H (�L ) ≈ τc

τs

2δ2

4δ2 + 3�2
L

� 1. (25)

(a)

(b)

FIG. 4. Hanle (blue) and PRC (red) for finite nuclear spin corre-
lation time calculated after Eq. (18) for the parameters (a) τsδ = 100,
τcδ = 10; (b) τsδ = 3, τcδ = 0.3. The dashed curves show Eqs. (25)
and (24) in panel (a) and (27) in panel (b).

From these equations one can see that Hanle and PRC are
Lorentzian in this limit. The comparison between exact and
approximate expressions is shown in Fig. 4(a).

Finally, the limit of short nuclear spin correlation time,
τc � 1/δ, is similar to the Dyakonov-Perel spin relaxation
[3], because the electron spin precession frequency changes
faster than the typical precession period. The spin dynamics
in this regime is well known [3]. It represents the monoexpo-
nential relaxation with the rate

1

τeff
= 1

τs
+ δ2τc (26)

for zero magnetic field. From Eq. (18) we find the Hanle curve
and PRC

H (�L ) = τeff/τs

1 + (�Lτeff )2
, (27a)

P(�L ) = 1 + (�Lτc)2

τs/τeff + (�Lτc)2
. (27b)

These expressions and a comparison with the numeric
calculations are shown in Fig. 4(b). The Hanle and PRC in
this limit are Lorentzian again. At zero magnetic field from
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Eqs. (27) we obtain

〈Sz〉
S0

= τeff

τs
, (28)

which can be in the range from 0 to 1, depending on the
dominant spin relaxation mechanism in Eq. (26). Curiously,
the widths of the two curves are parametrically different in
this case. The Hanle curve is narrow with the half width at
half maximum (HWHM) 1/τeff as in the Hanle effect without
hyperfine interaction. In the same time, the PRC is wide with
the HWHM 1/τc � 1/τeff . This is because the spin preces-
sion frequency in the longitudinal magnetic field must be
larger than the nuclear spin correlation time to suppress nuclei
induced spin relaxation of electrons [3]. To summarize this
section, the nuclear spin dynamics can increase or decrease
the spin polarization in zero magnetic field (relative to S0/3)
and it makes the PRC broader than the Hanle curve.

V. PULSED SPIN EXCITATION

In the previous sections we described the situation, when
the spin is initially oriented at t = 0, and described the
following spin dynamics in the external magnetic field. Ex-
perimentally, the spin initialization and measurement are
repeated many times to increase the signal to noise ratio, so
the spin is excited by a train of pump pulses. If the repetition
period of the pulses TR exceeds the spin relaxation time τs, it is
enough to study theoretically the spin dynamics after a single
pulse only, which was described in the previous sections. In
the alternative approach, when the spin is pumped continu-
ously, the average in Eq. (17) describes the steady state spin
polarization. In this section we consider the case of the pulsed
excitation, when the repetition period is comparable with the
spin lifetime (for the isotropic hyperfine interaction and frozen
nuclear spins).

A. Spin dynamics

Let us consider the resonant electron spin pumping, when
the photon energy of the pump pulse coincides with the optical
resonance of the singlet heavy-hole trion. We remind that the
negatively charged trion is composed of two electrons with
opposite spins and a hole. We assume that the trion lifetime
τ0 (typically of about 1 ns [36]) is much shorter than the
repetition period of the pump pulses TR. In this case, there
are no trions at the moments of the arrivals of the pump
pulses. The pump pulses create trions according to the optical
selection rules [30]. Namely, σ± photons are absorbed only
for the electron spin Sz = ±1/2, respectively, as illustrated in
Fig. 5. The electron spin after the trion recombination (not
immediately after the pump pulse), S+, is related with the spin
before the pulse, S−, as [31,37]

S+
z = S−

z + 1 − Q2

2

(P
2

− S−
z

)
G, (29a)

S+
x = QS−

x , S+
y = QS−

y . (29b)

Here Q ∈ [0; 1] is the amplitude of the probability not to
excite a trion, P = ±1 stands for the helicity of the pump
pulse, and G ∈ [0; 1] is the spin generation efficiency, which
accounts for the trion spin dynamics [10]. The π pulses are

FIG. 5. Energy levels in the QD and transitions between them.
The red and blue arrows denote the electron and heavy hole spins,
respectively. The excitation with σ+ polarized light is shown by the
magenta arrow, black arrows denote the trion recombination, and the
blue arrow at the top shows the trion spin relaxation, which leads to
the spin generation in the ground state.

described by Q = 0, in this case the probability of the trion
excitation is 1.

The second term in the right hand side of Eq. (29a) de-
scribes the change of the spin polarization due to the trion
excitation with the probability 1 − Q2. The brackets describe
the saturation of the spin polarization at the value P/2. The
parameter G/2 equals to the trion spin flip probability. If the
trion spin relaxation is absent (G = 0), then the trion excita-
tion and recombination does not change spin in the ground
state, as can be seen in Fig. 5. However, if the trion spin
relaxes before the trion recombination, G = 1, the pump pulse
creates spin polarization. The π pulse in this case depolarizes
electrons in one spin state and leaves the other spin state
untouched. This results in the spin S+

z = P/4 after the pulse
which is the upper limit for the spin polarization after a single
pulse.

From Eq. (29b) one can also see that the trion excitation
destroys the in plane spin components [38]. If the pump pulses
were slightly detuned from the trion resonance the electron
spins would be additionally rotated around the z axis. The
strongly nonresonant spin pumping can be phenomenologi-
cally described by Eq. (29) as well.

Between the pump pulses we assume that the electron spin
precesses in the frozen nuclear field and external magnetic
field and relaxes with the time τs � 1/δ:

dS
dt

= �tot × S − S
τs

, (30)

as described in Sec. II. We remind that �tot = �N + �L is
the total electron spin precession frequency. Under the long
pulsed excitation, the steady state spin dynamics is estab-
lished. We assume that the spin polarization is probed shortly
before the pump pulses (this is equivalent to the delay a bit
shorter than TR), so we aim at the calculation of 〈S−

z 〉. To find
it we solve the Bloch equation (30) with the initial condition
S+. In the steady state, after the time TR the solution has to
coincide with S− [31,39,40]. From this relation along with
Eq. (29) we find S−

z and then average it over the nuclear field
distribution function (4). Below we describe the dependence
of 〈S−

z 〉 on the magnetic field.
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FIG. 6. The dependence of the spin polarization on the repetition
period of the pump pulses for weak pulses, Q → 1 (blue curve)
[Eq. (34)] and strong pulses, Q = 0 (red curve). The black dotted and
dashed curves show the approximate Eqs. (37) and (38), respectively.
The calculations are performed with τsδ = 100.

B. Hanle and PRC for pulsed excitation

The spin dynamics under pulsed excitations was exten-
sively studied in transverse magnetic field, see Ref. [41] for
a summary. The most spectacular effects in this configuration
are resonant spin amplification [9] and spin mode locking
[40]. In this paper we will not reproduce these results and will
pay the main attention to the Faraday geometry.

The spin dynamics under pulsed excitation of trions in the
longitudinal magnetic field is largely unexplored [10]. Here
we will consider only the most experimentally relevant limit
of long spin relaxation time and small average spin polariza-
tion:

τsδ � 1, Gτs/TR � 1. (31)

In this limit the shapes of the Hanle curve and PRC strongly
depend on the repetition period of the pump pulses, TR, and
on the strength of the pulses, Q.

To establish the relation with the initial spin polarization S0

used in the previous sections, let us consider the limit of large
longitudinal magnetic field, �L � δ, 1/TR. In this limit the
hyperfine interaction plays no role, so Eq. (30) simply yields

S−
z = S+

z exp(−TR/τs). (32)

Using Eq. (29) we find

S0 ≡ S−
z = (1 − Q2)PG

4[exp(TR/τs) − 1]
� 1, (33a)

S−
x = S−

y = 0. (33b)

This naturally shows that the longer the repetition period the
smaller the polarization. The condition (31) indeed results in
the small maximum spin polarization S0. The case of S0 ∼ 1
was studied in Ref. [37].

Now let us consider the spin polarization in zero magnetic
field, �L = 0. It is shown in Fig. 6 as a function of TR. In the
limit of weak pulses, Q → 1 (blue curve), the spin polariza-
tion is constant:

〈Sz〉 = S0/3. (34)

We recall that 〈Sz〉 denotes in this section the average value
of S−

z in the steady state. In this limit the model of Sec. II is
valid.

The spin polarization for strong pulses, Q = 0, is shown by
the red curve in Fig. 6. With increase of the repetition period it
decays from S0 almost to zero at TR ∼ 1/δ and then increases
to S0/3. For the long repetition period, TR � 1/δ, the situation
is similar to the previous case, because the spin polarization
almost completely decays between the pump pulses.

For the short repetition period, TR � 1/δ, each pump pulse
projects the spin polarization on the z axis, as follows from
Eqs. (29). Between the pump pulses, the spin precesses in
the nuclear field, �N , but the typical rotation angle is small.
This results in the effective spin relaxation between the pump
pulses, which is described by the relation

S−
z = S+

z cos(�N,⊥TR) exp(−TR/τs)

≈ S+
z

(
1 − (�N,⊥TR)2

2
− TR

τs

)
, (35)

where �N,⊥ is the component of the nuclear field in the (xy)
plane. One can see that the effective spin relaxation rate in this
limit is

1

τeff
= 1

τs
+ �2

N,⊥TR

2
, (36)

and it increases with an increase of the repetition period.
Note the difference between the effective spin relaxation time
in this case and in the case of fast nuclear spin dynamics,
Eq. (26). Averaging over the nuclear field distribution function
yields in this limit the analytical expression

〈Sz〉
S0

= −ν exp(ν) Ei(−ν), (37)

where ν = 2/(TRτsδ
2) and Ei(x) = − ∫ ∞

−x exp(−t )/tdt is the
exponential integral function. The spin polarization decreases
with increase of TR, as shown by the black dotted curve in
Fig. 6.

Curiously, this dependence can be viewed as the manifes-
tation of the quantum Zeno effect [42,43]. Indeed, the random
nuclear field leads to the electron spin precession and dephas-
ing. However, each pump pulse acts as a measurement and
projects the spin on the z direction. Actually, absorption of
the pump pulses can be in principle measured experimentally
and this would give the value of S−

z . The fast measurements
(short repetition period) freeze the spin dynamics and increase
the effective spin relaxation time as described by Eq. (36).
Moreover, if the measurement rate is comparable with the
spin precession frequency, TRδ ∼ 1, the spin relaxation rate
increases and becomes faster than in the absence of the mea-
surements. The spin polarization in this case drops to zero,
and this is known as the quantum anti-Zeno effect [44,45].

In the opposite limit of long repetition period, TR � 1/δ,
the spin rotates by the large angle ∼TRδ between the two pump
pulses, so one can average the spin polarization S−

z over it and
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FIG. 7. PRC (red) and Hanle curve (blue) for the parameters
τsδ = 1000, TRδ = 10 for weak, Q → 1, (dotted curves) and π pump
pulses, Q = 0, (solid curves).

obtain

〈Sz〉
S0

= 1 − exp(TR/τs)

+
√

exp(TR/τs) − 1

2
arctg

(√
2

exp(TR/τs) − 1

)
.

(38)

This expression is shown by the black dashed curve in Fig. 6.
In particular, with increase of TR it increases at TR � τs as
(π/2)

√
TR/(2τs) and saturates at TR � τs. Qualitatively, this

expression describes the smooth transition from Eq. (37) to
Eq. (34).

The PRC and Hanle curve for the long repetition period,
TR � 1/δ, are shown in Fig. 7 for weak and strong pulses.
In the limit of weak pulses, Q = 1, the dotted curves are
described by Eq. (7). In the case of the strong pulses, Q = 0
(solid curves), the spin polarization gets suppressed (rela-
tive to S0), as expected from Eq. (29b). Moreover, the PRC
broadens considerably [37]. This is related to the fact that the
strong pump pulses “erase” the transverse spin components,
see Eq. (29b), so the total spin polarization decreases even
in quite strong magnetic field. In addition, the offset appears
in the Hanle curve (it does not decay to zero), which is a
manifestation of the spin mode locking effect [40,41].

The PRC and Hanle curve for the short repetition period,
TR � 1/δ, are shown in Fig. 8. For the weak pulses, Q → 1,
the shape of the Hanle curve at small magnetic fields is
described by Eq. (7a), while at the magnetic fields correspond-
ing to �LTR = ±2π one can see resonant spin amplification
(RSA) [4,9,41]. For the strong pump pulses, Q = 0, the de-
pendence on the transverse magnetic field is similar except
for the larger spin polarization, as described by Eq. (37). In
the Faraday geometry, the PRC for weak pulses is described
by Eq. (7b).

The most interesting is the PRC for strong pump pulses, red
solid curve in Fig. 8(b). One can see that it is much broader
than δ and has the width of the order of 1/TR. The reason is
that one has to apply the strong magnetic field �L ∼ 1/TR in
order to suppress the spin relaxation described by Eq. (37). In

(a)

(b)

FIG. 8. PRC (red) and Hanle curve (blue) for the short repetition
period, TRδ = 0.1, for (a) weak, Q → 1, and (b) strong, Q = 0, pump
pulses calculated for τsδ = 10. The black dotted curve in (b) shows
Eq. (37) with account for Eq. (40).

this case the electron spin rotates around the axis slightly tilted
from the z axis by the transverse components of the nuclear
field. As a result instead of Eq. (35) we obtain

S−
z

S+
z

= 1 − �2
N,⊥

�2
L

[1 − cos(�LTR)]. (39)

This again results in the renormalized spin relaxation rate, and
Eq. (37) is still valid provided that

ν(�L ) = �2
LTR

τsδ2[1 − cos(�LTR)]
. (40)

This expression is shown in Fig. 8(b) by the black dotted
curve. Note the weak oscillations with the same period as
RSA, which we describe below.

Finally, the PRC and Hanle curve for the intermediate rep-
etition period, TRδ = 1, are shown in Fig. 9. Generally, all the
dependencies here are similar to Fig. 8, but the oscillations in
the PRC for strong pump pulses, Q = 0, are very pronounced.
They can be called RSA in the Faraday geometry [37]. To ana-
lyze them in more detail we introduce the visibility V , defined
as the ratio of the difference between the first maximum SA

and the first minimum SB to the first maximum:

V = SA − SB

SA
, (41)
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(a)

(b)

FIG. 9. The same as in Fig. 8 but for TRδ = 1 (and τsδ = 100).

see Fig. 9(b). The visibility is shown in Fig. 10 as a function
of the repetition period and the pump pulse power. One can
see that it is considerable only for the strong pump pulses,
and only in the intermediate range of the repetition periods,
TRδ ∼ 1. For the long and short repetition periods RSA in the
Faraday geometry vanishes, as shown in Figs. 7 and 8. Note

FIG. 10. The visibility of RSA in the Faraday geometry, Eq. (41),
calculated for τsδ = 100.

that with decrease of the spin relaxation time τs the visibil-
ity also decreases and becomes small already for τsδ � 10.
However, for long spin relaxation times, the visibility can
exceed 70% as shown in Fig. 10, so the oscillations can be
very pronounced.

Experimentally, RSA in Faraday geometry was not ob-
served so far. In typical experiments TR = 13.2 ns and δ =
0.44 ns−1 [11,29], so TRδ ≈ 6. For holes the hyperfine inter-
action is weaker, but it is also strongly anisotropic, see Sec. III,
and RSA in this case is strongly suppressed [37]. We believe
that decrease of the pulse repetition period for n-doped QDs
and increase of the power of pump pulses will allow one to
observe this effect.

C. Effect of trion spin dynamics

In the previous subsection we implicitly assumed that the
spin generation rate G does not depend on magnetic field (the
ratio 〈Sz〉/S0 did not depend on G). In reality, it is determined
by the trion spin dynamics [10], as discussed in Sec. V A. The
trion spin J obeys the equation

dJ
dt

= (
�T

N + �T
L

) × J − J
τT

s

− J
τ0

, (42)

which is similar to Eq. (16), but with the parameters relevant
for the trion spin dynamics, which we denote by the super-
script “T.” Thus, τ T

s refers to the trion spin relaxation time.
We recall that τ0 is the trion lifetime. To be specific, we focus
here on the negatively charged trion, but the same formal-
ism can be also applied to the positively charged trions (see
Sec. VII D). The trion consists of two electrons in the singlet
spin state and a heavy hole with unpaired pseudospin J, see
Fig. 5. Therefore, the spin dynamics of the trion are related
to the hyperfine interaction and Zeeman splitting of the heavy
hole. It should be noted that the g factor and the hyperfine
interaction for holes are usually strongly anisotropic, so that
gh,‖ � gh,⊥ and δx,y � δz.

The trion spin flip probability during its lifetime is defined
similarly to Eq. (17) [10]:

G(�T
L ) = 1 − 1

J0τ0

∫ ∞

0
Jz(t )dt, (43)

where J(0) = J0ez. Typically, the trion lifetime τ0 is shorter
than the trion spin relaxation τT

s and the typical trion spin
precession period 1/δT, where the parameter δT is analo-
gous to δ, but for the trion state (for simplicity, we neglect
the anisotropy). For the resident electrons under study, δT

describes the hyperfine interaction of the heavy hole in the
singlet trion state (while for resident holes the situation is
reversed). In this case, the solution of Eq. (42) averaged over
�T

N in the longitudinal magnetic field yields

G(�T
L ) = τ0

τT
s

+ (δTτ0)2

1 + (�T
Lτ0)2

, (44)

c.f. Eq. (26). Here the first term describes the trion spin
flip probability associated with τT

s and the second term de-
scribes the nuclei related trion spin relaxation. In the limit
τT

s � 1/(δ2
Tτ0), the trion spin relaxation is not dominated by

the hyperfine interaction, so the spin generation rate does
not depend on the magnetic field, as was assumed in the
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FIG. 11. PRC (solid red curve) calculated after Eq. (45) for the
parameters δT = δ, �T

L = �L , τ0δ = 0.2 in the limit δ2
TτT

s τ0 � 1.
The red dashed and black solid curves show P(�L ) [Eq. (7b)] and
G(�T

L )/G(0) [Eq. (44)], respectively.

previous sections. In the opposite limit, the generation rate
gets suppressed by the magnetic field, but this suppression
requires relatively strong magnetic field �T

L � 1/τ0 related to
the short trion lifetime. This dependence is shown in Fig. 11
by the black solid curve. For the weak pump pulses Q → 1,
the total spin polarization as a function of the magnetic field
is described by

〈Sz〉 = S0P(�L ), (45)

where S0 is given by Eq. (33a) and P(�L ) is given by Eq. (7b).
Application of the longitudinal magnetic field suppresses

trion spin relaxation and, as a result, the resident charge carrier
spin pumping, see Eq. (29a). The corresponding PRC has
M-like shape, which is shown in Fig. 11 by the red solid line.
Here the spin polarization 〈Sz〉 is plotted in contrast with the
previous figures, because S0 in this case depends on �L. For
this calculation the first term in Eq. (44) is neglected. If it
is comparable to the second term, then the spin polarization
does not decay to zero but saturates in the large magnetic
fields. Furthermore, an increase of the pump power should
lead to a change of the PRC-shape from M-like to V-like [37].
In the rest of the paper we present experimental results, which
illustrate the theoretical models.

VI. EXPERIMENTAL DETAILS

A. Samples

In this paper we use a set of four samples to illustrate
the various mechanisms controlling PRC and Hanle curve:
(i) Sample 1 is an example for a basic type of Hanle and
PRC, as discussed in Sec. II. (ii) Samples 2 and 3 demonstrate
the effect of the nuclear spin correlation time, see Sec. IV.
(iii) Sample 3 presents an additive contribution for two types
of carriers (electrons and holes). (iv) Sample 4 shows M-
shape of the PRC, as discussed in Sec. V C and additionally
demonstrates the effect of the anisotropic hyperfine interac-
tion, Sec. III.

Sample 1 is the antireflection coated n-type GaAs epi-
layer sample of 350 μm thickness and a donor of nD = 1.4 ×

1016 cm−3. For details see Ref. [46]. All the other samples
are grown by the molecular-beam epitaxy (MBE) on (100)-
oriented GaAs substrates.

Sample 2 (#2018) is an n-type ZnSe/Zn0.85Mg0.15Se sin-
gle quantum well (QW) structure. The sample starts with a
3.4-nm-thick ZnSe layer, which is used to reduce the strain
induced by the II-VI/III-V heterointerface. It is followed by
a 24-nm-thick Zn0.85Mg0.15Se barrier layer, which prevents
carrier diffusion into the substrate. The 20-nm-thick undoped
ZnSe QW is grown on top of the barrier layer, followed by
the 30-nm-thick Zn0.85Mg0.15Se upper barrier. The QW is
nominally undoped, however, one expects an electron con-
centration of about 108 cm−2 due to a residual fluorine ions
in the MBE chamber which serve as donors for ZnSe and
Zn0.85Mg0.15Se.

Sample 3 (zq1038) is also a single QW structure
ZnSe/Zn0.89Mg0.11S0.18Se0.82 with n-type modulation doping.
It has an 8-nm-thick ZnSe QW, which is separated from the
surface by a 50-nm-thick Zn0.89Mg0.11S0.18Se0.82 barrier. The
doping layer (chlorine donors) of 3 nm thickness is separated
from the QW by a 10-nm-thick spacer and is located between
the QW and the surface. Despite a nominal n-type doping the
charge redistribution leads to the presence of resident holes
with a density of about nh = 1×1010 cm−2. This is confirmed
by the time-resolved pump-probe measurements [47] and by
means of magneto-optical spectroscopy [48].

Sample 4 (#11376) contains ten layers of (In,Ga)As/GaAs
QDs, separated by 100 nm thick GaAs barriers. The QD
density in each layer is about 1×1010 cm−2. The sample
is thermally annealed for 30 s at 960 ◦C. Being nominally
undoped, the sample contains fractions of charged QDs. Due
to residual p-type doping from carbon impurities in the MBE
chamber we find a majority of QDs with hole charging.
Further details on the sample characterization are given in
Refs. [11,49,50].

B. Experimental techniques

We use the pump-probe technique to study the electron
and hole spin dynamics by time-resolved Kerr or Faraday
rotation (KR or FR, respectively) [4,9,41]. The circularly
polarized pump pulses of 1.5 ps duration (spectral width of
about 1 meV) generated by a mode-locked Ti:Sapphire laser
operating at a repetition frequency of 75.7 MHz (repetition
period TR = 13.2 ns) are used for excitation. In the case of
samples 2 and 3, the energy of the laser is doubled using a
beta-barium borate crystal.

To avoid any dynamic nuclear polarization, the helicity
of pump pulses is modulated between σ+ and σ− polariza-
tions by an electro-optical modulator (EOM) at the frequency
fm ( fmTR � 1), so that on average the samples are equally
exposed to left and right circularly polarized pump pulses.
The induced electron or hole spin coherence is measured by
linearly-polarized probe pulses of the same photon energy
as the pump pulses (degenerate pump-probe scheme). The
excitation energy E and the pump power Ppump are given for
each sample in the corresponding figure captions. The probe
power is about one order of magnitude smaller in each case.
The signal, proportional to the rotation angle, is measured by
a balanced photoreceiver, connected to a lock-in amplifier. We
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use a double-modulation scheme of registration to reduce the
effects of the scattered pump. Therefore, the probe beam is ad-
ditionally modulated by the second EOM, and demodulation
of the signal by the lock-in is done at a difference frequency of
pump and probe modulation frequencies. Measurements for
samples 2 and 3 were performed in the reflection geometry,
while samples 1 and 4 are measured in the transmission ge-
ometry.

The samples are placed in a vector magnet system consist-
ing of three superconducting split coils oriented orthogonally
to each other [51]. It allows us to measure the signal at the
various magnetic field orientations from the Faraday geom-
etry (B‖) to the Voigt geometry (B⊥) without changing of
the optical alignment and conditions of signal detection. The
measurements are performed at low temperatures in the range
from T = 1.8 K up to 6 K.

For our experiments, we have used three different varia-
tions of the pump-probe method:

(a) The time-resolved regime: dependence of the Kerr rota-
tion angle upon the time delay between the pump and probe
pulses is measured with the magnetic field applied in the
Voigt geometry (B⊥). The Larmor precession of the optically
oriented spins around the magnetic field results in a periodic
signal with decreasing amplitude. Using this method one can
determine the g factor of the carriers and the inhomogeneous
spin dephasing time T ∗

2 in the case of T ∗
2 < TR.

(b) The resonant spin amplification (RSA) regime is used
when the spin dephasing time T ∗

2 is comparable to or bigger
than TR. In this case the rotation angle is determined in de-
pendence of B⊥ at a fixed small negative time delay between
pump and probe pulses (in our case −50 ps) [4,9,41,52].
Depending on the magnetic field the spin polarization is
modulated, reaching maximum at the commensurability con-
ditions of the Larmor frequency with the laser repetition
period. Through the experimental part of the paper we con-
sider the Hanle curve being identical to the RSA peak centered
around zero magnetic field, the so-called zero RSA peak.

(c) The polarization recovery curve (PRC) regime: the elec-
tron spin polarization is detected at a small negative time delay
in dependence of the magnetic field applied in the Faraday
geometry (B‖). In this case, the spin polarization is photogen-
erated along the magnetic field direction and does not exhibit
Larmor precession on average. Still, the spin polarization will
be reduced by the fluctuating nuclear fields if the external
magnetic field is small compared to these fields.

VII. EXPERIMENTAL RESULTS

The whole set of shapes of the measured PRC signals can
be divided into three groups:

The first group. The classical PRC shape (V shape): a
constant signal amplitude (constant degree of carrier spins
polarization) in the range of large longitudinal magnetic fields
and a dip (a decrease of the amplitude) in the vicinity of the
zero magnetic field. The PRC width is determined by the
nuclear fields fluctuations [14] and coincides with the width
of the zero RSA peak. Their amplitudes are related to each
other as 2:1. The responsible spin relaxation mechanisms are
discussed in Sec. II. Note that in some cases, e.g., in the

FIG. 12. n-doped bulk GaAs (sample 1). PRC (red) and RSA
(blue) signals in dependence of magnetic fields B‖ and B⊥, respec-
tively, at the same detection conditions. They are fitted with Eq. (11b)
for PRC and Eq. (11a) for zero RSA peak, as shown by the black
dashed lines. Gray dashed line represents the basic 2 to 1 ratio of
the amplitudes. E = 1.493 eV, Ppump = 1 W/cm2, fm = 50 kHz, and
T = 1.8 K.

presence of anisotropic hyperfine interaction, the PRC shape
remains the same, but the width of the PRC and zero RSA
peak and their amplitudes can be different (Sec. III, Fig. 3).

The second group. The PRC has an additive shape: it
consists of two pronounced V-shape components, typically
with large difference in amplitudes and widths. However, the
PRC has a dip at zero magnetic field and with increasing field
the PRC amplitude reaches a constant value, as in the first
case. Different components can belong to different groups of
electrons or to electrons and holes in the same structure.

The third group. The PRC has an M shape. With an in-
crease of the magnetic field, the amplitude of the PRC initially
increases, reaches the maximum value, and then decreases
(Sec. V).

A. First group: basic type

In all following cases we use the time-resolved pump-
probe measurements in constant magnetic field to define the
g factor of the corresponding charge carriers. In sample 1
of n-doped bulk GaAs the measured value of the electron g
factor is |ge| = 0.463. We use it as a fixed parameter for the
fitting. Figure 12 shows the normalized RSA and PRC at the
same experimental conditions. The PRC is related to the top
horizontal axis, while the RSA is related to the bottom one,
both given in the same magnetic field range. Note that the
chosen magnetic field range only shows the zero RSA peak,
while the other RSA peaks are not seen.

The PRC in sample 1 has the classical V shape: Electron
spin polarization is increased with growing magnetic field and
saturates in fields greater than 1 mT. The measured half width
at half maximum (HWHM) of the PRC dip is B1/2 = 0.28 mT.
It is important to mention that it is equal to the HWHM of
the zero RSA peak. From the fitting of both curves, using
Eq. (11b) for the PRC and Eq. (11a) for the zero RSA peak
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FIG. 13. n-type ZnSe/Zn0.85Mg0.15Se single QW (sample 2).
PRC (red) and RSA (blue) signals detected at the same experi-
mental conditions. Black dashed lines are the fits using Eq. (27).
E = 2.8037 eV, Ppump = 0.35 W/cm2, fm = 50 kHz, and T = 1.8 K.

with the same set of parameters, we obtain δ = 8.5 μs−1,
see the black dashed lines in Fig. 12. The ratio between the
amplitudes of PRC and RSA signals at B = 0 is close to the
ratio of 2:1, see the dashed gray line in Fig. 12 at 1/3 in
this scale [14]. These features of the PRC and RSA allow
us to conclude that their shapes in weak magnetic fields are
determined by the spin relaxation driven by the fluctuating
nuclear magnetic fields. Therefore, they can be described in
the framework of the basic model represented in Sec. II.

B. First group: Effects of nuclear spin correlation time

As the second example in the first group we demonstrate
results for the n-type ZnSe/Zn0.85Mg0.15Se single QW (sam-
ple 2). The dependence of KR signal on the time delay
between pump and probe in a transverse magnetic field at
resonant trion excitation of E = 2.8037 eV (not shown here)
leads to |ge| = 1.14. The normalized PRC and RSA are shown
in Fig. 13. The PRC has a dip in vicinity of zero mag-
netic field and the PRC amplitude saturates in longitudinal
magnetic fields exceeding 10 mT. The HWHM of the dip is
B1/2 = 2.1 mT. The RSA demonstrates the classical behavior
of a periodic signal in increasing magnetic field. Due to a
larger g factor relative to the previous case, the RSA peaks
are shifted closer to each other, which makes it possible to
see several of them. For us only the zero RSA peak is of
interest, which has a HWHM of B1/2 = 1.0 mT, that is two
times smaller compared to the PRC width. The ratio of the
PRC and RSA amplitudes is close to 2:1 [14], which allows
us to attribute this case to the first group of the basic type.
However, to explain the difference in HWHM, we need to take
into account the effect of the nuclear spin correlation time
(Sec. IV). The situation corresponds to the case of the short
correlations with τc � 1/δ. The fits by the black dashed lines
in Fig. 13 support this assumption. We use Eq. (27) with the
set of parameters δ = 85 μs−1, τs = 34 ns, and τc = 8 ns and
obtain τc < 1/δ = 11.8 ns < τs. The short correlation time
may be related with the electron hopping between the donors.

FIG. 14. ZnSe/Zn0.89Mg0.11S0.18Se0.82 single QW with resident
holes (sample 3). (a) KR signal demonstrating two oscillating com-
ponents at B⊥ = 1 T and corresponding g factors. (b) PRC (red) and
RSA (blue) signals with fittings (black dashed lines) using Eq. (27).
The green dashed line shows the unmodified fit for the RSA peak.
The gray dashed line at 1/3 is the reference of the basic case.
E = 2.812 eV, Ppump = 0.35 W/cm2, fm = 100 kHz, and T = 1.8 K.

C. Second group: Additive spin components

Figure 14(a) shows the dynamics of the KR signal for
the ZnSe/Zn0.89Mg0.11S0.18Se0.82 single QW with resident
holes (sample 3). It evidences the electron and hole spin
precession, i.e., the presence of resident electrons and holes
in this structure. The pump is resonant with the trion state
(E = 2.812 eV). The signal has two types of oscillations,
a slow one with a frequency corresponding to g factor of
holes |gh,⊥| = 0.06 and a fast one with g factor of electrons
|ge,⊥| = 1.16, which are clearly seen at a transverse magnetic
field of B⊥ = 1 T.

Let us first discuss the PRC signal, shown by a red line
in Fig. 14(b). It is composed of two peaks: the broad one
with B(1)

1/2 = 12 mT and the narrow one with B(2)
1/2 = 0.4 mT.

The broad peak corresponds to the electrons, as one re-
quires a much stronger external field for stabilization of the
electron spin polarization due to the strong electron-nuclear
interaction. Holes, on the contrary, have a reduced hyperfine
interaction with nuclei (and comparable longitudinal g factor),
which leads to the much narrower PRC width.

The RSA signal shown in Fig. 14(b) reveals five periodic
peaks with the zero peak HWHM of 0.9 mT. Other peaks have
a smaller width, e.g., of 0.3 mT for the ±1 peaks at about
±4 mT. We can relate this to the fact that the holes have a
much smaller in-plane g factor than electrons (|gh,⊥| = 0.06
vs |ge,⊥| = 1.16). This leads to the difference in the RSA
peaks separation for both types of carriers. The hole RSA
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peaks would have a separation of about 90 mT, while the
electrons have one of about 4 mT. Also, due to larger g-factor
dispersion the holes have faster spin dephasing resulting in de-
creasing of the hole spin amplitude with increasing magnetic
field. Therefore, in sample 3, where the resident electrons
and holes coexist, the zero RSA peak is contributed by both
carriers, while the next peaks have only electron contribution.
This allows us to analyze separately the electron and hole spin
dynamics. For the fitting of the electron component in PRC
and RSA by Eq. (27) with one set of parameters we use RSA
peak at 4 mT and reduce the amplitude of the fit for the RSA
peak in the Hanle part of Eq. (27) by an additional factor of 2.4
to match the amplitude of the RSA to the PRC at B = 0 mT.
The green dashed line in Fig. 14(b) demonstrates the result
of this fit with nonshifted and nonreduced peak for the elec-
tronic part of the zero RSA peak. The black dashed lines are
the fits with the parameters δ = 125 μs−1, τs = 59 ns, and
τc = 1.2 ns. Here 1/δ = 8 ns and, therefore, we are in the
regime of τc � 1/δ � τs.

To summarize, we have demonstrated that the PRC and
RSA signals are influenced by the short nuclear spin correla-
tion time for the electron part and by the additive contribution
of holes. The last fact complicates the analysis, as the electron
and hole contributions intermix with each other. The possi-
bility to use the higher field RSA peaks shows the advantage
of the pump-probe time-resolved technique compared to the
typical Hanle measurements under continuous-wave excita-
tion. It allows us to separate clearly the electron and hole
contributions and to obtain spin parameters.

D. Third group: M-shaped PRC

In all previous cases the strong carrier localization leads to
the fact that the hyperfine interaction of electron spins with
nuclear spin fluctuations is the main mechanism of spin re-
laxation in weak magnetic fields. Increase of the longitudinal
magnetic field leads to an effective decoupling of the electron
spins from the nuclear spins. As a result, a larger number
of spins line up along the z axis, and since we measure the
z-spin component, the signal amplitude increases. All previ-
ous examples demonstrate the saturation of the electron spin
polarization with an increasing B‖. A fundamentally different
PRC shape is observed in p-doped (In,Ga)As/GaAs quantum
dots (sample 4), where the PRC amplitude decreases with a
further increase of the field.

Figure 15 demonstrates the PRC for sample 4 measured
in ellipticity configuration (spin induced circular polarization
of the transmitted light) as a function of the longitudinal
magnetic field B‖, the top axis. The observed M shape of the
PRC is determined by the spin dynamics of the resident hole
in the ground state and the positive trion. The central narrow
dip with B1/2 = 3.3 mT is driven by the interaction of the
resident hole with the nuclear spins, while the much broader
peak with decreasing amplitude at higher fields is driven by
the interaction of the unpaired electron spin of the positive
trion with the nuclear spins and the trion recombination [10],
as discussed in Sec. V C. This interpretation is confirmed
by a good agreement between the experimental data and the
calculation (black dashed line in Fig. 15) using Eq. (45) with

FIG. 15. p-doped (In,Ga)As/GaAs QDs (sample 4). PRC (blue)
and RSA (red) signals at the same experimental conditions. Black
dashed line is a fit using Eq. (45) [11]. E = 1.392 eV, Ppump = 0.35
W/cm2, fm = 25 kHz, and T = 1.8 K.

δ = 100 μs−1 for the resident holes and δT = 440 μs−1 for the
electron in the positive trion, for the whole set of parameters
see Ref. [11].

The RSA signal in the p-doped (In,Ga)As/GaAs quantum
dots has only one peak centered around zero field. Higher field
RSA peaks do not appear under these conditions due to several
factors. First, the transverse hole g factor is small, which
results in larger separation of the RSA peaks in magnetic field
scale. Second, the holes have a large spread of g factors, in
our case g = 0.04. This induces strong decrease of the RSA
amplitude with increasing magnetic field. Furthermore, as
demonstrated in Ref. [50], under specific excitation condition,
the RSA peaks can switch to a constant nonzero amplitude
without dependence on magnetic field, which is related to the
mode-locking effect [41], see also Sec. V B and Fig. 7.

Additional effect, which should be taken into account is
the influence of the anisotropic hyperfine interaction, as dis-
cussed in Sec. III. We show in Ref. [11] that in the p-doped
(In,Ga)As/GaAs quantum dots (sample 4) the anisotropy pa-
rameter λ = 5 [53], which should lead to the spin amplitude
of about 0.75 at B = 0 mT, see Eq. (13). However, this am-
plitude (in our case 0.17) and the widths of the RSA and
PRC are further strongly influenced by the effects of the
g-factor anisotropy (|gh,‖| = 0.45 vs |gh,⊥| = 0.14) and the
pump power, see Sec. V B and Fig. 7. So, one can expect that
due to a large anisotropy of the hole g factor, the width of
the PRC should be much smaller than the RSA one. On the
other hand, the widths relation (together with the amplitudes)
is additionally influenced by the pump power, where the PRC
width gets strongly increased relative to the RSA curve, and
the amplitude gets strongly reduced, for the higher pumping.
Therefore, for a full understanding of the influence of different
contributions, in this case power dependence would be help-
ful. We restrict ourself to the demonstration of the shape of
the curves and leave the analysis of the power dependence for
the future investigations.
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VIII. CONCLUSION

To conclude, we analyzed theoretically the spin polariza-
tion recovery and Hanle effects accounting for the anisotropy
of the hyperfine interaction, the presence of two types of
charge carriers, nuclear spin dynamics, and pulsed spin ex-
citation. We also discussed and predicted the manifestations
of the quantum Zeno and anti-Zeno effects in the pump-probe
experiments as well as the resonant spin amplification in the
Faraday geometry. Both of these effects are still not observed
experimentally. The experimental demonstrations were serv-
ing as examples to highlight the presence of the discussed
effects. We show that the experimental signals are usually
affected by several mechanisms. Using the methods of PRC
and RSA in a joint manner turn out to be an efficient way to
study depolarizing effects of the nuclear spins on the electron
and hole spins. Additionally, we highlight that both methods
are independent on the ability to detect the photoluminescence

and can be used applying the methods of the Faraday or Kerr
rotation. Furthermore, a possibility to use the pulsed excita-
tion leads to a clear separation of the effects coming from
the ground and excited states, as well as from carriers with
different g factors.
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