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Strain-inducing deformations in graphene alter charge distributions and provide a new method to design spe-
cific features in the band structure and transport properties. Novel approaches implement engineered substrates
to induce specifically targeted strain profiles. Motivated by this technique, we study the evolution of charge
distributions with an increasing number of out-of-plane deformations as an example of a finite size periodic
substrate. We first analyze a system of two overlapping deformations and determine the quantitative relation
between geometrical parameters and features in the local density of states. We extend the study to sets of
three and four deformations in linear and two-dimensional arrays and observe the emergence of moiré patterns
that are more pronounced for a hexagonal cell composed of seven deformations. A comparison between the
induced strain profile and spatial maps of the local density of states at different energies provides evidence for
the existence of states confined by the pseudomagnetic field in bounded regions, reminiscent of quantum dots
structures. Due to the presence of these states, the energy level scaling to be observed by local probes should
exhibit a linear dependence with the pseudofield, in contrast to the expected scaling of pseudo-Landau levels.

DOI: 10.1103/PhysRevB.102.235410

I. INTRODUCTION

Deformations in 2D materials [1] are a widespread phe-
nomenon observed in almost all experimental setups. In
graphene, substrate lattice mismatch [2–14], trapping of inter-
calated impurities during deposition [15–22], liquid interfaces
[23], or purposely engineered substrates [24–31] are the most
common mechanisms responsible for their occurrence.

Because deformations induce strain, they have a direct
effect on the charge density distribution and thus provide
a useful knob to modify and control electron dynamics.
The comprehensive theoretical and experimental work on
graphene membranes with local deformations carried on in
recent years has resulted in quantitative relations between
the geometry of deformations and the charge distributions
produced by the underlying strain fields [32–47]. This cor-
respondence provides a novel tool for sample characterization
in local imaging techniques such as scanning tunneling mi-
croscopy (STM) [48–50].

Isolated deformations are frequently found in sup-
ported and suspended samples—irrespective of fabrication
techniques—materializing in the form of local ripples, bub-
bles, and folds. For samples deposited on clean substrates,
the lattice mismatch naturally creates more extended strained
regions. These manifest as periodic structures of inho-
mogeneous charge distribution, known as moiré patterns,
extensively studied in twisted bilayer graphene [51], a system
resembling monolayer graphene on a substrate with lattice
mismatch controlled by the twisting angle.

The search for alternative protocols to create moiré pat-
terns ‘on-demand’ have led naturally to the fabrication of
engineered substrates with periodic structures and graphene
deposited on top. Examples of these appear in recent reports

on magnetotransport measurements of graphene on top of an
array of insulating SiO2 nanospheres [27,28] and STM mea-
surements of graphene deposited on Au nanopillar arrays [11].
An important motivation for these studies is the identification
of fundamental parameters that determine the pattern’s char-
acteristics and enable the design of specific band structures
with novel charge transport properties [52,53].

In analogy with isolated deformations, it would be use-
ful to determine quantitative links between the geometrical
parameters of periodic structures and the characteristics of
resulting moiré charge distributions. The purpose of this work
is to describe the emergence of periodic structures in charge
distributions of deformed graphene membranes due to re-
peated strain profiles induced by engineered substrates. We
aim at providing quantitative relations between geometrical
parameters of deformation patterns and resulting charge re-
distributions as detected by local probes.

To address these issues, we carry out a systematic study
of the local density of states (LDOS) for a membrane with
an increasing number of out-of-plane deformations. Our work
begins with a detailed analysis of two overlapping deforma-
tions and proceeds by expanding their number one by one
to analyze the effect of spatial symmetries in two distinct
geometrical arrays.

For the set of two bubblelike out-of-plane deformations, we
analyze in detail the changes per sublattice LDOS in terms of
interbubble distance, crystalline orientation, and geometrical
parameters. The study is extended to a set of three and four
deformations placed in a linear array, as well as to triangu-
lar, rhomboidal, and closed pack cells formed by three, four,
and seven local deformations. In all these cases, we observe
enhancements and depletions in the LDOS that are more
pronounced in regions where the deformations overlap. The
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changes in the LDOS suggest charge confinement behavior
reminiscent of quantum dots, with an energy level scaling that
exhibits a crossover between pseudomagnetically confined
states [54] and emerging pseudo-Landau levels [55]. Remark-
ably, current experimental setups make use of substrates that
produce these bubblelike deformations with corrugations and
widths within a 15–20 nm range and maximum strain of up to
2% [27], resulting in typical confinement energies of the order
of 50–100 meV, suggesting that these effects should persist at
room temperature. Moreover, our results reveal the emergence
of periodic charge patterns and establish quantitatively their
dependence with parameters of deformation profiles, thus
providing a template for the design of substrates that would
render desired moiré structures.

The organization of the paper is as follows: Section II
presents the theoretical background used to calculate changes
in LDOS, based on the continuum (Dirac) model for electrons
in graphene and continuum elasticity theory. In Sec. III this
formalism is applied to a two-bubble system with identical
and different geometrical parameters. Section IV presents
numerical results for linear arrays of three and four deforma-
tions, as well as for triangular, rhomboidal, and one hexagonal
array of seven deformations. We contrast results for these
various arrangements and summarize our findings in the Con-
clusions section.

II. THEORETICAL BACKGROUND

We consider an undistorted (pristine) graphene layer (lat-
tice constant a = 2.46 Å), lying on the (x-y) plane, with
the x axis along the zigzag direction and use the effective
low-energy continuum model to describe the electron dynam-
ics. The corresponding Hamiltonian is written in the valley
isotropic basis [56]:

H0 = vF σ · p. (1)

For the sake of completeness, we first review the stan-
dard procedure used to describe strain induced by an isolated
out-of-plane deformation, modeled by a Gaussian-shaped ge-
ometry centered at position r0 = (x0, y0):

h(r, r0) = h0 exp(−|r − r0|2
b2

) (2)

with h0 as the maximum amplitude and b related to the full
width at half maximum of a Gaussian function by FWHM =
4b

√
ln 2. We assume that the deformation is smooth on the

interatomic length scale and describe atomic displacements
with continuum elasticity theory. For a deformation of this
kind, intervalley scattering can be neglected when b � a,
hence each valley can be treated separately. The induced strain
is given in terms of the strain tensor ε with components
defined by:

εlm = 1
2 (∂l um + ∂mul + ∂l hi∂mhi ), (3)

where we have used the implicit sum notation in the
nonlinear term.

Here u and h stand for in-plane and out-of-plane displace-
ments, respectively. As discussed elsewhere [57], nonlinear
terms due to out-of-plane displacements are largely responsi-
ble for the emergence of the inhomogeneous charge profiles

and linear terms can be safely neglected. When strain is incor-
porated in a tight-binding model, changes in nearest neighbors
hopping parameters are captured by particular combinations
of the strain tensor components, with opposite signs between
valleys. In the continuum limit, these combinations are ar-
ranged to form the components of a pseudovector field A(r)
that we chose as follows:

Ax = − h̄β

2ea
(εxx − εyy), Ay = h̄β

ea
εxy. (4)

Here β ≈ 3 is related to the Gruneisen parameter as described
in Ref. [58], and e stands for the electron charge. Note that
these expressions are written for valley K and have opposite
signs at valley K ′. Inhomogeneities in A(r) can give rise to
a pseudomagnetic field B(r) = � ×A(r), a quantity that is
used to provide an intuitive description for changes in electron
dynamics in the presence of the deformation. Simultaneously,
the trace of the tensor gives rise to a scalar field

U (r) = gs(εxx + εyy) (5)

that imposes the conservation of charge neutrality within each
unit cell [58]. Here gs stands for the coupling constant with
values reported in the literature within the range 2–3 eV [59].

The electron dynamics in strained graphene is thus de-
scribed by an effective Hamiltonian given by:

Hτ = vF σ · [p + τeA(r)] + σ0U (r), (6)

where τ = ±1 stands as a label for K and K ′, respectively.
In the last term, σ0 is the 2 × 2 identity matrix. The LDOS
ρ j (r, E ) defined for sublattice j (where j = 1, 2 stands for
A, B, respectively) at position r and energy E is obtained via
standard Green’s functions methods:

ρ j (r, E ) = −ξ
1

π
Im G(r, r, E ) j j . (7)

ξ = 1(−1) for E > 0(< 0) and G(r, r, E ) j j is the diagonal
element of the 2 × 2 single particle Green’s function

G(r, r′, E ) =
∑

τ

〈r| 1

E − Hτ + iξ (E )0+ |r′〉 (8)

that, in perturbation theory, can be written as

G(r, r′, E ) = G0(r, r′, E ) + 
G(r, r′, E ), (9)

where G0 denotes the Green’s function for pristine graphene
and 
G(r, r′, E ) is the correction introduced by the
Hamiltonian:

H int
τ (r) = τvF eσ · A(r) + σ0U (r). (10)

The explicit expression for valley τ to first order in H int
τ (r) is

simply:


Gτ (r, r′, E ) =
∫

r1

G0,τ (r, r1, E )H int
τ (r1)G0,τ (r1, r′, E ).

(11)

We recall the expression for pristine graphene’s Green’s
function at valley τ , given by [57,60,61]

G0,τ (r, r′, E ) = − k

4h̄vF

(
iξH (0)(kd ) −e−iθ H (1)(kd )

−eiθ H (1)(kd ) iξH (0)(kd )

)
,

(12)
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where H (0)(kd ) and H (1)(kd ) are the first and second or-
der Hankel functions of the first kind, respectively, k =
|E |/h̄vF , and d = r − r1. From Eq. (12), the LDOS for pris-
tine graphene per sublattice, spin orientation, and unit cell
area is:

ρ0 = |E |
2π h̄2v2

F

. (13)

Using Eqs. (10), (11), and (12) we obtain the sublattice LDOS
for deformed graphene:

ρ j (r, E ) = ρ0(E ) + 
ρ j (r, E ), (14)

where 
ρ j (r, E ) =
∑

τ


ρτ, j (r, E ) is the change in the j-

sublattice LDOS produced by the deformation.
For the specific Gaussian deformation described by Eq. (2),

the expressions for the pseudovector and scalar fields in
Eqs. (4) and (5) are:

U (r) = η2gs
R2

b2
e−

(
2 R2

b2

)
(15)

A(r) = η2 gv

evF

R2

b2
e−

(
2 R2

b2

)
(− cos 2γ , sin 2γ ). (16)

Here vF is the Fermi velocity, gv = h̄βvF /2a ≈ 7 eV is the
coupling strength for the pseudovector field, R = |r − r0|, and
γ as the angle between R and the x axis. We introduced the
parameter η = (h0/b) as a measure of the strain strength in the
Gaussian deformation model. The use of continuum elasticity
theory for this kind of deformation is valid when η � 1 [32].

III. TWO LOCAL DEFORMATIONS

We proceed to discuss the effects of two identical Gaus-
sian bubbles of height h0 and width b, centered at positions
r1 = (x1, y1) and r2 = (x2, y2) along the zigzag crystalline
orientation and separated by d = r1 − r2. In this arrangement,
the shape of the membrane is described by the function

h(r) = h0

∑
i=1,2

exp

(
−|r − ri|2

b2

)
. (17)

Clearly, the global rotational symmetry present for an iso-
lated deformation is broken, and the expressions for the strain
induced fields are correspondingly modified. The scalar po-
tential is written as

U (r, r1, r2) =
∑
i=1,2

U (r, ri ) + Uov (r, r1, r2), (18)

where U (r, ri ) correspond to the potentials produced by each
individual deformation [Eq. (15)], and Uov (r, r1, r2) stands for
the potential in the overlap region:

Uov (r, r′) = 4gsη
2

( |r − r′|2
b2

− d2

2b2

)
e−(2|r−r′|2+d2 )/b2

, (19)

where we have defined r′ = [ (x1+x2 )
2 i + (y1+y2 )

2 j] and d = |d|.
As expected, Eq. (19) contains an exponential decay propor-
tional to the separation between the centers of the bubbles
while maintaining the rotational symmetry with respect to r′.

FIG. 1. Strain-induced field profiles for one and two deforma-
tions, at valley K . Scalar potential U : (a) single bubble; (b) double
bubble. Results at valley K ′ are identical and not shown. Pseudo-
magnetic field B: (c) single bubble; (d) double bubble. Results for
valley K ′ show reversed color at each region. Parameter values:
h0 = 1 nm, b = 10 nm, gs = 2 eV, and gv = 7 eV. For the double
bubble system, centers are located at (−b, 0) and (b, 0), respectively.
Black dots signal positions for plots shown in Fig. 2.

Similarly, the total pseudovector potential takes the form:

A(r, r1, r2) =
∑
i=1,2

A(r, ri ) + Aov (r, r1, r2). (20)

The expression for the overlap term at valley K is given by:

Aov = gvη
2

evF

(
d2

1

b2

)(
d2

2

b2

)
e−

(
d2

1 +d2
2

)
/b2

(− 1
2 cos(γ1 − γ2)
sin(γ1 + γ2)

)
,

(21)

where d1 = r − r1 and d2 = r − r2. γ1 and γ2 are the an-
gles formed between d1 and d2 and the x axis, respectively.
Figure 1 shows plots for the scalar potential and pseudomag-
netic fields derived from A(r) for one and two overlapping
bubbles with centers at (−b, 0) and (b, 0), a separation that
allows us to identify each bubble individually. Characteristic
features of the fields produced by each individual deformation
can be identified away from the center, while an extended
structure emerges in the region between them, as a result
of their overlap. While the profile for the total scalar field
exhibits the rotational symmetry around the center described
by Eq. (19), the final shape of the pseudomagnetic field de-
pends on the orientation of the line that joins the pair of
deformations with respect to the crystalline axis. Panel (d)
illustrates the field for an orientation parallel to the zigzag
direction, produced by the combination of fields of isolated
deformations with the same sign in the region of overlap.
The combination of individual fields in the overlap region
provides an intuitive way to visualize and predict areas with
increased (or depleted) LDOS as the number of deformations
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FIG. 2. 
ρ j (r, E ) profile (in units of 10−4 eV−1 Å−2/η2), as a
function of dimensionless energy E/Eb, for single (solid line) and
double bubble (dashed line) deformations at positions marked by
black dots in Fig. 1. (a) Variations due to scalar and (b) pseudo-
magnetic fields. The total variation in LDOS (not shown) follows
the profile produced by the pseudomagnetic field in panel (b), as
its effect is two orders of magnitude larger at the energies of inter-
est. Parameter values: h0 = 1 nm, b = 10 nm, η2 = 10−2, gs = 2 eV,
and gv = 7 eV.

is increased. Interestingly, the magnitude of the field shows
small variations across this area, suggesting that overlap areas
may sustain quasiconstant pseudomagnetic fields. (Signs of
the pseudomagnetic field regions are reversed at valley K ′,
while the overall pattern remains the same.)

Next, we implement the procedure described in the previ-
ous section to obtain the LDOS for two bubbles, as a function
of energy E , bubble separation d , and geometrical parameters
h0, b. Results presented in the rest of the paper are given in
terms of the energy scale set by one deformation, defined as:

Eb = h̄vF

b
. (22)

Figure 2 presents 
ρ j (r, E ) normalized by strain strength η

due to the scalar potential, pseudomagnetic field, and both
fields combined, for a single bubble centered at (0, 0) (solid
line), and two bubbles centered at (−b, 0) and (b, 0) (dashed
line), respectively. To highlight the changes in the overlap
region, plots are shown for the specific positions marked in
Fig. 1 that correspond to regions where the two deformations
overlap. Note that the points indicate the same spatial location
with respect to the center of a given deformation, although
their coordinates are different due to the reference frames
chosen in each case. Panel (a) shows that changes caused by
the scalar potential converge to a constant value for larger
energies. This local breaking of particle-hole symmetry has
the effect of a shift in the chemical potential [46] at the de-
formation. When the second deformation is added, the value
for 
ρ j (r, E ) shows variations of over 50% [see values at
E 	 Eb in panel (b)], a clear signature of enhanced electron
depletion in this area. Similar plots with opposite signs, i.e.,
showing increased LDOS, are obtained for positions located
at the center of blue areas in Fig. 1. The maximum change
introduced by the pseudomagnetic field is two orders of mag-
nitude larger than the corresponding maximum change due to
the scalar field and, as a consequence, the combined effects
are dominated by the pseudomagnetic field.

The variation of 
ρ j (r, E ) shown in Fig. 2 hints at differ-
ent types of enhancement/depletion as the energy is varied.
To illustrate this effect, we plot in Fig. 3 data for the real
space distribution of the LDOS at two different energies

FIG. 3. Real space profile for 
ρ j (r, E ) at energies E = 1.6Eb

(top row) and E = 2.5Eb (bottom row) for one and two defor-
mations. Left and right columns show changes induced by scalar
and pseudomagnetic fields, respectively. Units and other parameters
as in Fig. 2.

E = 1.6Eb and E = 2.5Eb. Left and right columns show re-
sults for changes induced by scalar and pseudomagnetic field,
respectively. Notably, the changes induced by the scalar field
exhibit similar spatial inhomogeneities at different energies
while those produced by the pseudofield are clearly different.
However, as already pointed out, their magnitudes are consis-
tently smaller than those due to the pseudomagnetic field. In
the rest of the paper we focus only on the changes produced
by the pseudomagnetic field.

The finite size areas with increased LDOS surrounded by
areas of charge depletion, shown in Fig. 3(b), are reminiscent
of quantum dot structures. In contrast, panel (d) shows ex-
tended areas with a quasi-one-dimensional geometry. These
results suggest that changes in the chemical potential can
induce transitions between different types of carrier con-
finement (or depletion), with remarkably different physical
behavior in transport properties.

The dependence of the magnitude of 
ρ j (r, E ) with the
separation between bubbles is shown in Fig. 4. Changes due
to each separate field are shown for two deformations in three
different configurations, at distances s = 2b, 3b and s = 4b,
at fixed energy E = 1.6Eb. Panels (a) and (b) show 
ρ j (r, E )
along the zigzag direction (line joining the two deformations),
while panels (c) and (d) show similar results along the C-C
bond. The cuts shown are taken at the values of (x, y) coordi-
nates that correspond to positions of maximum overlap (and
LDOS change) in each case, respectively. These plots suggest
that the effects on the overlap region vanish for separations
s � 4b, and the values of LDOS return to those produced by
individual bubbles.

The analysis carried out above considers the case of two
identical deformations, a situation not generally observed in
experimental settings. In order to estimate the consequences
of different geometrical parameters, we analyzed data for
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FIG. 4. 
ρ j (r, E ) profile along the zigzag (x) and C-C bond (y)
directions due to scalar [panels (a) and (c)] and pseudomagnetic
fields [panels (b) and (d)]; for two bubbles at separations s = 2b
(solid line), s = 3b (dotted line), and s = 4b (dashed line), at E =
1.6Eb. Ranges for horizontal axis chosen to emphasize the different
extension of changes produced by each strain-induced field. Units
and other parameters as in Fig. 2.

configurations with different height h0 and same value of b,
and also with different values of b and same height h0. Either
change involves different strain strengths, and the final shape
of the membrane is determined by the deformation inducing
higher strain. Let’s introduce η1 and η2 as the new strain
strengths, with η1 > η2. From Eqs. (11), (18), (19), (20), and
(21), the corresponding total change can be expressed as:


ρ j = η2
1
ρ j,1 + η2

2
ρ j,2 + η1η2
ρ j,ov. (23)

Here, 
ρ j (r, E ) stands for the change due to the individual
deformation with strain ηi and 
ρ j,ov for the change in the
overlap region. It is convenient to introduce the factor C =
η2/η1, with C � 1,


ρ j

η2
1

= 
ρ j,1 + C 
ρ j,ov + C2 
ρ j,2. (24)

Not surprisingly, the change in the region with smaller strain
decreases quadratically with C but the change in the over-
lap region decreases only linearly with C. Typical variations
of geometrical parameters in experimental settings [27] give
values of C in the range 0.8–0.9, hence, the variations in the
overlap regions are thus expected to be within 10–20%. Rep-
resentative results are shown in Fig. 5 that plots 
ρ j (r, E ) for
two deformations at a fixed position with different geometrical
parameters.

On a more general perspective, a substrate with similarly
shaped deformations but with widely different characteris-
tic parameters (i.e., with C � 1), should render changes in
LDOS consistent with those introduced by the deformation
inducing the largest strain fields. The resulting LDOS pattern
then would correspond to a set of isolated deformations with
minimal overlaps.

FIG. 5. Comparison of 
ρ j (r, E )/η2 for two Gaussian defor-
mations with identical (dashed lines) and different (solid lines)
geometrical parameters at the position marked in Fig. 1(d). Panel
(a): identical half-width b = 10 nm and heights h1 = 1.0 nm and
h2 = 0.67 nm. Panel (b): identical height h = 1 nm and half-widths
b1 = 10 nm and b2 = 15 nm. In both cases C = 0.6. Units and other
parameters as in Fig. 2.

IV. TOWARDS A PERIODIC STRUCTURE

Having fully characterized the properties of a two-bubble
system, we now focus on an increased number of deforma-
tions to describe the crossover to a periodic structure. First,
we consider one-dimensional arrays of three and four overlap-
ping Gaussian bubbles with centers along the zigzag direction
(i.e., along the x axis). Then, we compare with triangular and
closed-packed structures and discuss the emergence of moiré
patterns.

Figure 6 presents real space profiles for 
ρ j (r, E )/η2

at energies E = 1.6Eb (left panels), and E = 2.5Eb (right
panels) for three (top row) and four (bottom row) bubbles in
a linear array. In general, regions with maximum changes in
LDOS become better defined as the number of deformations
is increased. Right panels show larger confinement (better

FIG. 6. Real space profile for 
ρ j (r, E ) induced by a linear
array of identical bubbles. Panels (a) and (b): three deformations
with centers at (−2b, 0), (0, 0), (2b, 0). Panels (c) and (d): four
deformations with centers at (−3b, 0), (−b, 0), (b, 0), (3b, 0). Left
panels show results for E = 1.6Eb and right panels for E = 2.5Eb,
respectively. Units and other parameters as in Fig. 2.
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FIG. 7. 
ρ j (r, E ) as a function of E/Eb for an increasing num-
ber of identical deformations in a linear configuration parallel to
the zigzag direction. 
ρ j (r, E ) is measured at real space positions
corresponding to maximum magnitudes. Panel (a): one bubble. Panel
(b) two bubbles. Panel (c) three bubbles. Panel (d) four bubbles. Units
and other parameters as in Fig. 2.

seen in Fig. 7 discussed below) in well separated areas. In
contrast, left panels show the emergence of parallel quasi-
one-dimensional regions with structure resembling sets of
parallel wires.

To measure the evolution of 
ρ j (r, E ) with the number of
deformations we plot in Fig. 7 cross cuts taken at positions of
maximum intensity for one bubble and arrays of two, three,
and four bubbles. These plots show an increase in the overall
magnitude of 
ρ j (r, E ) with the number of bubbles and a
better defined peak in a narrow range of energies. Although
the maximum change occurs when adding a second defor-
mation (due to the direct overlap between regions with the
same pseudomagnetic field signs, as discussed in the previ-
ous section), the addition of more bubbles produce further
increases in the magnitude of 
ρ j (r, E ) and defines a much
sharper peak. These increases can be seen as due to smaller
but not negligible contributions described by the long-range
oscillations in the Green’s function [see Eqs. (11) and (12)].

A similar analysis can be made for two-dimensional con-
figurations formed by three and four deformations as shown
in Fig. 8 for triangular and rhomboidal arrays. The plots are
shown for E = 1.6Eb. The top-bottom asymmetry in panel
(a) is emphasized by the vertical displacement used in the
figure, to allow for a direct comparison with panel (b) where
a fourth bubble is added at the bottom and the whole con-
figuration is symmetric. These structures, that exhibit signs
of an emergent charge periodicity known as moiré pat-
terns, give rise to several of the transport features studied in
Refs. [27,28].

In analogy with linear arrays, as the number of deforma-
tions increases, the regions with higher (lower) LDOS become
better defined and the magnitude of the LDOS increases
(decreases). The comparison with the linear array reveals that
the magnitude for 
ρ j (r, E ) is larger in a triangular structure,
a direct consequence of the simultaneous overlap of three
regions with the same pseudomagnetic field signs. Notice that
the magnitude decreases slightly when a fourth deformation is

FIG. 8. Real space profile for 
ρ j (r, E ) for three and four iden-
tical bubbles in triangular and rhomboidal configurations. Panel
(a) bubble centers located at (−b, 0), (b, 0), (0,

√
3b). Panel (b) bub-

ble centers located at (−b, 0), (b, 0), (0,
√

3b), and (0, −√
3b). Data

plotted for E = 1.6Eb. Black dots indicate positions for plots in
Fig. 9. Units and other parameters as in Fig. 2.

added as shown in panel (b). This can be understood in terms
of the picture of overlapping pseudomagnetic regions, as the
last deformation included at the bottom exhibits a field ‘petal’
with an opposite sign at the center.

An analysis of the data for the three-bubble structure
reveals distinct features that reflect the underlying lack of
symmetry of this arrangement. Figure 9 shows line cuts of
Fig. 8, at fixed positions symmetrically located at the centers
of regions with maximum 
ρ j (r, E ) values. Panel (a) reveal
identical variations as a function of energy, at mirror symmet-
ric points at each side of a vertical axis crossing through the
origin (lines fall on top of each other for these two positions).
Panel (b) is a cut through a position along that axis (x = 0)
and exhibits slight differences from the other two, consistent
with nonidentical surroundings.

A contrast between one- and two-dimensional structures
is shown in Fig. 10 for three and four bubbles. Top panels
show data for linear arrays while bottom panels show similar
results for triangular and rhomboidal configurations. Because
of the larger magnitudes and narrower peak structures two-
dimensional arrays appear as better suited for designing
enhanced charge accumulation regions.

Finally, we consider a close-packed structure of seven
identical Gaussian deformations with center-to-center separa-
tion s = 2b. This particular arrangement is symmetric with

FIG. 9. 
ρ j (r, E ) induced by a triangular arrangement of Gaus-
sian deformations centered at (−b, 0), (b, 0), and (0,

√
3b) as a

function of energy for fixed positions marked in Fig. 8(a). (a) Varia-
tion shown for positions (x = −b, y = 1.2b) and (x = b, y = 1.2b)
with perfect superposition between both curves. (b) Variation
shown for position (x = 0, y = −0.6b). Units and other parameters
as in Fig. 2.
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FIG. 10. 
ρ j (r, E ) for one- and two-dimensional arrays of three
and four bubbles. Panel (a) linear array of three bubbles. Panel
(b) triangular array of three bubbles. Panel (c) linear array of four
bubbles. Panel (d) rhomboidal array of four bubbles. Units and other
parameters as in Fig. 2.

respect to zigzag (x-axis) and armchair (y-axis) directions.
Figure 11 shows in panel (a), the profile produced by the
corresponding pseudomagnetic field that serves as a guidance
for the identification of the states contributing to the change
in the LDOS. Two distinct regions can be clearly identified:
region (1) defined as the area inside the hexagonal profile with
alternating triangular-shaped regions and pronounced pseud-

FIG. 11. Pseudomagnetic and 
ρ(r, E ) profiles for a close-
packed arrangement of seven identical Gaussian deformations
centered at (0, 0), (b,

√
3b), (b,−√

3b), (−b,
√

3b), (−b, −√
3b),

(2b, 0), (−2b, 0). Panel (a) pseudomagnetic field profile at valley K
(opposite signs/colors at valley K ′, not shown). Panel (b) 
ρ(r, E )
profile at energy E = 1.7Eb. Black dots indicate positions for Fig. 12.
Panel (c) 
ρ(r, E ) profile at energy E = Eb. Panel (d) ρ(r, E ) at
either position (x = ±1, y = −0.6) or alternatively (x = 0, y = 1.2)
within blue areas marked by black dots in panel (b) [results for
equivalent positions in yellow areas produce an inverted ρ(r, E ) not
shown]. Units and other parameters as in Fig. 2.

ofield gradients that act as nonconstant magnetic barriers, and
region (2) defined by the boundaries of the hexagonal pro-
file with extended areas that alternate between two roughly
constant (average) values of pseudomagnetic fields (Bav ∼
±6.7 T for the parameters chosen).

The structure in region (1) is highly symmetric as shown by
the spatial profile of 
ρ j (r, E ) in panel (b) of Fig. 11 and by
the corresponding line cuts through the marked points shown
in Fig. 12. Peaks (dips) are better defined and exhibit larger
amplitudes than previous structures (the small magnitude dif-
ferences observed among the plots are numerical artifacts).

Figure 11(d) shows the corresponding LDOS as a function
of energy at one of the three equivalent positions marked
by black dots in the dark blue areas. The inverted curve
is obtained for the corresponding bright yellow areas (note
shown). In these internal regions, confined states arise due
to the highly inhomogeneous pseudomagnetic field profile
[54]. The corresponding energy level scaling is thus deter-
mined by the boundary conditions, i.e., by the shape and
size of the confined region. For generic geometries, a simple
argument can be made by assuming the size of these regions
to be of order b, thus rendering E ∼ 1/b [54]. In a fixed
strain configuration B ∝ η2/b and one obtains E ∼ B. (For
the particular case of a single Gaussian deformation profile,
the scaling in this regime has been discussed in Ref. [57]).
The data shown in Fig. 11(b) suggests a constant separation
between peaks (and/or dips) consistent with these ideas. For
typical experimental settings as those in Ref. [28], the en-
ergies of these ‘bound’ states estimated by this model are
E = 1.7Eb 	 60–70 meV. Interestingly, this particular energy
level scaling behavior has been reported in a recent publica-
tion on graphene samples undergoing a buckling transition
that renders a periodic strain profile. Measurements in the
region between contiguous corrugations appear to follow this
linear scaling [12].

In contrast, region (2) shows areas with smoothly varying
amplitudes for the pseudomagnetic field and provide more
favorable conditions for the development of pseudo-Landau
levels with magnetic length given by lB = √

h̄/eBav . These
levels will exhibit an energy level scaling E ∼ √

B. This more
common scaling regime has also been reported in Ref. [12]
for measurements on top of corrugated areas.

V. CONCLUSION

The study of a finite group of out-of-plane deformations in
a graphene membrane reveals the emergence of periodic struc-
tures in the LDOS, reminiscent of moiré patterns observed in
bilayer graphene and supported graphene on hBN substrates
among other systems. The periodicity of these patterns is
energy dependent and results from the underlying strain fields
acting on the membrane. The inhomogeneities in the LDOS
are stronger in areas where deformations overlap and their
magnitudes can be directly related to the geometrical pa-
rameters characteristics of the underlying deformations. The
regions can take the shape of zero-dimensional areas—akin
to quantum dots—or more extended, quasi-one-dimensional
structures as the energy is varied. In linear arrays, the quasi-
one-dimensional regions appear as waveguides for charge
carriers and could be locally tuned with appropriate changes
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FIG. 12. 
ρ j (r, E ) for a close-packed arrangement of seven identical Gaussian deformations centered at (0, 0), (b,
√

3b), (b,−√
3b),

(−b,
√

3b), (−b, −√
3b), (2b, 0), (−2b, 0) at positions shown in Fig. 11. Units and other parameters as in Fig. 2.

in chemical potentials. Two-dimensional close-packed struc-
tures also can exhibit enhanced LDOS at discrete energies
giving rise to pseudo-Landau levels and pseudomagnetically
confined states. Depending on the geometrical parameters
defining these regions either or both types of states could be
observed, with the energy scaling showing the corresponding
crossover between E ∝ √

B and E ∝ B regimes. The emer-
gence of elements of moiré patterns described in this paper
suggest that by choosing appropriate substrates it is possi-
ble to create extended regions with multiple separated areas
of enhanced LDOS, akin to quantum dot arrays by design.
The quantitative connection established between geometrical
parameters of deformations and charge distributions reported
in this work provides the necessary tools to carry out such a

program. On a final, more speculative note, it is interesting
to consider the design of structures able to confine only two
levels in each internal area. As these levels are separated by
pseudomagnetic barriers, they would present a realization of
two-level systems or qubits that could be addressed externally
by local probes. The investigation of such a regime is left for
a future report.
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