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We study the acoustoelectric effect in two-dimensional materials like transition metal dichalcogenide mono-
layers located on a nonpiezoelectric substrate and exposed to the Rayleigh surface acoustic waves. We investigate
the behavior of the Hall component of the electric current density which appears due to the trigonal warping of
the valleys in k space. We calculate the spectrum of the current density and study its dependence on the electron
effective lifetime and density in the sample. We distinguish between the drift and diffusive components of the
current and show which components turn out predominant. Furthermore, we compare the effect of the Rayleigh
and Bluestein-Gulyaev acoustic waves, which appear if the sample is located on a piezoelectric substrate.
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I. INTRODUCTION

In recent years, transition metal dichalcogenides (TMDCs)
have been attracting a great deal of attention in both the
theoretical and experimental research [1,2]. TMDCs represent
a subclass of two-dimensional (2D) Dirac materials that lack
inversion symmetry and possess hexagonal lattice structure
similar to that of graphene [3]. The presence of the val-
ley degree of freedom and strong spin-orbit coupling makes
them a promising platform for applications in the fields of
valleytronics [4] and spintronics [5]. Furthermore, the study
related to the interaction of TMDCs with light fields have
unravelled intriguing physical phenomena, which also makes
these materials potential candidates for optoelectronic devices
[6,7].

However, the study of interaction of TMDCs with surface
acoustic waves (SAWs) are still in their nascent stage [8–10],
although some experiments have already been reported [11].
From the general perspective, strain-induced perturbations
serve as an origin of a variety of interesting phenomena. They
have been studied in systems like graphene [12,13], TMDCs
[14], and Dirac [15] and Weyl semimetals [16]. All this makes
the physical implications of effects resulting due to the prop-
agation of SAWs in TMDCs a noteworthy field of research.

The standard acoustoelectric (AE) effect is associated with
the transfer of SAW momentum to the electron subsystem re-
sulting in a stationary electric current. Thus, the AE current is
usually directed along the SAW wave vector reflecting the mo-
mentum transfer. The absence of inversion center in TMDCs
results in the trigonal warping of the electron dispersion in
the valleys. This property of Dirac materials leads to new
transport phenomena, such as the photogalvanic effect when
the system is exposed to external electromagnetic fields and
to the emergence of AE current components perpendicular to
the SAW direction.

There exist several physical mechanisms of interaction
between SAWs and the electrons of a two-dimensional elec-
tron gas (2DEG) in the sample. In particular, in the case of
the piezoelectric mechanism, when the 2DEG is located on
a piezoelectric substrate, the interdigital transducers (IDTs)
create the Bleustein-Gulyaev (BG) acoustic waves, which
cause the drag of electrons. This effect has been addressed
in TMDCs [8].

In this paper, we study the AE effect as a result of the defor-
mation potential mechanism of interaction [17]. For this, we
consider a monolayer TMDC, MoS2, exposed to a Rayleigh
SAW. Rayleigh waves are comprised of two (elastic) com-
ponents of the force acting on the electrons corresponding
to two components of the medium displacement vector. This
is in contrast to the BG surface waves, which only have one
component. The displacement of the substrate medium due to
the propagation of the Rayleigh SAW creates a strain field
which results in the deformation potential and perturbs the
electrons in MoS2.

We also consider the effect of the trigonal warping of the
electron dispersion in the TMDC and analyze its contribution
to the Rayleigh SAW AE current. We show that depending on
the direction of propagation of the SAW, we can distinguish
between two dominant AE currents: one conventional current,
whose origin is diffusive, and the other Hall-like drift current
due to the effect of the warping. We analyze their properties
in detail and compare them with the currents obtained in the
case of piezoelectric interaction [8].

The paper is organized as follows. In Sec. II, we develop a
formalism of the deformation potential caused by the substrate
displacement due to the Rayleigh SAW. In Sec. III, we employ
the Boltzmann transport theory to derive the expressions of the
effective force acting on the electrons and electric currents.
In Sec. IV, we analyze the expressions of the currents and

2469-9950/2020/102(23)/235405(8) 235405-1 ©2020 American Physical Society

https://orcid.org/0000-0002-4088-8820
https://orcid.org/0000-0002-0801-7312
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.235405&domain=pdf&date_stamp=2020-12-03
https://doi.org/10.1103/PhysRevB.102.235405


K. SONOWAL et al. PHYSICAL REVIEW B 102, 235405 (2020)

FIG. 1. Schematic illustration of the system: A monolayer of
TMDC (MoS2) placed on an isotropic nonpiezoelectric substrate
separated by a dielectric layer. Propagation of Rayleigh SAW creates
displacement of the substrate (ux and uz).

discuss their contributions. Section V contains the analysis of
results and the discussions.

II. DEFORMATION POTENTIAL INTERACTION OF
ELECTRONS WITH RAYLEIGH SURFACE WAVES

A. Stress tensor in the field of a Rayleigh wave

We consider a system which consists of a TMDC mono-
layer located on a semi-infinite substrate made of an isotropic
material (Fig. 1). This assumption (of the isotropy of the sub-
strate) simplifies the calculations in the meantime reflecting
all the main properties of AE effect in the case of Rayleigh
SAWs.

The substrate displacement vector u, which describes the
propagation of the Rayleigh SAW along the surface of an
isotropic medium, satisfies the equation [18,19]

ü = c2
t �u + (

c2
l − c2

t

)
grad div u, (1)

where cl and ct are longitudinal and transverse sound veloci-
ties, respectively. In the case of a Rayleigh SAW propagating
along the x direction of the xy plane, the components of the
displacement vector read

uz(x, z) = uz(z)eikx−iωt ,

ux(x, z) = ux(z)eikx−iωt ,

uy = 0, (2)

where

uz(z) = −iκlBeκl z − ikAeκt z,

ux(z) = kBeκl z + κt Aeκt z, (3)

κl =
√

k2 − ω2/c2
l , κt =

√
k2 − ω2/c2

t . (4)

The exponential decay of the displacement vector components
in the z direction reflects the surface nature of the Rayleigh
wave, whereas the two other contributions in Eq. (3) de-
scribe its two-component structure. The parameters A and B
in Eq. (3) are amplitudes, which can be related to each other
using the boundary conditions on the surface of the substrate,

B/A = −2
√

1 − ξ 2/(2 − ξ 2). (5)

Thus, they are dependent. The magnitudes of A and B are
fixed by the source of Rayleigh waves. Hence, A and B can

be expressed through the SAW intensity,

I0 = ctξρ

∫ 0

−∞
(|u̇x(x, z)|2 + |u̇z(x, z)|2)dz, (6)

yielding

A =
√

I0

ω
√

ctξρκ
, B = −2

√
1 − ξ 2

(2 − ξ 2)

√
I0

ω
√

ctξρκ
, (7)

where

κ = 2(1 − ξ 2)

κl (2 − ξ 2)2

(
κ2

l + k2
) + k2 + κ2

t

2κt
− 4

√
1 − ξ 2k

(2 − ξ 2)
. (8)

Here ξ is a constant characterizing the SAW dispersion such
that ω = ctξk, I0 is the SAW intensity in W/m, and ρ is the
density of the substrate material in kg/m2.

The strain tensor is given by [19]

uαβ = 1

2

[
∂uα

∂xβ

+ ∂uβ

∂xα

+ ∂uγ

∂xα

∂uγ

∂xβ

]
, (9)

where xi denote the coordinates, and uα denote the displace-
ment vector components. The nonzero components of the
strain tensor calculated using (9) for the displacements given
by Eq. (2) are

uzz = ∂uz(x, z)

∂z
= u′

z(z)eikx−iωt ,

uxx = ∂ux(x, z)

∂x
= ikux(z)eikx−iωt , (10)

where u′
z(z) = ∂ (uz )/∂z. Some of the other components (uyy,

uxy, uyx) are zero. Other (like uxz) are finite but we do not
use them. It should be noted that in the case of the SAW
propagating in the y direction, uxx = 0, and then we should
use uyy instead of uxx (the mathematical expression will be the
same, just y replaced by x).

B. Quasiclassical electron energy in the field of a Rayleigh wave

Let us now derive the effective force acting on electrons
due to the propagating Rayleigh wave. We start from the
Hamiltonian of the system in the form,

heff = h0 + hstrain, (11)

where h0 is the bare Hamiltonian of the 2D TMDC and hstrain

is the Hamiltonian reflecting the external perturbation due to
the presence of the SAWs. For a single-layer TMDC, we can
write (in the continuous limit),

h0 = �

2
σ z + v0(ησ x px + σ y py), (12)

where px and py are the components of the electron momen-
tum, η = ±1 is the valley index, σα are the Pauli matrices, �

is the band gap, v0 = t0a/h̄ with a the lattice parameter, and
t0 the hopping parameter.

Following Ref. [14], we write (to the leading order, assum-
ing |uαβ | � 1),

hstrain = β0t0
∑

α

uαα + β1t0
∑

α

uαασ z

+β2t0[(uxx − uyy)σ x − 2uxyησ y], (13)

where β0, β1, and β2 are the Grüneisen parameters [14].
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The terms of the Hamiltonian Eqs. (12) and (13) are given
in the sublattices representation since the TMDC lattice can
be considered as two triangle sublattices inserted into each
other and this representation is convenient. However, to study
the electron transport, it is more practical to switch to the
conduction and valence bands representation (cv basis). The
unitary transformation of bare Hamiltonian (12) into the cv
basis reads [20],

Û =
(

cos (θ/2) sin (θ/2)
sin (θ/2)eiηφ − cos (θ/2)eiηφ

)
,

(14)

Û + =
(

cos (θ/2) sin (θ/2)e−iηφ

sin (θ/2) − cos (θ/2)e−iηφ

)
,

where φ = arctan(py/px ) and θ is the polar angle,

cos θ = �/2

|εηs| , sin θ = ηv0 p

|εηs| , (15)

where εηs =
√
v2

0 p2 + �2/4. Applying this unitary transforma-
tion to Eq. (11) we find

H0 = U +h0U =
(

εc 0
0 εv

)
, (16)

where εc and εv are the electron energies in conduction and
valence bands given by

εc,v = 1
2

( ±
√

4v2
0 p2 + �2

)
, (17)

where p =
√

p2
x + p2

y is the absolute value of electron momen-
tum.

Furthermore, we assume that the TMDC layer is n doped
and the electrons in the conduction band form a degenerate
electron gas with the Fermi energy μ and Fermi momentum
pF . Strictly speaking, the unitary transformation (14) cannot
be directly applied to the strain Hamiltonian since the lat-
ter depends on time and position in space, and thus it does
not conserve the electron momentum and energy. Indeed, in
the general case, the electron scattering is inelastic, and the
strain Hamiltonian should be included in the collision integral
within the framework of Boltzmann transport theory.

However, the unitary transformation can be used in the
quasiclassical approximation approach. The typical SAW fre-
quencies ω are much smaller than the characteristic electron
energy, ω � μ, and the SAW wave vector is much smaller
than the electron Fermi momentum, k � pF . As such, the
SAW can be treated as a weakly alternating in space and
time classical field, resulting in a classical potential force,
acting on electrons. Then, this force can be written in the l.h.s.
part of the Boltzmann equation describing the interaction with
external fields.

Now, treating the strain term in the Hamiltonian as
quasistatic and quasiuniform, and applying the unitary trans-
formation (14), we find

Hstrain = U +hstrainU =
(

εcc εcv

εvc εvv

)
, (18)

where εcc(vv) and εcv(vc) denote the intraband and interband
electron-SAW interaction matrix elements, correspondingly.
The frequency of the SAW is much smaller than the band gap

of MoS2, ω � �, thus it is possible to consider only the con-
duction band elements as a potential energy correction to the
electrons in the conduction band. Performing the calculations,
we find

εcc = t0

(∑
α

uααβ0 +
∑

α

uααβ1 cos θ

+ (uxx − uyy)β2 cos (ηφ) sin θ

)
. (19)

This expression accounts for two possible directions of the
SAW: If the wave propagates in the x direction, then uyy = 0;
if, instead, the wave propagates in the y direction, uxx = 0.

It should also be noted that formally, expression (19) con-
tains both the electron momentum (via terms containing cos θ

and sin θ ) and the electron position (via the components of the
stress tensor). Nevertheless, since we work in the framework
of the quasiclassical representation, and thus the position and
momentum can be defined simultaneously, Eq. (19) does not
require the symmetrization procedure, as is usually the case in
the quantum description. Finally, the potential force acting on
the conducting electrons due to the presence of the SAW reads
a standard expression, F(r, t ) = −∇εcc(r, t ), and it does de-
pend on the electron momentum p.

III. THE BOLTZMANN TRANSPORT THEORY
FOR AE CURRENT

The Boltzmann equation reads

∂ f

∂t
+ ṗ · ∂ f

∂p
+ ṙ · ∂ f

∂r
= −( f − 〈 f 〉)

τ
, (20)

where f is the electron distribution function, which can
be written as an expansion, f = f0 + f1 + f2 + O(3). Here
f0 is the electron equilibrium distribution given by f0 =
(exp[εp − μ(n)]/T + 1)−1, where εp is given by the unper-
turbed energy of the conduction band in (17), and performing
a series expansion in the limit vp/� � 1 we write it in the
following form,

εp = �

2
+ p2

2m∗ , m∗ = �

2v2
0

. (21)

Furthermore, 〈 f 〉 is the locally equilibrium distribution func-
tion in the reference frame moving with the SAW. It depends
on the local electron density N (r, t) via the chemical po-
tential μ = μ(N ). We expand N (r, t) in series, N (r, t ) =
n + n1(r, t ) + n2(r, t ) + o(3), where n is the unperturbed
electron density and ni are the corrections to the density fluc-
tuations. Also, 〈 f 〉 = f0 + (n1 + n2 + ....)∂n f0 + (n1 + n2 +
..)2∂2 f0/∂n2/2. Substituting these expansions in (20), the
r.h.s. of (20) reads

− 1

τ

(
f1 + f2 − n1

∂ f0

∂n
− n2

∂ f0

∂n
− n1n∗

1

4

∂2 f0

∂n2

)
.

The first-order corrections to the distribution function and the
electron density read f1(r, t ) = ( f1eik.r−iωt + f ∗

1 e−ik.r+iωt )/2
and n1(r, t ) = (n1eik.r−iωt + n∗

1e−ik.r+iωt )/2, respectively.
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The second term in Eq. (20) contains ṗ, given by

ṗ = F̃(p) + eẼi = 1
2 (F(p)eik.r−iωt + F∗(p)e−ik·r+iωt )

+ 1
2 (eEieik.r−iωt + eEi∗e−ik.r+iωt ), (22)

where F̃(p) = −∇εcc and Ẽi is the induced electric field due
to the fluctuations of the electron density. We find the compo-
nents of F on the surface z = 0,

Fx(p) = t0(β0 + β1 cos θp)(k2ux(0) − iku′
z(0))

+ t0β2 cos(ηφ) sin θpk2ux(0), (23)

Fy(p) = t0(β0 + β1 cos θp)(k2uy(0) − iku′
z(0))

−t0β2 cos(ηφ) sin θpk2uy(0), (24)

and the complex conjugated parts read

F ∗
x (p) = t0(β0 + β1 cos θp)(k2u∗

x (0) + iku∗′
z (0))

+ t0β2 cos(ηφ) sin θpk2u∗
x (0), (25)

F ∗
y (p) = t0(β0 + β1 cos θp)(k2u∗

y (0) + iku∗′
z (0))

− t0β2 cos(ηφ) sin θpk2u∗
y (0). (26)

Combining the l.h.s. and r.h.s. terms in the first order gives

−i(ω − k · v) f1 + (F(p) + eEi ) · ∂ f0

∂p
= − 1

τ

(
f1 − n1

∂ f0

∂n

)
.

(27)
We find

f1 = n1(∂ f0/∂n) − (F (p) + eEi ) · (∂ f0/∂p)τ

1 − i(ω − k · v)τ
. (28)

Furthermore, we employ the continuity equation, ∂ρ/∂t =
−∇ · j, which gives

eωn1 = k · j. (29)

Then, using

n1 =
∫

dp
(2π )2

f1, j = e
∫

dp
(2π )2

v f1, (30)

and substituting (28), Eq. (29) becomes

eωn1 = ek ·
∫

dp
(2π )2

v
n1(∂ f0/∂n)

1 − i(ω − k · v)τ

− (F(p) + eEi ) · (∂ f0/∂p)τ

1 − i(ω − k · v)τ
. (31)

We should note here that

v
∂ f0

∂n
= v

∂μ

∂n

∂ f0

∂μ
= −∂μ

∂n
v
∂ f0

∂εp
= −∂μ

∂n

∂ f0

∂p
. (32)

Taking into account these equalities and introducing the dif-
fusion vector

R =
∫

dp
(2π )2

v · (−∂ f0/∂εp)

1 − i(ω − k · v)τ

∂μ

∂n
, (33)

and the conductivity tensor

σαβ = e2τ

∫
dp

(2π )2

vαvβ

1 − i(ω − k · v)τ

(
− ∂ f0

∂εp

)
, (34)

we find

n1 = kασαβ

(
Ei

β + Fβ (p)/e
)

e(ω − k · R)
. (35)

The induced electric field obeys the Maxwell’s equation,
the solution of which reads

Ei = −4π iekn1/(kε + k). (36)

Substituting (36) in Eq. (35) yields

n1 = kασαβFβ (p)

e(ω − k · R)g(k, ω)
, (37)

where

g(k, ω) = 1 + i
4π

ε + 1

kασαβkβ

k(ω − k · R)
(38)

is the dielectric function of the 2DEG.
Collecting the second-order terms in both the l.h.s. and

r.h.s. of (20) gives

(F∗(p) + eEi∗) · ∂ f1

∂p
+ (F(p) + eEi ) · ∂ f ∗

1

∂p

= − 1

τ

(
f2 − n2

∂ f0

∂n
− n1n∗

1

4

∂2 f0

∂n2

)
, (39)

where n2 is the time-averaged second-order correction to elec-
tron density, and we have omitted the fast-oscillating terms
containing e2iωt since they vanish after the time averaging.

IV. STATIONARY ELECTRIC CURRENT

The finite stationary electric current can be found in the
second order with respect to external drag force,

j = e
∫

dp f2v/(2π )2. (40)

Noting that the second and third terms in the r.h.s. of Eq. (39)
do not contribute to this current, we write

f2 = −τ

[
(F∗(p) + eEi∗) · ∂ f1

∂p
+ (F(p) + eEi ) · ∂ f ∗

1

∂p

]
, (41)

thus disregarding the other terms in f2 which are not interest-
ing for us. Substituting Eq. (41) in (40), we find

jα = −e2τ

2
Re

∫
dp

(2π )2
vα

(
F ∗

β (p)

e
+ Ei∗

β

)
∂ f1

∂ pβ

. (42)

Integrating by parts yields

jα = e2τ

2

[
Re

∫
dp

(2π )2
f1

∂vα

∂ pβ

(
F ∗

β (p)

e
+ Ei∗

β

)

+ Re
∫

dp
(2π )2

f1vα

∂F ∗
β (p)/e

∂ pβ

]
. (43)

Substituting f1 from (28), we can distinguish between several
contributions to the electric current density,

jα = j (1a)
α + j (1b)

α + j (2a)
α + j (2b)

α , (44)
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two of which are diffusive currents,

j (1a)
α = eτ

2
Re

∫
dp

(2π )2

kγ σγ δ

(
Ei

δ + Fδ (p)/e
)

(ω − k · R)

∂vα

∂ pβ

(
Ei∗

β + F ∗
β (p)

e

)
(−∂ f0/∂εp)

1 − i(ω − k · v)τ

∂μ

∂n
, (45)

j (2a)
α = eτ

2
Re

∫
dp

(2π )2

kγ σγ δ

(
Ei

δ + Fδ (p)/e
)

(ω − k · R)
vα

∂F ∗
β (p)

∂ pβ

(−∂ f0/∂εp)

1 − i(ω − k · v)τ

∂μ

∂n
, (46)

and the other two are drift currents,

j (1b)
α = e3τ 2

2
Re

∫
dp

(2π )2
vγ

(
Fγ (p)

e
+ Ei

γ

)
∂vα

∂ pβ

×
(

F ∗
β (p)

e
+ Ei∗

β

)
(−∂ f0/∂εp)

1 − i(ω − k · v)τ
, (47)

j (2b)
α = e3τ 2

2
Re

∫
dp

(2π )2
vγ

(
Fγ (p)

e
+ Ei

γ

)

×vα

∂F ∗
β (p)

∂ pβ

(−∂ f0/∂εp)

1 − i(ω − k · v)τ
. (48)

We want to comment that the diffusive component of the
current originates mainly from the diffusion of charge carriers,
and it depends on the electron density n through the Drude
conductivity σ . In the meantime, the drift current is due to the
drift velocity acquired by the electrons. These two currents
correspond to the first and second terms in Eq. (28), respec-
tively. In what follows, we consider the relevant experimental
situation when ωτ � 1 and k · vτ � 1 in which the diffusive
vector is small R 
 0. Also, we will consider small tempera-
tures, at which we can replace,

∂μ

∂n
= π h̄2

m∗ , −∂ f0

∂εp
= δ(μ − ε). (49)

A. Drag electric current without the trigonal warping

If we consider the electric current in the x direction when
the electric field is also oriented in the x direction, the calcu-
lations show [21] that the biggest contribution in this case is
given by the diffusive current term j (1a),

j (1a)
x = jD = eτ

8m∗
kσ

ω

∣∣F d
0 (ω, n)

∣∣2

1 + (σ/σ∗)2
, (50)

where∣∣F d
0 (ω, n)

∣∣2

= t2
0

e2

[
|ux(0)|2k4

(
2

(
β0 + β1√

γ 2 + 1

)2

+β2
2

γ 2

γ 2 + 1

)
+ |u′

z(0)|2k2

(
β0 + β1√

γ 2 + 1

)2]
. (51)

Here σ = ne2τ/m∗ is the Drude conductivity, γ =√
�(μ(n) − �/2)/(�/2), σ∗ = ε0(ε + 1)s/4π , and s = ctξ .

σ∗ is a scaling parameter that can be termed as a low-density
conductivity. The actual conductivity σ can become equal to
σ∗ only at extremely low densities and scattering times, which
can hardly be achieved. If we consider the electric current in
the y direction when the electric field is also in the y direction,
we find similar results.

B. Drag electric current due to the trigonal
warping contribution

If we include the trigonal warping term [22,23] in the
system Hamiltonian (11), we find

heff = h0 + hstrain + h3W , (52)

where

h3W = C

h̄2

(
0 p2

+
p2

− 0

)
with p± = ηpx ± ipy, (53)

and C is the warping strength in eV Å2. Performing the deriva-
tions (see Ref. [21]), we find the dispersion,

εp = �

2
+ p2

2m∗ + C′(p3
x − 3px p2

y

)
, (54)

where C′ = 2Cηv0/h̄2(�/2). Furthermore, we can estimate
the electric current density due to the warping terms. They
will enter Eqs. (45)–(48) through the terms,

vx = px

m
+ 3C′(p2

x − p2
y

)
,

vy = py

m
+ 6C′ px py,

∂vα

∂ pβ

=
( 1

m∗ + 6C′ px −6C′ py

−6C′ py
1

m∗ − 6C′ px

)
. (55)

As expected, they give a small correction to the main current.

C. Hall-like currents

If we take the force in the y direction, the current (47) in
the x direction (α = x) with account of (55) yields [21]

j3W = j (1b)
x = −2e3τ 2η

π

Cv0m∗

h̄2�

(
μ(n) − �

2

)∣∣FW
0 (ω, n)

∣∣2

1 + (σ/σ∗)2
,

(56)
where∣∣FW

0 (ω, n)
∣∣2

= t2
0

e2

[
|uy(0)|2k4

((
β0 + β1√

γ 2 + 1

)2

+β2
2

8

γ 2

γ 2 + 1

)
+ |u′

z(0)|2k2

(
β0 + β1√

γ 2 + 1

)2]
. (57)

The other contributions from Eqs. (45), (46), and (48) vanish
after the momentum and angle integrations.

V. RESULTS AND DISCUSSION

Let us analyze the warping current (56) for the parameters
characteristic of MoS2 deposited on an isotropic nonpiezo-
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FIG. 2. Spectrum of warping current(b) for different values of n
for two fixed values of τ : 10−14 s (solid) and 5 × 10−14 s (dotted).
The blue and red curves represent n = 1 × 1010 cm−2 and n = 5 ×
1010 cm−2. The inset shows the frequency dependence of the field
due to the drag force.

electric substrate such as silicon. The typical electron densities
range between 1010–1013 cm−2, and the electron relaxation
times are of the order of 10−13–10−14 s [24]. We will also use
the warping constant C = −1.02 eV Å2 calculated for MoS2

[23].
In equilibrium, the net warping current is zero since both

the valleys give a contribution to the current equal in mag-
nitude and different in sign. Thus, to observe a nonzero
current, the time reversal symmetry breaking is required. In
experiments, it is achieved by illuminating the sample by a
circularly-polarized light which selectively pumps only one of
the valleys and thus creates the electron population imbalance.
We thus note that the Hall-like drift current (56) depends on
the valley index (while the diffusive drag current is indepen-
dent of it, see Ref. [21]).

The analysis of the forces (51) and (57) shows that they are
only dependent on the frequency ω and are nearly independent
of n since γ (n) is always smaller than unity for the chosen
electron densities. Therefore, the spectrum of the warping
current presented in Fig. 2 behaves similarly to the force
squared |FW

0 |2 (shown in the inset).
We find that the warping current can reach several nA/cm.

The diffusive drag current follows the same dependence on
frequency of the Rayleigh SAW as the warping diffusive
current but it is of higher magnitude (up to μA/cm). These
two currents (the conventional diffusive and warping cur-
rents) have different angular dependencies. In particular, jD ∼
j0(cos φ, sin φ) while j3W ∼ j0(cos 2φ,− sin 2φ), where φ is
the angle between the x axis and the direction of propaga-
tion of the acoustic wave. Thus, if we take this angle to be
90 degrees, then the x component of the diffusive current is
zero, while the warping current is maximized. It is easier to
measure the warping current in clean samples. The warping
current also becomes more important in the higher-energy
regime [22]. The difference in the magnitude of the two
currents, as it follows from Eqs. (50) and (56), is due to the
presence of the warping constant in the warping current, and
the ratio between the two currents remains constant. Different
values of n and τ result in a shift of the curves in Fig. 2
(keeping the behavior of the spectrum unchanged).

Furthermore, depending on the parameters n and τ , the
ratio σ/σ∗ ∼ nτ can be smaller, comparable, or much greater

I

II

FIG. 3. Density plot for σ/σ∗. Dashed white contour depicts
σ/σ∗ = 1 which divides the acoustoelectric effect in two regimes:
(I) low-nτ regime where σ/σ∗ � 1 and (II) high-nτ regime where
σ/σ∗ � 1.

than unity (see Fig. 3). For realistic parameters, σ/σ∗ can take
values up to ∼104. However, it also can be small in disordered
or low-doped samples. It allows us to consider analytically the
response of the system in two regimes of small and large nτ .

The corresponding expressions for diffusive and warping
currents reads

jD =
{

(e3τ 2n/sm∗)
(
F d

0

)2
, σ/σ∗ � 1

(σ 2
∗ /ens)

(
F d

0

)2
, σ/σ∗ � 1

(58)

j3W =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(−2Cv0m∗/π h̄2�)e3τ 2

×(
μ(n) − �

2

)(
FW

0

)2
, σ/σ∗ � 1

(−2Cv0m∗/π h̄2�)σ 2
∗ /en2

×(
μ(n) − �

2

)(
FW

0

)2
. σ/σ∗ � 1

(59)

We see that the ratio of the diffusive (normal) and drift (warp-
ing) currents remains constant in both the limiting cases, as
the functional form of the dependence on parameters n and τ

is the same.
Figure 4 shows the results of the numerical calculation of

the electric current densities in the general case. We see that
when both n and τ are small, the current grows linearly with n
[panel (a)] and quadratically with τ [panel (b)] until it reaches
a peak at intermediate values of nτ . With the further increase
of electron density, the current starts to drop as ∝n−2 at large
n [panel (a)] which is consistent with (59). With the increase

FIG. 4. Warping current (a) as a function of n with fixed τ (b) as a
function of τ with n fixed. The valley index has been taken as η = +1
and ω = 1011 Hz.
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of τ (keeping n constant), the system switches to the high nτ

regime and the current becomes independent of τ .
It is also important to compare our results with the ones

found for BG acoustic waves [8] when the 2D material is lo-
cated on a piezoelectric substrate. In the case of BG waves, the
diffusive current for an applied electric field E0 was found to
be jD ∼ (σ ∗E0)2/ens ≈ 20 μA/cm and the warping current
j3W ≈ 3 nA/cm. We see that the currents due to the Rayleigh
waves are smaller in magnitude for the same frequencies of
SAW. The physics of AE interaction remains similar for both
the waves. In particular, the diffusive current turns out to
be dominant in both the cases and the trigonal warping also
provides qualitatively similar behavior. Thus, the general con-
clusion is that the drag field due to the deformation potential
is weaker than the electric field provided by the piezoelec-
tric surface. However, in actual samples both the acoustic
waves coexist and give a combined effect on the electronic
system. In samples without the piezoelectric substrate, the
Rayleigh waves give the largest impact to AE effect. In sub-
strates without piezoelectric properties, the only way acoustic
waves can interact with the sample is through the mechanical
stress. Even when the substrate is piezoelectric, there is still
a correction due to the effect of mechanical stress, and this
correction is also experimentally measurable. Thus, the two
contributions to AE effect sum up.

If instead of an isotropic substrate we take an anisotropic
medium, Eq. (1) for the substrate displacement vector ui will
have to be rewritten, ρ(∂2ui/∂t2) = Si jkl (∂2uk/∂xixl ), where
Si jkl is the stiffness tensor. Depending on the symmetry of
the given crystal, one can compute the components of this
tensor and find the sound velocities in different directions
using different components of the strain tensor. Having said
that, we want to note that our results for the dependences
of the material parameters on n and τ remain qualitatively
unchanged.

In general, the velocity of the Bloch electron is given by
ṙ = v − ṗ × �p in equation (20). Here, the first term, v =
∂εp/∂p, comes from the material dispersion and contains the

warping term, and the second term, ṗ × �p, is due to the
nonzero Berry curvature. The recent research shows that the
valley Hall effect in 2D materials is governed by not only
the anomalous velocity term but also there exist other mech-
anisms like the skew scattering and side jump [25,26]. In our
work, we do not consider the contribution of the anomalous
velocity term and other impurity-related processes and leave it
for future studies. We assume that the contribution of warping
term is greater, which can be achieved in relatively clean
samples.

VI. CONCLUSION

We have analyzed the acoustoelectric effect due to the
propagation of Rayleigh surface acoustic waves in monolayers
of transition-metal dichalcogenides. Our calculations show
that the resulting current is comprised of two main contribu-
tions: the conventional diffusive current in the direction of the
drag field and the Hall-like warping current in the direction
perpendicular to the drag field. It emerges due to the trigonal
warping of the electron dispersion and thus the orientation of
the crystal with respect to the direction of propagation of the
acoustic wave matters. We have analyzed the dependence of
the electric current density on the material parameters like
the electron density and the relaxation time, and the SAW
parameters such as its dispersion and intensity. We have also
considered the regimes of small and large electron densities
and electron scattering times. Our theory carries a potential
for its application in experiments aimed at studying two-
dimensional Dirac materials using acoustic waves.
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