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Optoelectronic properties of confined water in angstrom-scale slits
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The optoelectronic properties of confined water form one of the most active research areas in the past few
years. Here we present the multiscale methodology to discern the out-of-plane electronic and dipolar dielectric
constants (εel

⊥ and ε
dip
⊥ ) of strongly confined water. We reveal that εel

⊥ and ε
dip
⊥ become comparable for water

confined in angstrom-scale channels (with a height of less than 15 Å) within graphene (GE) and hexagonal
boron nitride (hBN) bilayers. Channel height (h) associated with a minimum in both εel

⊥ and ε
dip
⊥ is linked to the

formation of the ordered structure of ice for h ≈ (7–7.5) Å. The recently measured total dielectric constant εT
⊥ of

nanoconfined water [L. Fumagalli et al., Science 360, 1339 (2018)] is corroborated by our results. Furthermore,
we evaluate the contribution from the encapsulating membranes to the dielectric properties, as a function of the
interlayer spacing, i.e., the height of the confining channel for water. Finally, we conduct analysis of the optical
properties of both confined water and GE membranes, and show that the electron energy loss function of confined
water strongly differs from that of bulk water.

DOI: 10.1103/PhysRevB.102.235406

I. INTRODUCTION

Optical, dielectric, and electronic properties of confined
water in hydrophobic (e.g., made of GE) and hydrophilic (e.g.,
hBN) slit-shaped pores and channels are of broad relevance to
science and engineering, in topics as versatile as ion-transfer
and protein folding [1,2], biochemistry, environmental science
[3], and fluid-based electronics [4,5]. One generally expects
a very low dielectric constant in crystalline two-dimensional
(2D) materials [6], but only recently it became possible
to measure the out-of-plane dielectric constant of confined
water by detection of electrostatic force via atomic-force mi-
croscopy (AFM) [7]. For water confined within bilayer GE
and bilayer hBN it was found that the total out-of-plane di-
electric constant of water is εT

⊥ ≈ 2 for channel height smaller
than 15 Å [7] (while the dielectric constant of GE and hBN
layers was measured to be about 3.5). Such ultralow εT

⊥
is below any reported dielectric constant of water and ice,
and might be due to the formation of two interfacial layers
close to the confining membranes having vanishingly small
polarizations. For channel heights h > 20 Å, the dielectric
constant increases superlinearly towards the bulk value (εB ≈
80) [7]. One then poses the question: What is the structure
of such a strongly confined water? The formation of ice un-
der such high-pressure conditions is expected. Independent
of the water phase, all the ice phases formed under pressure
should satisfy the so-called Bernal-Fowler ice rules, where
each water molecule has four hydrogen-bonded neighbors
with a quasitetrahedral configuration [with two short O-H

*Corresponding author: mehdi.neekamal@gmail.com

distances (the donated protons) and two long ones (the ac-
cepted protons)]. At the transition into 2D phase of ice, the
crystalline structure with a larger density may form, where the
nearest-neighbor distances are more or less the same. Such
a flat square ice was proposed in Ref. [8], exhibiting higher
density (1.36 gcm−3) as compared to bulk crystalline ices
(∼0.92 gcm−3 for ice IX and XI). However, we will show that
crystalline 2D ices cannot be the answer to the above question
posed. If so, then it becomes impossible to infer how the elec-
tronic and dipolar contributions to dielectric constant of water
will evolve in the regime of the angstrom-scale confinement.
The prediction of the latter behavior is the primary objective
of our paper.

Although several studies determined the out-of-plane com-
ponent of dipolar dielectric constant of confined water in
nanoscale channels [9–12], there is no clear distinction nor
explanation for the behavior of either electronic or dipolar
dielectric constant of confined water in channels narrower
than 15 Å. Since classical theoretical methods are unable to
properly address the electronic part of the dielectric constant
[8], quantum simulations at the angstrom length scale are
highly required.

In this study, employing a multiscale approach, a solid
theoretical background for understanding the dielectric prop-
erties of strongly confined water is presented. In particular,
for water confined at angstrom scale (within the bilayers of
2D materials) we revealed that the electronic and dipolar
contribution to the dielectric constant are almost equal. This
is entirely at odds with expectations for bulk water, where
electronic contribution is negligible, or the expectations for
crystalline 2D materials, where dipolar contributions vanish.
Besides the results on the confined water alone, we also
present a separate yet useful analysis of the dielectric and
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FIG. 1. The histogram for the z component of the dipolar and electronic dipole moments of (a) GE-confined water and (c) hBN-confined
water, obtained from MD (empty columns) and DFT (shaded columns) calculations, in the absence of electric field. The blue and black dotted
curves represent approximately Gaussian distribution. Panels (b) and (d) show the top and side views of the amorphous ice structures between
GE and hBN layers under pressure (2–4) GPa and at room temperature, for channel height 7.2 Å. (e) illustrates the definition of different
quantities: h, the distance between the centers of atoms of the confining layers; σ , the length parameter in the Lennard-Jones (LJ) potential; t ,
the effective (real) thickness of the system, with membranes included; lz, the thickness of confined water alone.

optical properties of the confining GE or hBN membranes as
a function of the interlayer distance, for complete understand-
ing of related and readily feasible nanofluidic optoelectronic
devices.

II. MULTISCALE APPROACH TO DIELECTRIC
CONSTANT OF CONFINED WATER

We start by explaining the methodology behind our anal-
ysis. In order to extract the components to dielectric constant
of confined water, we resort to the linear-response regime and
employ two methods based on computing the z component
of the total dipole moment. More details can be found in
Ref. [13].

A. Dipolar contribution

Using the large scale atomic/molecular massively parallel
simulator (LAMMPS) [14] package, after reaching equilibrium
conditions during 9 ns, we produced hundreds of snapshot
for confined water over the period of 1 ns. The cell length
along the z axis was changed by sub-Angstrom steps of
about 0.2 Å. Although in all plots channel height h was
defined as the distance between the center of two C(B/N)
atoms of top and bottom GE(hBN) layers, here we considered
the effective height of water alone, i.e., lz = h − σ where σ

is the length parameter in the Lennard-Jones (LJ) potential
[cf. Fig. 1(c)].

The NVT ensemble (Nose-Hoover thermostat) was used
to keep temperature constant at 300 K [15]. The SPC/E
model for water-water interaction [16] and LJ potential were
employed for GE-water and hBN-water interactions. The cut-
off for LJ and Coulomb potential was taken to be 10 Å.
The LJ parameters are set to εOO = 0.1553 kcal/mol, σOO =
3.166 Å. By applying particle-particle particle-mesh (PPPM)
method, the long-range Coulomb interaction has been com-
puted, having an accuracy of 10−4. The water bonds and
angles were fixed using SHAKE algorithm [17]. The periodic
boundary conditions are applied along the x and y directions.
The unit cell sizes are set to yield the bulk water density, i.e.,
1 gcm−3.

A microscopic picture of dielectric properties of confined
water can be assessed by calculating the fluctuations of the
total dipole moment of the system (μdip

T ) at finite temperature.
After equilibration, by extracting the z component of the total
molecular dipole moment, μ

dip
z , one obtains the perpendicular

dipolar dielectric constant as [10]

ε
dip
⊥ = 1 + σ 2

⊥
ε0kBTV

, (1)

where σ 2
⊥ = 〈μdip

z μ
dip
z 〉 − 〈μdip

z 〉〈μdip
z 〉 and V is the volume of

the system [V = A × lz where A is the area of the confining
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wall (membrane) and lz < h is the effective thickness of the
confined water]. For μ

dip
z (= Pdip

z × V ) obtained in molecular
dynamics simulations, the averaging is performed over time,
typically for longer than 1 ns after ε

dip
⊥ has converged. Note

that Eq. (1) is applicable only to homogeneous systems [12]
and can be reformatted to have the usual form of the fluctua-
tion dissipation theorem [18].

B. Electronic contribution

Ab initio simulations of the behavior of the confined
water under electric field were performed using the Span-
ish initiative for electronic simulations with thousands of
atoms (SIESTA) [19] package based on the density func-
tional theory (DFT). Double-ζ plus two polarization functions
(DZDP) basis set for expansion of the electron wave function
were used. For the exchange-correlation functional we used
generalized gradient approximation (GGA) with Perdew-
Burke-Ernzerhof (PBE) pseudopotential [20] and nonlocal
van der Waals density functional (vdW-DF) with Dion-
Rydberg-Schröder-Langreth-Lundqvist pseudopotential [21].
The linear combination of atomic orbitals (LCAO) with the
cutoff energy of 400 Ry in 3 × 3 × 1 Monkhorst-Pack grids
were used for channel heights 6.5 Å � h � 15 Å. Notice that
for optical calculations, we increased the Monkhorst-Pack
grids and optical mesh to 100 × 100 × 1 and 500 × 500 × 1,
respectively.

The optimized ionic coordinates of water molecules from
MD simulations were fed as input for DFT calculations. Next,
the self-consistent cycle (SCF) convergence was performed
where the vacuum size in the z direction for all systems was
set to 20 Å.

By applying external electric field, perpendicular to the
(x, y) plane, and finding the z component of the electronic
dipole moment of the system, μel

z , one can estimate the elec-
tronic dielectric constant as

εel
⊥ � 1 + �μel

z

ε0V Ez
, (2)

where �μel
z = μel

z (Ez ) − μz(0) is the dipole moment variation
for confined water subjected to an electric field Ez. Here μel

z (0)
is the electric dipole moment in the absence of electric field.
A linear fit of the data of �μel

z versus Ez using Eq. (2) will
yield ε⊥

el for various considered configurations.
In order to understand this equation, for a given Ez, one

can find εel
⊥ = Ez

Ez−E p
⊥

when Ez is the external electric field,
and Ep is the response (or polarization) electric field, i.e.,

E p
⊥ = �μel

z

V ε0 = �Pel
z ε0, where �Pel

z is the change in polariza-
tion that can be calculated from first principles. Obviously, for

small �μel
z

ε0V Ez
one obtains Eq. (2). Similar analysis was used for

determining dielectric constant of bulk MgO by Umari et al.,
where ε⊥ was found to be around 5.14 [22].

C. Total dielectric constant

For polarizable systems, the total dielectric constant (or
equivalently dielectric constant) has two main contributions,
i.e., a molecular and electronic one:

εT
i j = εm

i j + εel
i j, (3)

where i, j = x, y, z, and εm
i j and εel

i j are molecular and elec-

tronic dielectric constant, respectively. Also, εm
i j = ε

dip
i j + εion

i j

where ε
dip
i j and εion

i j are dipolar and ionic terms. Note that
the dipolar term is dominant compared to the ionic term. In
the result, we assumed that εm

i j = ε
dip
i j . Hereafter label zz is

replaced by ⊥. At zero temperature the dipolar term vanishes
(because σ 2

⊥ = 0) and dielectric constant has only electronic
contribution. By increasing temperature, and in the 3D phase,
the dipolar term should be taken into account. Notice that the
molecular term includes both ionic and dipolar terms, where
the dipolar term is dominant, due to the rigidity of water bond
lengths and angles. In this study we focus on the perpendicular
component of εT

⊥ for both electronic and dipolar terms.
One also expects to see the contribution of confining

membranes to the dielectric constant. Before presenting the
dielectric behavior of confining membranes (in Sec. 3), we
first determine the dielectric constant of confined water alone.
The needed quantities to compute the dipolar and electronic
dielectric constants as explained in the previous sections were
calculated using combined molecular dynamics (MD) and ab
initio simulations. In what follows, we present those results.

D. Results for dielectric constant of confined water alone

As explained above, different configurations (minimum
100 snapshots for a given channel height) of confined water
between two GE(hBN) sheets separated by distance h were
extracted from MD simulations. In Fig. 1, we show the his-
tograms for the obtained z component of the dipolar and
electronic dipole moments, μ

dip
z and μel

z , for confined water
in bilayer GE [Fig. 1(a)] and bilayer hBN [Fig. 1(b)] for h =
7.2 Å and Ez = 0. As indicated in Fig. 1(c) and mentioned be-
fore, the channel height (h) is defined as the interlayer distance
between the confining 2D membranes. However, the actual
volume used in Eq. (1) and Eq. (2) is V = A × lz. For simplic-
ity, the GE and hBN sheets were taken rigid in the MD simu-
lations, and the considered channel height was kept below 15
Å. The insets in both figures show top and oblique views of a
typical lattice structure of confined water. Interestingly, both
dipolar and electronic parts of the dipole moments follow ap-
proximately Gaussian distribution in Figs. 1(a) and 1(b). It is
worthwhile to estimate ε

dip
⊥ using other water models such as

TIP4P [23]. We performed an additional simulation to obtain
ε

dip
⊥ for nanoconfined water between two GE sheets with h =

10 Å and found ε
dip
⊥ ≈ 3 which is larger than the experimental

value [7], i.e., 2. The latter results indicate that the SPC/E
model produces better agreement with experimental results.

In the MD simulations, we computed the dipolar dielectric
constant (εdip

⊥ ) for various channel heights using Eq. (1). Then,
for the electronic part, as depicted in Fig. 2 for two typical
systems, we find the variation of electronic polarization (Pel

z )
with respect to the applied electric field, where the slope of
Pel

z (Ez ) for the considered confined water and Eq. (2) yield εel
⊥.

The corresponding εel
⊥ and ε

dip
⊥ (without GE and hBN lay-

ers), using 100 MD snapshots and Eq. (2), are shown in Fig. 3
by square and triangular dots, respectively. In the same panel
the total dielectric constant is shown by circular dots. Notice
that we subtract 1 from εT

⊥ to avoid double counting, since 1
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FIG. 2. The z component of the electronic polarization vs applied
electric field Ez, of confined water in bilayer GE and bilayer hBN, for
interlayer distance h = 7.2 Å. The results are obtained after averag-
ing over 100 structural snapshots.

appears in both ε
dip
⊥ and εel

⊥. One can see that total dielectric
constant of confined water is smaller than 2.5 for a wide range
of channel heights, i.e., 6.5 Å � h � 15 Å. This is in good
agreement with the dielectric constant of the angstrom scale
channels in the recent experimental data [7]. Notice also that
ε

dip
⊥ > 2εel

⊥.
It is further important to note that confined water in channel

heights h ≈ (7.2–7.5) Å exhibits amorphous crystalline struc-
ture (see the shaded area in Fig. 4). To verify this, in Fig. 4(a)
we depict the lateral radial distribution function (RDF) of
the O-O distance of water molecules confined in channels of
height h = 6.5 Å, 7.2 Å, and 10 Å. In Fig. 4(b) the lattice
structure of confined water in case h = 7.2 Å is shown. Such
a clear crystalline structure causes the dielectric constant to
be minimal and is not observed for other channel heights (h =
6.5 Å or 10 Å). In fact, the electronic and dipolar dielectric
constants for h ≈ (7.2–7.5) Å are smaller than those found in
the other channel heights. We attribute this to the suppression
of both electronic charge and molecular dipole fluctuations
in the systems with pronouncedly crystalline structure and

FIG. 3. Electronic, dipolar, and total dielectric constant of con-
fined water as a function of the channel height. Shaded area
highlights the minimal values of both εel

⊥ and ε
dip
⊥ .

FIG. 4. (a) The radial distribution function of oxygen atoms of
confined water for the channel heights h = 6.5 Å, 7.2 Å, and 10 Å.
Panel (b) shows the top and side views of the lattice structure of
confined water for h = 7.2 Å.

significant increase in the number of hydrogen bonds, as
shown in Fig. 5.

III. DIELECTRIC CONSTANT OF BILAYER GRAPHENE
AND BILAYER HBN: THE EFFECT OF

INTERLAYER DISTANCE

In this section we turn our attention to finding the dielectric
constant of bilayer GE and bilayer hBN, as typical experimen-
tal choices for confining membranes in nanofluidic samples.

A. Methodology

For the fully first-principles calculations of dielectric
constant of crystalline structure of both GE and hBN, it
is more accurate to employ a plane-wave basis projec-
tor augmented wave (PAW) method in the framework of
density-functional theory (DFT). The generalized gradient
approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE)
form [24] was used for the exchange-correlation potential
as implemented in the Vienna ab initio simulation package
(VASP) [25]. In order to capture the layer-layer interaction, the
vdW correction to the GGA functional was included, by using
the DFT-D2 method of Grimme [26].

FIG. 5. The variation of the number of H bonds in confined water
as a function of the channel height in the MD simulations. The red
dashed line indicates the number of hydrogen bonds in bulk water.
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For the ground-state stacking configurations of the studied
bilayers (GE and hBN), the structural optimizations and the
dielectric properties were calculated using the kinetic energy
cutoff for plane-wave expansion to be 500 eV. The energy was
minimized until its variation in the following steps became
10−8 eV. A 50 × 50 × 1 �-centered k-point sampling was
used for both structural optimizations and dielectric proper-
ties. To avoid interaction between the neighboring layers, a
vacuum space of 20 Å was implemented. The atoms were
fully relaxed until the stress along each direction became
smaller than 1 kbar and the forces acting on each atom became
less than 10−8 eV/Å.

Used two-dimensional membranes exhibit periodicity in
two directions (x and y directions in our calculations) and the
layer is confined in the z direction. Nonphysical interactions
are avoided by introducing a vacuum between the repeating
layers in the z direction. The output of the VASP code for
the dielectric constant, εSC, then contains both the dielectric
response of the layer and the effect of the inserted vacuum.
The 3 × 3 dielectric constant has three nonzero elements, two
in-plane (εSC

xx = εSC
yy ) and one out-of-plane (εSC

zz ) component.
VASP calculates the electronic dielectric constant using the
following equation

εSC
i j = (

δi j + χ el
i j

)
, (4)

where indices i, j = x, y, z, εSC
i j represents the dielectric con-

stant for the i j direction, while χ el
i j is the susceptibility tensor

for the same direction. Due to the isotropic nature of the
bilayers, the dielectric constant elements are zero for i �= j.
Notably, the dielectric constant given in Eq. (4) includes the
electronic and ionic contributions which are given by the
susceptibility tensor:

χ el
i j = χ el

i j + (1/V )ZmiF
−1

mn Zn j, (5)

where m, n count the atoms in the lattice, χ el
i j is the pure

electronic susceptibility tensor, V is the volume of the cell,
F−1

mn is the force constant matrix, and Z is the Born effective
charge tensor.

Note that the dielectric constants extracted from VASP rep-
resent the combined dielectric constant of the sample and the
surrounding vacuum. In order to distill the dielectric constant
of the sample alone, we eliminate the contribution of the
vacuum using a capacitance model [6]. In fact, in the out-
of-plane direction, the capacitance of the supercell extracted
directly from VASP code (εSC

⊥ ) is the series of the vacuum
capacitance and the sample capacitance. This enables us to
find the out-of-plane electronic dielectric constant (we used
notation zz = ⊥) of the sample alone using [6]

εel
⊥ =

[
1 + c

t

(
1

εSC
⊥

− 1

)]−1

, (6)

where c is the thickness of the supercell (including the sample
and the surrounding vacuum) and t is the real thickness of the
system [see Fig. 1(d)], i.e., t = h + σ . Therefore all the results
reported in this paper using VASP code have been re-scaled
using Eq. (6).

FIG. 6. The obtained electronic dielectric constant (εel
⊥) of bi-

layer GE and bilayer hBN vs the channel height, in comparison to
several available values from literature.

B. Results

Finally we discuss the calculated electronic dielectric con-
stant of bilayer GE and bilayer hBN as confining membranes.
We performed several ab initio simulations for determining
the dielectric constant of bilayer GE (with AB stacking) and
hBN (with AA′ stacking) as a function of interlayer distance.
Here the evaluations of dielectric constant are done at zero
temperature and for rigid bilayers, hence the dipolar term for
the dielectric constant is zero.

For the ground-state bilayers, there are few available re-
ports on the dielectric constant using different thickness for
monolayer and bilayer GE and bilayer hBN [6]. Our results
of εel

⊥ for bilayer GE and bilayer hBN (3.0) are in good
agreement with those of Ref. [27], i.e., εel

⊥ � 2.9 and the
experimental results for the total dielectric constant [7,28],
i.e., εT

⊥ ∼= 3.5. In comparison to our results, Ref. [29] under-
estimates εel

⊥ for bilayer GE and bilayer hBN. All these results
are shown in Fig. 6(a).

The variation of εel
⊥ with h representing a decay function.

This is due to the fact that, as seen from Eq. (2), the dielectric
constant is a function of thickness via V = A × t . Therefore
one expects to see a decreasing function of εel

⊥ with increasing
interlayer distance h, as validated in our results shown in
Fig. 6(a). Two best fits according to Eq. (2) and corresponding
functions are shown by solid lines in Fig. 6(a), i.e., εel

⊥(GE) =
0.52 + 8.19/h and εel

⊥(hBN) = 0.75 + 6.42/h. We speculate
that the main origin of the decreasing dependence of εel

⊥ on
thickness is the induced charge polarization in bilayers driven
by external electric field.

For completeness of the analysis, we performed two addi-
tional DFT calculations to determine the electronic dielectric
constant of monolayer GE and hBN, and obtained values 2.94
and 2.99, respectively. These values are very close to those
found for relaxed bilayer GE and bilayer hBN [the starting
values at far left of Fig. 6(a)]. This can be understood by
using a simple model for a bilayer with dielectric constant
εBL composed of two successive capacitors, each made of a
monolayer with dielectric constant εML. Taking the thickness
of the bilayer as tBL and that of monolayers as tML, and the
fact that CBL = CML/2 for a series of two capacitors, one
writes tBL/εBL = 2 × tML/εML. Using tBL = 2 × tML—when
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the bilayer is at its minimum energy configuration—we find
εBL = εML. This is indeed verified by our ab initio results and
once more validates our methodology.

IV. OPTICAL PROPERTIES

In this section, we connect the dielectric function of the
studied systems to their corresponding optical properties, in
particular the absorption spectra, the electron energy loss
function, and the real part of the dielectric function. When
discussing properties of the confining membranes we consider
monolayer, bilayer, and double-layer GE. Here the term ‘dou-
ble layer’ stands for two GE layers which are separated by an
arbitrary channel width h > 3.5 Å. The term ‘bilayer’ refers
to the minimum-energy configuration of two stacked graphene
layers, i.e., AB stacking for bilayer GE (with h = 3.4 Å).

A. Method

The dielectric function ε(ω) is obtained by assuming λ 

Luc, where λ and Luc are the wavelength of the incident light
and the unit cell length, respectively. The imaginary part
[εi(ω)] of ε(ω) is extracted using the Lorentzian approxima-
tion of Dirac delta function [30], and the real part [εr (ω)]
can be obtained using the Kramers-Kronig relations [31]. It is
useful to mention that εr (ω) and εi(ω) are related to the energy
storage and dielectric losses within the medium, respectively.
Consequently, the extinction ratio κ (ω) is given as:

κ (ω) =

√√√√
√

ε2
r (ω) + ε2

i (ω) − εr (ω)

2
, (7)

from which the absorption spectrum α(ω) can be
calculated as:

α(ω) = 2ωκ (ω)

c
, (8)

where λ and c are wavelength and speed of light in vacuum,
respectively. Three different absorption spectra can be ob-
tained with respect to the polarization direction of the external
electric field. The broadening energy and the value of the scis-
sor operator are taken as 50 meV and 1 eV, respectively. The
electron energy loss (EEL) function (the collective excitation
of plasma) is calculated as follows:

L(ω) = Im

(
− 1

ε(ω)

)
= εi(ω)

ε2
r (ω) + ε2

i (ω)
, (9)

where L(ω) gives the electron inelastic interaction with a
sample.

B. Results

1. Energy loss function of confined water

We first calculated the electron energy loss function for
confined water between GE sheets. As a general feature, we
find that confined water exhibits a large redshift and a strong
decrease of intensity of the characteristic peak compared to
bulk water [see Fig. 7(a)]. For example, the characteristic
peak for confined water in 7.2 Å channel appears at energy
about 16 eV [with λ ∼= 77 nm and ν = 3.87 × 1015 Hz in
the extreme ultraviolet (EUV) range]. The peak broadening

FIG. 7. (a) Total electron loss function, (b) imaginary part, and
(c) real part of the electric dielectric function of confined water in
angstrom-scale slits. Here the heights of the channel are 7.2 Å, 8.2 Å,
10 Å. For comparison purposes we show bulk results.

and a slight blueshift is observed with increasing channel
height, which is due to the phase transition from amorphous
ice to liquid water. The characteristic peak for bulk water is
located at energy about 25 eV (with λ ∼= 49.5 nm and ν =
6.05 × 1015 Hz in the same EUV range). Our results for bulk
water are in agreement with those reported by Emfietzoglou
et al. using an optical-data model [32] and with those obtained
in inelastic scattering measurements [33]. One should note
that the significant peak, in this work, appears beyond the
range (0–20) eV at energy about 25 eV compared to the results
in Refs. [34,35].

The reason for the larger L(ω) in bulk water as compared
to the confined water is the larger degree of freedom of water
molecules in bulk water resulting in larger fluctuations in the
electronic polarization (�μel

z ). The latter increases the dipolar
term in Eq. (3). In addition, we depicted real and imaginary
parts of electric dielectric function for confined water between
GE sheets, i.e., εr (ω) and εi(ω) as shown in Figs. 7(b) and
7(c). It is seen that εr (ω) and εi(ω) for channel height 10 Å is
larger than those for 7.2 Å, 8.2 Å. Subsequently L(ω) is also
smaller for the channel with height 10 Å.

Furthermore, the calculated energy gaps for confined
water were 3.86 eV, 4.71 eV, and 4.56 eV for channel
heights h = 7.2 Å, 8.2 Å, 10 Å, respectively. Such
nonmonotonic behavior of the band gap can be related
to the (in)commensurability between the channel height and
the size of water molecules [34].

Also, the absorption coefficient was calculated. The optical
gap (�o) and the electronic gap (�e) are almost equal, which
is due to neglected excitonic effects. As a result, the band edge
absorption spectra show nonmonotonic (oscillating) behavior
for both �e and �o. Notice that no absorption peak was
found for either confined or bulk water, which is due to the
transparency of water at the absorption edge. We refrain from
repeating those results here.

2. Energy loss function of graphene membranes

As a highly spatially resolved spectroscopy (SRS) to detect
changes in the electronic structure, the electron loss function
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FIG. 8. Electron energy loss function for monolayer, bilayer, and
double-layer GE for (a) in-plane polarization and (b) perpendicular
polarization.

is a very suitable approach to investigate the surface plas-
mons. There are two types of surface plasmons: (i) low energy
2D plasmons and (ii) high energy π and π + σ plasmons
[36,37]. The electronic structure could be found by recording
the energy loss of transmitted or reflected electrons. Also,
these surface plasmons can be described using the classical
plasmons theory [38]. In fact, the energy of plasmons can
be calculated from the peak positions of any loss function.
Multiple peaks are found in the electron loss function be-
cause of the collective excitations at various photon energies.
In Fig. 8, EEL functions [L̄‖(ω) and Lz(ω)] are shown for
monolayer, bilayer, and double-layer GE along three different
photon polarization directions (x, y, and z). The revealed peaks
in L̄‖(ω) and Lz(ω) display plasma frequencies (ωp).

Duo to the symmetry, the EEL function for the x and
y directions are the same. Figure 8(a) shows the in-plane
EEL function (L̄‖(ω) = Lx (ω)+Ly (ω)

2 ). Three peaks of L̄‖(ω) are
found at 2 eV, 5.6 eV, and 16 eV in monolayer GE, which is in
good agreement with previous reports [39–41]. The first peak
(at ∼2 eV) originates from the π plasmon. The other peaks are
due to the π + σ plasmons. Going from monolayer to bilayer
and double-layer GE, one notices a blueshift in both relevant
energy ranges, with double-layer data somewhat redshifted
with respect to bilayer data. Further, the peak at 2 eV of the
monolayer is washed out in cases of bilayer and double layer.
We note that the optical properties remain similar for channel
heights in the range 5 Å � h � 10 Å, so only h = 5 Å was
considered for the double-layer case in our calculations.

In Fig. 8(b) we plot the EEL function for the perpendicular
polarization (z-polarized photon). Lz(ω) is forbidden in IR and
visible range when the electric field is perpendicular to the
GE sheets. The results remain relatively unchanged in the UV
range, compared to the other directions of photon polarization.
It is important to note that the peaks in Lz(ω) could stem from
the resonant transitions of π , π∗, σ , and σ ∗ electrons among
bands in all directions. In addition, the high energy π and π +
σ plasmons can be found in bilayer and multilayer GE [42].

3. Optical absorption of graphene membranes

Optical absorption of GE is divided into intraband (from IR
to vacuum-UV) and interband transitions (in the extreme-UV

FIG. 9. The absorption spectra for monolayer, bilayer, and
double-layer GE along (a) in-plane polarization and (b) perpendic-
ular polarization.

range). Allowed optical transitions between subbands obey
relation |N | = |M ± 1|, where N and M are Landau level in-
dices [43]. In Fig. 9, strong optical isotropic in the monolayer,
bilayer, and double-layer GE is shown for the polarization
vector on sheet.

Duo to the symmetry, the absorption for the x and y direc-
tions is the same. Figure 9(a) show in-plane optical absorption
(ᾱ‖ = αx+αy

2 ). Absorption takes place from IR to UV range.
We found a symmetry-allowed peak at 5.2 eV [44], although
earlier empirical results indicated an asymmetric absorption
peak at 4.6 eV [45–48] in deep-UV range (related to intra-
band transitions). Additionally, we did not find the second
exciton peak at 6.4 eV reported in Ref. [42]. These differ-
ences originate from excitonic effects. In addition, quasiflat
bands of π and π∗ cause (i) the electron and hole effective
masses to become larger, (ii) van Hove singularities to appear
closer to the Fermi level, and (iii) the absorption peak to
emerge in the deep-UV range [39], along M-K symmetry
direction. Furthermore, asymmetric absorption peaks have
been observed related to interband transitions in extreme-UV
range. For monolayer GE, the maximum intensity absorption
peak is found at ∼15 eV which originates from the electronic
transition between px hybridized orbital and π∗ antibonding
orbital along the M-K direction and around K point, respec-
tively [39]. Also, we found a slight blueshift and an intensity
increase in the bilayer and double-layer GE compared to the
monolayer GE. Additionally, we did not find the peak at 12 eV
in monolayer GE, due to parallel bands py to π∗ along K-�
direction, reported in Ref. [46].

Figure 9(b) shows the absorption for perpendicular
polarization (z-polarized photon), which is negligible (from
IR to vacuum-UV) because of the extremely small thickness
of the layers. The first absorption peak is observed at 15.6 eV
for all considered GE membranes. A sharp absorption
peak around 17.6 eV was found in bilayer GE that can
be related to the electron charge redistribution caused
by an external perturbation (e.g., incident light). In fact,
AB-stacked configuration causes asymmetry between valence
and conduction bands. Therefore, charge transfer occurs
between upper and bottom layers, after spatial redistribution
of the electron density [49,50]. Consequently, both the
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FIG. 10. Real part of the dielectric function for monolayer, bi-
layer, and double-layer GE, for photon polarization along the (a) x,
(b) y, and (c) z direction.

intensity of interlayer transitions and the absorption peak are
enhanced in the extreme-UV range.

4. The real part of the dielectric function of graphene membranes

The static dielectric function [ε(0)] refers to response of
the system to the external electric field at near-zero frequen-
cies. Figure 10(a) shows the real part of the dielectric function
for the x-polarized photon. ε(0) is about 7.5 eV, 15.6 eV,
and 12.4 eV for monolayer, bilayer, and double-layer GE,
respectively. Moreover, the typical oscillatory behavior of the
dielectric function is dampened in all cases, for energies above
6 eV. Furthermore, the plasmon frequency (ωp) can be found
where εr changes sign from negative to positive [51]. There is
one plasmon frequency in monolayer GE at 2.6 eV and two
different plasmon frequencies in the bilayer and double-layer
GE at 2.6 eV and 6.7 eV.

Figure 10(b) shows the real part of the dielectric constant
for the y-polarized photon. The static ε(0) is about 6 eV,
14.6 eV, and 12.4 eV for monolayer, bilayer, and double-layer
GE, respectively. For y polarization, two plasmon frequencies
are found for both bilayer and double-layer GE at 2.6 eV
and 6.7 eV, but there is still no plasmon frequency in the
monolayer case.

For the z-polarized photon [Fig. 10(c)], static ε(0) is about
1.3 eV, 1.38 eV, and 1.34 eV for monolayer, bilayer, and
double-layer GE, respectively. These values are close to the
vacuum dielectric function, due to the extremely small thick-
ness of the material along the z direction. The oscillatory
behavior of the real part of the dielectric constant shifts into
the extreme-UV range and starts from 13 eV. The plasmon fre-
quency is found only for bilayer GE, at 18.5 eV. As mentioned
above, the perpendicular electric field causes the asymmetry
of the charge redistribution around atoms of upper and bottom
layers in bilayer GE [49,50], which causes optical differences
compared to monolayer GE.

V. CONCLUDING REMARKS

Fumagalli et al. were recently able to experimentally ex-
tract the out-of-plane dielectric constant εT

⊥ of confined water

in bilayer hBN [7]. However, it remained unanswered what the
electronic and dipolar contributions are to dielectric constant
of confined water. For bulk water (εB = 80), because of the
large dielectric constant, one knows that the electronic contri-
bution is negligible [35].

On the other hand, in a metallic 2D crystal, because of
perfect crystalline structure, one expects to have nearly 100%
of εT

⊥ to be the electronic contribution [6]. However, when
water is confined between two 2D membranes, in angstrom-
scale slits, the ultralow εT

⊥ (≈2.1) makes it highly nontrivial
to determine the ratio between the electronic and dipolar
terms. After recovering the experimental result for εT

⊥ in
our simulations of water confined in bilayer GE and bilayer
hBN, in this paper we revealed that over 40% of the total
dielectric constant of confined water in angstrom-scale slits is
the electronic contribution. In other words, dipolar and elec-
tronic parts of dielectric constant become very comparable
in strongly confined water. The small dielectric constant can
be attributed to the reduced number of hydrogen bonds of
confined water in angstrom-scale slits, i.e., the preferential
tetrahedral bonding geometry in bulk water and ice are no
longer favored. Moreover our results confirm that the lattice
structure of the confined water in recent experiment does
not correspond to any of the previously studied 2D ices [52]
and has likely random structure. Therefore, one should not
expect to recover experimental data when studying monolayer
crystalline ice.

For completeness, we also determined the electronic di-
electric constant of bilayer GE and hBN as typical confining
membranes, as a function of the interlayer spacing, and
showed that it decreases with increasing the interlayer dis-
tance. The obtained value for standard (empty) bilayer is also
in excellent agreement with available experimental data—the
measured dielectric constant of bilayers in recent experiment
is about εT

⊥ ≈ 3.5 which is very close to our value εel
⊥ = 3.0.

The difference is likely due to the finite temperature dipo-
lar term that can be added to our analysis. In fact at finite
temperatures, bilayers are not rigid and one expects to see
angstrom-scale ripples. The latter will yield nonzero dipolar
term for the dielectric constant of bilayers.

In the last part of this paper we analyzed the optical
properties of both confined water and bilayer/monolayer and
double-layer GE as confining membranes. In particular, we
showed that electron energy loss function of confined water
is very different compared to bulk water. Though the charac-
teristic peak for bulk water locates at energy about 25 eV, it
shifts to about 16 eV for confined water in 7.2 Å slits. With
increasing channel height (i.e., 7.2 Å < h � 15 Å.), we ob-
serve a peak broadening and a slight blueshift due to the phase
transition from amorphous ice to liquid water. Concerning
the membranes, we detail the differences between monolayer,
bilayer, and double-layer graphene when exposed to incident
light in different directions.

We conclude that the use of our methodology is fully
corroborated by comparison to experimental data and that
it reliably discriminates the electronic and dipolar contribu-
tions to dielectric constant of confined water. Taken together
with reported optical properties of all system constituents,
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our results are very important for further understanding of
optoelectronic properties of water and its interactions with
surfaces and fields but also for understanding such properties
of other fluids and solids under extreme confinement.
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