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Dirac fermions in graphene using the position-dependent translation operator formalism
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Within the position-dependent translation operator formalism for quantum systems, we obtain analytical
expressions for the eigenstates and the Landau level spectrum of Dirac fermions in graphene in the presence
of a perpendicularly applied magnetic field and, as a consequence of the formalism, with a generalized form
of the momentum operator. Moreover, we explore the behavior of wave packet dynamics in such a system by
considering different initial pseudospin polarizations and metric parameters. Our findings show that the Landau
levels, the wave packet trajectories, and velocities are significantly affected by the choice of the metric in the
non-Euclidean space of the deformed momentum operator, exhibiting a tunable energy level spacing. In the
dynamics analysis, one observes an enhancement of the oscillation amplitude of the average positions for all
investigated pseudospin polarizations due to the nonsymmetric evolution of the wave packet induced by the
different metrics in the system. The present formalism is shown to be a theoretical platform to describe the
effects of two scenarios due to (i) a lattice deformation in graphene, giving rise to a natural Fermi velocity
renormalization, or even (ii) a nonuniform mass term, induced by a specific substrate, that varies on a length
scale much greater than the magnetic field length.
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I. INTRODUCTION

During the past two decades, many studies have been car-
ried out to understand the unique properties of graphene, a
single atomic thin layer of graphite [1,2]. A plethora of its
exotic features, such as the Klein tunneling effect and unusual
quantum Hall effect, originate from the fact that low-energy
charge carriers in graphene obey the zero-mass Dirac equa-
tion, providing a favorable environment to probe interesting
phenomena predicted by quantum field theories not found in
conventional semiconductors and metals. One consequence
of its gapless linear dispersion, in the presence of a perpen-
dicular magnetic field, is the

√
B dependence on the Landau

levels in contrast to the linear dependence on B observed in a
conventional two-dimensional (2D) electron gas spectrum for
Schrödinger fermions [3–6].

Another very interesting property of massless Dirac
fermions in graphene is that they experience Zitterbewegung,
a trembling motion caused by interference between posi-
tive and negative energy states [7,8] that was predicted by
Schrödinger for the motion of relativistic electrons in vac-
uum governed by the Dirac equation. Therefore, stimulated
by Schrödinger’s idea, numerous theoretical works have in-
vestigated the dynamics of wave packets in a 2D electron
gas [7–12] and, more recently, in 2D materials, for example,
single-layer [13–22] and bilayer [13,17,23] graphene, silicene
[24], transition metal dichalcogenides [25], and multilayer
phosphorene [26].

From the theoretical point of view in the analysis of
quantum systems, in recent years there has been a growing
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body of literature dealing with systems consisting of particles
with position-dependent mass [27–43]. Most of the previous
approaches [27–39] considered a modification of canonical
commutation relations or even modifications in the underlying
space, which leads to the problem of ordering in the kinetic
energy operator since in this formalism mass is mapped onto
an operator that does not commute with the momentum op-
erator [44]. To overcome this issue, Costa Filho et al. [40] in
2011 proposed a new method that consists of a generalized
translation operator which produces infinitesimal spatial dis-
placements, such that T (dx)|x〉 = |x + g−1/2

xx dx〉, where g−1/2
xx

is a function of the position and related to the metric. It
changes the momentum and, consequently, the commutation
relation between momentum and position into a more gen-
eralized form and leads to a modified Schrödinger equation
that resembles the standard Schrödinger equation to describe
charge carriers with position-dependent effective masses.
Thereafter, a series of recent studies have used this position-
dependent translation operator formalism [40–43,45–49].

Based on the Costa Filho formalism [40–43] and motivated
by the great interest in 2D materials due to their colossal pos-
sible future technological applications, in this work we extend
the previous reported analysis for the case of graphene in the
presence of a perpendicular magnetic field, and we show that
the metric in this formalism can be viewed as an additional
mechanism for controlling the electronic and transport prop-
erties of low-energy electrons in graphene; we also discuss it
in view of two scenarios due to the lattice deformation and to a
position-dependent mass term induced by a specific substrate.
To perform this investigation, we analytically solve the Dirac
equation with a generalized momentum operator and discuss
the role of the metric in the eigenstates and energy spectrum.
Moreover, we time evolve a Gaussian wave packet, describing
charge carriers traveling through the system, and calculate
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the expectation values of the position operator and velocity
operator as a function of time, discussing the main features
of the Zitterbewegung effect for different initial pseudospin
polarizations and metrics.

The present paper is organized as follows. In Sec. II we
present the theoretical framework used in this paper, showing
the analytical solution of the Dirac equation for monolayer
graphene in the presence of a perpendicularly applied mag-
netic field and with a deformed momentum along the x
direction due to a general metric originating from the position-
dependent translation operator formalism. The results of the
analytically calculated Landau levels for a generic metric
are also shown and compared with the nondeformed case.
In Sec. III, we investigate the wave packet dynamics and
how some physical quantities, such as average positions and
average velocities, evolve in time for the studied graphene
system with a generic metric. Results for different metrics,
for different initial pseudospin polarizations, and for the man-
ifestation of the Zitterbwegung on the wave packet motion in
graphene with this deformed metric are discussed. A summary
and concluding remarks are reported in Sec. IV.

II. ELECTRONIC PROPERTIES OF GRAPHENE
WITH A GENERIC METRIC

The energy spectrum of an infinite undoped graphene sheet
in the presence of a magnetic field and in the vicinity of the
Dirac cones can be obtained by solving the eigenvalue equa-
tion HD�(x, y) = E�(x, y) with the following Dirac-Weyl
Hamiltonian [50,51]:

HD = vF �σ · ( �P + e �A) + τ�σz, (1)

where vF is the Fermi velocity, e is the electron charge,
�A is the electromagnetic vector potential, �σ = (σx, σy, σz )
denotes the Pauli matrix, � (−�) is the on-site potential
induced by the substrate on the A (B) sublattice, which can
be seen as a mass term within the continuum model, and τ

is the valley index, being 1 (−1) for the K (K ′) Dirac point.
Based on the position-dependent translation operator formal-
ism [40–43], the generalized position-dependent momentum
operator associated with a spatial displacement that generates
the translation from point ν to ν + g−1/2

νν dν can be written
as Pν = −ih̄g−1/2

νν
∂
∂ν

, with ν = x, y, and z, where g−1/2
νν is

a function of the position and related to the metric. In fact,
g−1/2

νν is an element of a diagonal metric of the non-Euclidean
space under consideration. The eigenstates of the Hamiltonian
(1) are the two-component spinors � = [�A, �B]T , where �A

(�B) are the envelope functions associated with the probabil-
ity amplitudes of sublattice A (B).

For convenience, we choose the Landau gauge �A =
(0, B0x, 0), such that the system has translational invariance
only along the y direction (i.e., Py = h̄ky). Thus, one can
assume solutions such as the following ansatz:

�(x, y) = eiky
∫

g1/2
yy dy

(
ψ+(x)
ψ−(x)

)
. (2)

With the Hamiltonian (1) acting on the two-component
wave function (2), one obtains the following set of coupled

FIG. 1. Deformed η coordinate as a function of the nondeformed
x coordinate in real space [see Eq. (6)] for three different metric
parameters: black solid line, g = 0; red dashed line, g = 0.01; and
blue dotted line, g = 0.1. A magnetic field amplitude of B = 1 T was
assumed.

differential equations:[
1√
gxx

d

dx
+ (x − x0)

l2
B

]
ψ− = i

(E − τ�)

h̄vF
ψ+, (3a)

[
1√
gxx

d

dx
− (x − x0)

l2
B

]
ψ+ = i

(E + τ�)

h̄vF
ψ−, (3b)

where x0 = − h̄ky

eB0
= −l2

Bky and lB =
√

h̄
eB0

is the magnetic

length.
Decoupling the above set of equations (3) with respect to

ψ+, we arrive at

d2ψ+(η)

dη2
+

[
(E2 − �2)

h̄2v2
F

− e
√

g η

lB

l2
B

− (e
√

g η

lB − 1)2

gl2
B

]
ψ+(η)

= 0, (4)

where we consider the spatial metric as the linear function,

g−1/2
xx = 1 +

√
g

lB
(x − x0), (5)

and the application of the transformation

η(x) =
∫

g1/2
xx dx = lB√

g
ln

[
1 +

√
g

lB
(x − x0)

]
(6)

in order to eliminate the first derivative in Eq. (4). Notice
that g is a dimensionless parameter that is associated with the
effect of space modification. It is easy to note that for g = 0
we recover the nonmodified Dirac equation with the metric
equal to 1 (i.e., Pν → −ih̄ ∂

∂ν
). Therefore, the appropriate

length scale for the problem is the magnetic length lB. To
illustrate this spatial deformation on the η axis, Fig. 1 depicts
dependence of η as a function of the real and nondeformed
x coordinate [Eq. (6)] in the case of a linear metric as given
by Eq. (5). Three different metric parameters g were assumed,
and magnetic field amplitude was fixed at B = 1 T. We can
realize from Fig. 1 that the introduction of a non-null metric
parameter g induces a deformation in the η space, such that
η is moving away from a linear relation with respect to the x
coordinate to higher values of g, as can be seen by comparing
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the cases g = 0 and g = 0.1, and η < 0 is the most affected
direction.

From Eq. (4), we can obtain the wave functions ψ+ and
ψ−, given, respectively, by

ψ+(η) = Anβ
se−βL2s

n (2β ), (7a)

ψ−(η) = Anβ
se−β ih̄vF

lB
√

g(E + τ�)

× {
2e

√
gη

lB L2s+1
n−1 (2β ) + [2e

√
gη

lB − (1 + gs)]L2s
n (2β )

}
,

(7b)

where β = 1
ge

√
gη/lB , s = 1

g − (n + 1), L2s
n is the generalized

Laguerre polynomial, and An is the normalization constant.
The corresponding energy levels read

En = ±h̄vF

√
�2

h̄2v2
F

+ 2

l2
B

(n + 1) − g

l2
B

(n + 1)2, (8)

with n ∈ N . The positive values correspond to electrons (con-
duction band), while the negative values correspond to holes
(valence band). Repeating the same decoupling procedure of
the set of equations (3) but now for the ψ− component, we
find

En = ±h̄vF

√
�2

h̄2v2
F

+ n(2 − gn)

l2
B

. (9)

By taking g = 0 in Eqs. (8) and (9), we can easily obtain the
Landau level energies for the nondeformed graphene which
depends on the square root of both the level index n and the
magnetic field B and exhibits a different dependence on the
energy levels for sublattices A [En ∝ √

2(n + 1)] and B (En ∝√
2n). It is in contrast to the standard 2D electron gas, whose

Landau levels are equally spaced. Notice that for the graphene
case with g 	= 0, we have an additional contribution term for
the Landau levels that is proportional to the metric g and has
an n2 dependence. It is easy to realize from Eqs. (8) and (9)
that there is a range of valid g values to obtain real energy

levels, given by g � ( �lB
h̄vF n′ )

2 + 2
n′ , with n′ = 0, 1, 2, . . .; that

is, for a fixed g parameter only some n′ values are allowed. As
we shall discuss further, this term is responsible for changing
the charge carrier electronic properties in graphene with a
generic metric when compared to the nondeformed case, and
also it causes a shift in the energy spectrum. For � = 0,
note that Eq. (8) lacks the level with E = 0 that is present
in Eq. (9), and the introduction of a different metric does not
lift the degeneracy of the twofold zeroth Landau levels since
E0 = 0 from Eq. (9), unlike the mass term � that opens a
gap of 2� in the spectrum, and in addition the presence of
� shifts the Landau level spectrum for n 	= 0. The existence
of a zeroth Landau level E0 = 0 is a direct consequence of
the zero gap in the energy spectrum for Dirac fermions in
graphene and is due to its chiral symmetry [52]. An important
remark about Eqs. (8) and (9) is that the Landau levels are
independent of the valley index, and therefore, the Landau
level for n 	= 0 (n = 0) has fourfold (twofold) degeneracy,
being twofold associated with the electron-hole symmetry and
twofold associated with valley symmetry [4–6].

FIG. 2. (a) The lowest five Landau levels for electrons as a func-
tion of perpendicular magnetic field for metrics g = 0 (solid black
lines), g = 0.01 (dashed red lines), and g = 0.1 (dotted blue lines).
(b) Energy level spacing between two adjacent states En+1 − En as a
function of the metric for a fixed magnetic field amplitude B = 1 T
and a null mass term � = 0.

The dependence of the lowest-energy levels on the mag-
netic field for the unbiased graphene system for g = 0 (solid
black lines) and for g 	= 0 (dashed red lines for g = 0.01
and dotted blue lines for g = 0.1) is shown in Fig. 2(a). A
consequence of the metric change is a shift in the energy
levels, together with a change in level spacing, as emphasized
in Fig. 2(b), which depicts the behavior of the level spacing
as a function of the metric g, fixing magnetic field amplitude
B = 1 T. It is seen that as the metric increases, the energy
levels are shifted to lower values, and the spacing between
them decreases too, which in turn increases the number of
accessible electronic states for a fixed energy range. Note that
these behaviors of the deformed Landau levels with respect
to the metric resemble those observed in the following two
scenarios: (i) strained graphene, such that both the lattice and
Dirac cones are distorted, which leads to a spatial dependence
and anisotropy of the Fermi velocity induced by the lattice
change through a renormalized linear momentum [53–57],
and (ii) a single-layer graphene sheet deposited on a specific
deformed substrate, such that the substrate-induced mass term
is nonuniform and varies on a length scale much greater than
the magnetic field length [58]. In both scenarios, the Landau
levels change qualitatively in a similar way, as shown in
Fig. 2(a), i.e., exhibiting a contraction effect of the Landau
levels spectra. With respect to the first scenario, it is worth
mentioning that a more direct analogy with the considered
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FIG. 3. The wave function amplitude for the first four excited
levels, (a) n = 1, (b) n = 2, (c) n = 3, and (d) n = 4. The black
solid, blue dashed, and red dashed lines correspond to the total
wave function and the two pseudospin components ψ+ and ψ−,
respectively. The metric is g = 0.25, and the assumed magnetic field
is B = 1 T. I{ψ−} is shown since it is purely imaginary. The unit of
η is angstroms.

position-dependent spatial metric given by the linear function
Eq. (5) is uniaxially strained graphene. In this context, a recent
work [53] described such unidirectional deformation by us-
ing renormalized linear momentum in an effective Dirac-like
Hamiltonian that, similar to the current work, can capture
the feature of the contraction of the Landau levels, but as a
function of the deformation amplitude, instead of the metric
as treated here. In both cases, owing to the strain or metric
change, the contraction of the Landau level energies can be
understood by the renormalization of the Fermi velocity. From
this point of view, one can get an explicit relation showing
quantitatively direct correspondence between the spatial met-
ric g and the different types of strain in graphene, such that it
is possible to find g ≡ g(ε), with ε being the amplitude of the
lattice deformation.

From the analytical expressions (7a) and (7b), we plot in
Fig. 3 the four first excited wave functions for the graphene
case with a non-null metric assumed to be g = 0.25 and a fixed
magnetic field amplitude B = 1 T. The solid black, dashed
blue, and dashed red lines correspond to the total wave func-
tion |�|2 and the two pseudopsin components ψ+ and ψ−,
respectively. For the nondeformed graphene case, it is well
known [4–6,59] that solutions in the presence of an external
magnetic field are given by the Hermitian polynomials and
|�|2 is symmetric with respect to η = 0. Note that the total
wave function and the two components of the pseudospinor
are no longer spatially symmetric when we assume a non-
null parameter g. In analogy with strained graphene, such a
lack of spatial symmetry of the wave functions can be un-
derstood by the lattice deformation in graphene that causes
in the microscopic point of view changes in the interatomic
distances and in the hopping energies of the carbon atoms and,
consequently, a modification in the electronic band structure.
Such distortions on the Dirac cones can lead to an anisotropic
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FIG. 4. The dependence of the wave function on the magnetic
field for the metric g = 0.25 and for the first four excited levels:
(a) n = 1, (b) n = 2, (c) n = 3, and (d) n = 4. The amplitude
increases from black to white. The units of the magnetic field am-
plitude and η are teslas and angstroms, respectively.

position-dependent Fermi velocity which, in turn, can be seen
as an anisotropy and a position dependence on the effective
masses of the system. Therefore, within this analogy, the wave
function is more (less) localized at the regions where the
kinetic energy is lowest (highest) due to the highest (lowest)
effective mass along a certain direction. Note from Fig. 3 that
due to the non-null metric, the wave functions with higher
energetic states exhibit a strong localization for η < 0 that can
be associated with the region with higher effective mass, lower
renormalized Fermi velocity, and the most affected η direc-
tion, as demonstrated in Fig. 1. Similar results for deformed
graphene systems were already reported in the literature such
as strong localization along the deformed direction [53–57].
A very interesting aspect of the spatial distribution of the two-
component wave functions is that, even for the non-deformed
case (g = 0), the occupation of the sublattices displays a natu-
ral asymmetric occupation which originates from asymmetry
in positions of the nearest neighbors for atoms in the A and
B sublattices due to the different dependences of the energy
levels for sublattices A [Eq. (8)] and B [Eq. (9)], which differ
in the index n from 1. Moreover, Eq. (4) resembles a differen-
tial equation of a particle subjected to an effective Morse-type
potential [43] in η space, i.e., [d2/dη2 + Veff (η)]ψ+ = E ′ψ+,
which is the effective potential of the term inside the brackets
in Eq. (4) without the energy term E ′ = (E/h̄vF )2. Note also
that Fig. 3 shows strong asymmetry in the probability density,
which implies that it is more probable to find the particle in the
regions of maximum potential. In Refs. [60,61], the authors
showed that such asymmetry can be obtained when a particle
is subjected to an exponential-type magnetic field. However,
in the current work we obtain similar results by applying a
constant magnetic field in {x, y} space.

In addition to the wave function analysis for a graphene
system with a generic metric, Figs. 4(a)–4(d) show contour
plots of the first (n = 1), second (n = 2), third (n = 3), and
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fourth (n = 4) excited total wave functions, respectively, by
varying the magnetic field amplitude but keeping a fixed
value of the metric of g = 0.25. As already expected, as
the magnetic field increases, the magnetic length decreases,
and consequently, the wave functions become more confined.
Hence, although the introduction of a different metric (i.e.,
g 	= 0) delocalizes the wave function, giving rise to spatial
asymmetry, the effect of strong magnetic fields is able to
overcome such delocalization.

III. WAVE PACKET DYNAMICS IN GRAPHENE
WITH A GENERIC METRIC

Let us now investigate the effect on the wave packet dy-
namics in the presence of external magnetic field due to a
nonunitary metric [i.e., for gνν 	= 1 or, equivalently, for g 	= 0
in Eq. (5)], owing to a generalized position-dependent mo-
mentum operator in the considered formalism, and we shall
also discuss the results of the role of a different metric in as-
sociation with different physical scenarios already reported in
the literature [53–56,58] and also discussed in Sec. II. In this
analysis, we explore the time-dependent average positions and
velocities and the snapshots in real space of the wave packet
evolution by taking different metric parameters g and different
initial pseudospin polarizations. To do this, we use the well-
known split-operator technique [26,62–75] for wave packet
propagation in real time that consists of the solution of the
time-dependent Schrödinger equation ih̄∂�(�r, t ) = H�(�r, t )
by taking a separation of the time-evolution operator Û =
exp [−iH�t/h̄] in a series of matrices, such that the propa-
gated wave function after a time step �t can be calculated
by applying the expanded exponential time-evolution opera-
tor to the wave packet at any instant t , i.e., �(�r, t + �t ) =
Û�(�r, t ).

Like in Sec. II, to calculate the quantum electronic
trajectories using a wave packet within the split-operator tech-
nique, we consider (i) the continuum model Hamiltonian HD

given by Eq. (1) for the description of low-energy massless
fermions, (ii) the deformed momentum along the x direction
given by Px = −ih̄g−1/2

xx
∂
∂x

, and (iii) the linear function for the
metric given by Eq. (5). The initial wave packet is assumed
to be a circularly symmetric Gaussian distribution, multiplied
by a pseudospinor [c1, c2]T that accounts for the probability
distributions over the two sublattices of graphene (labeled A
and B) and by a plane wave with wave vector �k = (kx, ky),
which gives the wave packet a nonzero average momentum,
defined as

�(�r, 0) = N

(
c1

c2

)
exp

[
− (x − x0)2 + (y−y0)2

d2
+i(�k · �r)

]
,

(10)

where N is a normalization factor, (x0, y0) are the coordi-
nates of the center of the Gaussian wave packet, and d is its
width. For our study, the initial position of the wave packet
is at (x0, y0) = (0, 0); its width is assumed to be d = lB, with
lB = √

h̄/eB0 corresponding to the magnetic length for a fixed
magnetic field amplitude considered to be B0 = 10 T (and
thus lB = 81.13 Å), and its initial momentum is (k0

x , k0
y ) =

(0.035, 0) Å−1.

FIG. 5. (a) Trajectories drawn by 〈x〉 and 〈y〉 within t = 1600 fs
propagation time. (b) and (d) Average positions and (c) and (e)
expectation values of the velocities in the x and y directions, re-
spectively, as a function of time for a Gaussian wave packet with
initial pseudospin polarization [c1, c2]T = [1, 0]T , width d = lB =
81.13 Å, and initial momentum kx = 0.035 Å−1. The results are
obtained for different metrics: g = 0 (solid black lines), g = 10−4

(dashed blue lines), g = 10−2 (red dotted lines), and g = 0.1 (green
dash-dotted lines). The inset in (d) is an enlargement of the first time
steps.

In order to exemplify the effect of the metric in the wave
packet dynamics, we shall discuss next the results for the two
Gaussian distributions along the sublattices considered most
in the study of wave packet propagation: [c1, c2]T = [1, 0]T

(Sec. III A) and [c1, c2]T = [1, 1]T (Sec. III A). Since such
analysis for undeformed monolayer graphene was reported
in detail in Refs. [14,62,74], here we focus mainly on the
differences that arises due to the different metric.

A. [c1, c2]T = [1, 0]T

We first consider the simple case where the lower com-
ponent of the initial electronic wave function is zero, i.e.,
taking c1 = 1 and c2 = 0. This corresponds to the situation
in which the electron probability is initially located only at
the A sublattice of the graphene monolayer.

The trajectory drawn by �r(t ) = (〈x(t )〉, 〈y(t )〉) for such
a packet in the xy plane after a t = 1600 fs propagation
time is shown in Fig. 5(a). As expected due to the effect of
an external perpendicular magnetic field, the charge carrier
travels in a cyclotron orbit, and moreover, by assuming a
non-null g parameter, the radii of these orbits are strongly
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FIG. 6. Time evolution of electronic wave packet for the case
[c1, c2]T = [1, 0]T for the same parameters as in Fig. 5 at the time
steps, from left to right, t = 100 fs, t = 300 fs, t = 500 fs, t =
750 fs, t = 900 fs, and t = 1350 fs and assuming the metric is g = 0
(top), g = 0.01 (middle), and g = 0.1 (bottom). The wave packet
starts at (x0, y0 ) = (0, 0) Å.

affected, as we shall discuss below. The expectation values
of position and velocity as a function of time for different
metrics are depicted in Figs. 5(b) and 5(d) and 5(c) and 5(e),
respectively. Results for metrics g = 0, g = 10−4, g = 10−2,
and g = 0.1 are shown by solid black lines, dashed blue lines,
dotted red lines, and green dash-dotted lines, respectively. We
can see that the average values of position and velocity in
the x direction remain constant for the undeformed graphene
case (g = 0). However, when a non-null g is considered, the
average position and velocity in the x direction are no longer
zero and exhibit variations with the time evolution that are
more evident the greater the metric amplitude is. This can be
easily understood by keeping in mind that the introduction
of a different metric induces a renormalization of the Fermi
velocity, as discussed in Sec. II, leading to a non-null value
for 〈vx〉. Moreover, this behavior will be clarified next when
we discuss the symmetries of the total probability density
for different time steps. On the other hand, by analyzing the
average values of position and velocity in the y direction, one
observes a clear oscillation even for g = 0, as emphasized in
the inset of Fig. 5(d), in the first time steps of the wave packet
evolution that are damped as time evolves. This oscillatory
behavior indicates the manifestation of the Zitterbewegung
effect along the y direction, as already reported [14,19,62,74]
in the literature for this pseudospin configuration for the un-
deformed graphene case and confirmed here for g = 0 [see
the black line in Fig. 5(d)]. Moreover, one notices that such
oscillations exhibit a transient character, disappearing after
a few hundred femtoseconds, and that the duration time and
amplitude of the transient Zitterbewegung for 〈y〉 decay faster
as the metric value increases.

For a better understanding of the average position and
velocity behaviors in the x and y directions of Fig. 5, we
analyze the contour plots of the squared modulus |�|2 of
the propagated wave functions at different time steps. The
results are depicted in Fig. 6 for cases g = 0 (upper panels),
g = 0.01 (middle panels), and g = 0.1 (bottom panels) and
for the following time steps: from left to right, t = 100 fs, t =
300 fs, t = 500 fs, t = 750 fs, t = 900 fs, and t = 1350 fs.
Note that as the time evolves, the Gaussian wave packet,
which starts with a circularly symmetric shape, splits into two

parts moving with opposite velocities along the x axis. This
splitting leads to vanishing oscillations in the average posi-
tion and expectation values of velocity along the y direction
[see Figs. 5(d) and 5(e)] after t ≈ 180 fs, which explains the
transient behavior of the Zitterbewegung. The trajectory of
the wave packet is described by a circular cyclotron orbit,
which is clearly visible in Fig. 5(a) and also evident in Fig. 6
from the fact that the wave packet bends for large time steps
(see the last columns in Fig. 6) and by the average position
of the y coordinate, which has an extra oscillation with a
large amplitude associated with the radius of the cyclotron
orbit. Therefore, from Figs. 5 and 6 one can see that the
higher the amplitude of the g parameter is, the smaller the
radius of the cyclotron orbit is. For the undeformed graphene
case (top panels for g = 0), the two propagating subpackets
move symmetrically with respect to x = 0, i.e., |�(x, y, t )|2 =
|�(−x, y, t )|2 for a fixed time step. In contrast, for the non-
null g case (see the middle and bottom panels for g = 0.01
and g = 0.1) the portions of probability amplitudes and widths
of the two subpackets are noticeably different, and they are
increasingly distorted into an elliptic shape at higher g values.
This strong asymmetry in the total probability density is due
to the assumed position-dependent spatial metric that, in turn,
can be linked with strong anisotropy in the Fermi velocity
and linear momentum to the electron motion, such that the
momentum contributions along the negative and positive x
directions are different and thus give rise to two propagating
subpackets asymmetric with respect to each other, with one of
them being more elliptical. Moreover, it is interesting to note
that this large asymmetry in the probability density explains
the less evident Zitterbewegung effect and the reduction of
the transient time and is related to the reason why one gets a
non-null average position for the x coordinate. Note that since
the probability densities of the two subpackages for g 	= 0 are
not the same, the contributions to the total average position
value of the center of mass will be different, causing changes
in the trajectories and average values of position and velocity,
as shown in Fig. 5.

B. [c1, c2]T = [1, 1]T

We now investigate the case in which the wave func-
tion is equally distributed in sublattices A and B, which is
equivalent to choosing c1 = c2 = 1. Like in the previous case
(Sec. III A), we analyze the time evolution of average values
of position and velocity along the x and y directions, the
trajectories evolved in time, and the snapshots of the total
probability density at different time steps, with the results dis-
played in Figs. 7 and 8, respectively, for the same parameters
assumed in Sec. III A.

The trajectories drawn by �r(t ) = (〈x(t )〉, 〈y(t )〉) and the
expectation values of the position and velocities along the two
x and y coordinates shown in Fig. 7 are non-null for t > 0 and
do not remain constant as a function of time even for the un-
deformed graphene case (compare Fig. 7 with Fig. 5), unlike
the previous case for [1, 0]T . Note from Figs. 7(d) and 7(e)
that the average values of position and velocity along the y
direction exhibit less pronounced oscillations, as emphasized
in the inset of Fig. 7(e). In order to understand the origin
of this weak (or absent) oscillation in the average physical
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FIG. 7. The same as in Fig. 5, but now for a Gaussian wave
packet with pseudospin polarization [c1, c2]T = [1, 1]T . The inset in
(e) is an enlargement to emphasize the oscillatory behavior of 〈vy〉
for the first time steps.

variables for this chosen pseudopsin polarization, we ver-
ify the spatial time evolution of the initial wave packet by
showing snapshots for t > 0 of the total probability density
in Fig. 8. Notice that regardless of the g value, the wave
packet for this pseudospin configuration does not split into
two subpackets as it does for the previous configuration (see
Fig. 6), which is the reason why the electronic motion for this
case does not exhibit Zitterbewegung. In the current case, the
electronic trajectory is similar to the one for the left subpacket
in Fig. 6, causing the packet width to deform and vary as
time evolves due to the position-dependent spatial metric that
works in a way similar to the position-dependent effective
masses and anisotropic Fermi velocity. Also similar to the
previous pseudospin case, here the trajectory of the Gaussian

FIG. 8. The same as in Fig. 6, but now for a Gaussian wave
packet with pseudospin polarization [c1, c2]T = [1, 1]T .

wave packet center of mass is given by a cyclotronic orbit
that drastically changes when increasing the metric amplitude,
leading to a deformed elliptic orbit that is more squeezed the
greater the g parameter is [see Fig. 7(a)]. The oscillation in
Fig. 7(d) for 〈vy〉 is related to the asymmetric spreading over
time of the wave packet.

IV. CONCLUSIONS

In summary, we have investigated the effects of metric
changes in the electronic properties and in the time evolution
of a low-energy two-dimensional Gaussian wave packet for
graphene by means of the position-dependent translation op-
erator formalism. We showed that such a formalism is able
to introduce additional control of such properties and that
the studied system mimics two different physical scenarios:
a deformed graphene due to strain and a nonuniform mass
term, induced by a specific substrate, that varies on a length
scale much greater than the magnetic field length. A more
direct analogy with the position-dependent spatial metric in
this formalism is done with the first scenario when taking
into account a unidirectional deformation that induces renor-
malized and position-dependent linear momentum and Fermi
velocity.

With respect to the electronic properties, we analytically
derived the Landau levels and their respective wave functions.
An additional contribution term for the Landau levels was
found with

√
g dependence, and we showed that this term

is responsible for performing a contraction of the levels; that
is, the metric changes shift the Landau level to lower values
and decrease the level spacing. The total wave function and
the two pseudospin components are strongly affected by a
non-null metric g, leading to a delocalization of the wave
function.

By using the well-known split-operator technique and the
deformed Dirac Hamiltonian in the presence of an external
magnetic field developed in the position-dependent transla-
tion operator formalism, we investigated the wave packet
dynamics for different metrics and for different choices of
the initial pseudospin polarization. We analyzed the results
for the expectation values of center-of-mass coordinates, the
trajectories, the spreading of the wave packet in real space,
and their oscillations due to Zitterbewegung. In general, we
demonstrated that the non-null metric leads to asymmetry for
the wave packet evolution, and therefore, in some cases it
brings up oscillations in the average of the physical observ-
ables, and in other cases it suppresses the Zitterbewegung. The
strong asymmetry in the total probability density is due to the
position-dependent spatial metric that, in turn, can be linked
to strong anisotropy in the Fermi velocity and linear momen-
tum in the electron motion. We observed that the higher the
amplitude of the g parameter is, the smaller the radius of the
circular cyclotron orbit described by the electron is due to the
presence of magnetic field and the more deformed it becomes.

The theoretical formalism used here could be useful for
comparison and analogy to other two-dimensional-based sys-
tems, and we believe that the discussions of the results found
in this work will contribute to a better understanding of the
position-dependent translation operator formalism applied for
two-dimensional materials.
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