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Nanomechanics driven by Andreev tunneling
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We predict and analyze mechanical instability and corresponding self-sustained mechanical oscillations occur-
ring in a nanoelectromechanical system composed of a metallic carbon nanotube (CNT) suspended between two
superconducting leads and coupled to a scanning tunneling microscope (STM) tip. We show that such phenomena
are realized in the presence of both the coherent Andreev tunneling between the CNT and superconducting leads,
and an incoherent single electron tunneling between the voltage biased STM tip and CNT. Treating the CNT
as a single-level quantum dot, we demonstrate that the mechanical instability is controlled by the Josephson
phase difference, relative position of the electron energy level, and the direction of the charge flow. It is found
numerically that the emergence of the self-sustained oscillations leads to a substantial suppression of DC electric
current.
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I. INTRODUCTION

Modern nanomechanical resonators [1] characterized by
low damping and fine tuning of the resonant frequency are
widely used nowadays as supersensitive quantum detectors
[2–6] and as the mechanical component for various nano-
electromechanical systems (NEMS) [7,8]. The latter represent
a promising platform for studying the fundamental phenom-
ena generated by the quantum-mechanical interplay between
nanomechanical resonator and electronic subsystem [9,10].

Large amount of fascinating physical phenomena have
been predicted and observed in various NEMS, e.g., en-
ergy level quantization of a nanomechanical oscillator [11],
a strong resonant coupling of nanomechanical oscillator to
superconducting qubits [12,13], mechanical cooling [14–16],
a single-atom lasing effect [12,17], mechanical transportation
of Cooper pairs [18], and the generation of self-driven me-
chanical oscillations by a DC charge flow [19–24], just to
name a few.

A significant part of these effects is based on the reso-
nant excitation of low damped mechanical modes by coherent
quantum dynamics occurring in the electronic subsystem. A
straightforward method to establish coherent quantum dy-
namics in mesoscopic devices, e.g., the quantum beats, the
microwave induced Rabi oscillations, etc., is to use the macro-
scopic phase coherence of superconducting (SC) elements
incorporated into NEMS [25,26]; see also, for example, the
review [27]. In particular, in superconducting hybrid junctions
[28–35] the coherent electronic transport is determined by

*aparafil@ibs.re.kr
†hc2725@gmail.com

the presence of Andreev bound states [36,37]. The applied
DC or AC currents induce the transitions between Andreev
bound states, and the coherent high-frequency oscillations in
an electronic subsystem occur [15,38–40]. These coherent
charge oscillations can excite the mechanical modes in the
resonant limit only, when the frequency of mechanical mode
matches Andreev energy level difference [15].

On the other hand, an incoherent quantum dynamics oc-
curring in the electronic subsystem can induce the mechanical
instability and subsequent formation of the self-driven me-
chanical oscillations in hybrid junctions. Incoherent quantum
fluctuations of electric charge can be easily mediated by
tunneling of a single electron. The self-driven oscillations
generated by a DC electronic flow have been predicted in
Refs. [19,20], later observed in a carbon nanotube (CNT)
based transistor [21] and studied in detail [22,23]; see, e.g.,
Ref. [24] for a recent experiment. A nontrivial interplay be-
tween coherent and incoherent electric charge variation and
its influence on the performance of NEMS can be achieved
in a nanomechanical Andreev device, where normal and SC
metals are bridged by a mechanically active mediator.

In this paper, we present a particular NEMS setup where
the mechanical oscillations are strongly affected by a weak
coupling to the electronic part of a system. We demonstrate
that in the adiabatic limit as the frequency of mechanical
oscillations is much smaller than the typical frequencies of
electron dynamics, simultaneous presence of coherent An-
dreev tunneling and incoherent single electron tunneling can
induce mechanical instability of the resonator and result in the
appearance of the self-sustained mechanical oscillations.

The paper is organized as follows: Section II is devoted
to formulation of the model describing the nanomechani-
cal Andreev device. The effective Newton’s equation of the
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FIG. 1. Scheme of the superconducting (SC) nanoelectrome-
chanical device. A single-wall carbon nanotube (CNT) is suspended
between two SC leads which are characterized by the phases of SC
order parameter, φL,R. A normal metal electrode (STM tip) placed
near the CNT-QD allows us to inject electrons in CNT. The nanoelec-
tromechanical force F between the CNT and gate electrode, which
is located on the distance h from the CNT, is controlled by a gate
voltage Vg.

mechanical resonator is analyzed as well as the criterion of
the mechanical instability is discussed in Sec. III. The DC
electric current in the considered device is numerically studied
in Sec. IV. The summary and discussions are given in Sec. V.

II. MODEL

We consider a metallic single-wall carbon nanotube sus-
pended between two grounded SC electrodes [26] and coupled
to a scanning tunneling microscope (STM) tip via electron
tunneling. The two SC electrodes are characterized by the
same modulus � and different phases φL,R of SC order param-
eter, and corresponding Josephson phase difference φ = φR −
φL. We study the case where the CNT mean-level spacing is
greater than temperature kBT and the bias voltage eV applied
between STM tip and CNT. It allows us to treat the CNT
as a movable single-level quantum dot (QD). The capacitive
coupling between the CNT and a gate is controlled by a gate
voltage Vg. We also assume the dynamics of the CNT bending
is reduced to the dynamics of the fundamental flexural mode.
The scheme of the described model is presented in Fig. 1.

The Hamiltonian of the model reads as follows

H = HN + HS + HCNT + Htun. (1)

The first two terms in Eq. (1) are the Hamiltonians of an STM
tip (normal lead) and two SC leads, accordingly:

HN =
∑
kσ

(εk − eV )c†
kσ

ckσ , (2)

HS =
∑
k jσ

{ξk ja
†
k jσ ak jσ − �eiφ j (a†

k j↑a†
−k j↓ + H.c.)}. (3)

Here, ckσ (c†
kσ

) and ak jσ (a†
k jσ ) are annihilation (creation) op-

erators of electrons in the normal and jth SC leads ( j = L, R)
with energies εk and ξk j , correspondingly. The index σ =↑,↓
indicates the spin of electrons in the leads.

The Hamiltonian of the single-level vibrating CNT-QD
reads as follows

HCNT =
∑

σ

ε0d†
σ dσ + h̄ω0

2
( p̂2 + x̂2) − Fx̂

∑
σ

nσ . (4)

The quantum dynamics of the electronic degree of freedom
is described by the first term in Eq. (4), where ε0 is the QD
electron energy level, and dσ , d†

σ are annihilation and creation
operators of the electrons in the QD, nσ = d†

σ dσ . We omit
the interdot electron interaction Un↑n↓ in the case when U <

eV , since it will give only qualitative correction to the phe-
nomenon under consideration. More precisely, it will result in
renormalization of the QD energy level, ε0 → ε0 + U/2.

The second term in Eq. (4) characterizes the CNT vibra-
tions with the frequency ω0, and the dimensionless operators
x̂ = X̂/x0, p̂ = x0P̂/h̄ are canonically conjugated displace-
ment and momentum of the CNT-QD. Here, x0 = √

h̄/mω0

is the amplitude of the zero-point oscillations of the CNT,
and m is the mass of the CNT. Electromechanical interaction
determined by the third term in Eq. (4) is achieved through
the electrostatic interaction of the charged CNT-QD with the
gate electrode. The interaction strength is F ∝ (ex0/h)Vgβ

[20,41], where h is the distance between the CNT and gate
electrode, and β ∼ 0.1 is a geometrical factor associated with
the capacitances in the system.

The last term in Eq. (1),

Htun =
∑
kσ

e−x̂/λ
(
t n
k c†

kσ
dσ + (t n

k )∗d†
σ ckσ

)

+
∑
k jσ

(
t s
k a†

k jσ dσ + (
t s
k

)∗
d†

σ ak jσ
)
, (5)

describes the tunneling processes between the CNT and (i) the
STM tip with deflection dependent hopping amplitude, i.e.,
t n
k exp(−x̂/λ), where λ = l/x0 and l is the tunneling length of

the barrier; (ii) SC leads with the hopping amplitude t s
k .

III. MECHANICAL INSTABILITY

In order to rigorously demonstrate the phenomenon of me-
chanical instability in the SC hybrid junction, we analyze the
dynamics of the CNT’s flexural mode by using the reduced
density matrix technique. By treating the tunneling Hamil-
tonian (5) as a perturbation and tracing out the electronic
degrees of freedom in the normal and SC leads, one can get
a quantum master equation for the reduced density matrix
operator (in h̄ = 1 units):

ρ̇ = −i[HCNT, ρ] + i�S (φ)[d†
↑d†

↓ + d↓d↑, ρ] −
∑

σ

L[ρ].

(6)

Here, �S (φ) = 2πν0|t s
k |2 cos(φ/2) is the Josephson phase de-

pendent strength of the intra-QD electron pairing induced by
the coherent Andreev tunneling, ν0 is the electron density of
states in the leads, and L[ρ] is a Lindbladian operator in the
high-voltage regime eV 	 ε0, ω0, kBT , which allows us to
use the Born-Markov approximation [42,43]:

L[ρ] = �

2

{
{e− 2x̂

λ dσ d†
σ , ρ} − 2e− x̂

λ d†
σ ρdσ e− x̂

λ ,V > 0,

{e− 2x̂
λ d†

σ dσ , ρ} − 2e− x̂
λ dσ ρd†

σ e− x̂
λ ,V < 0.

(7)

Here � = 2πν0|t n
k |2 is the QD energy level width produced

by a single electron tunneling between the STM tip and the
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CNT. The quantum master equation (6) is justified in the deep
subgap regime under the following assumptions: All relevant
energies are smaller than the SC gap, eV, kBT, ε0, � 
 �, and
as a result all quasiparticle processes in the SC leads can be
disregarded. This approximation results in the appearance of
the second term in Eq. (6), responsible for the “proximity”
effect.

Density matrix ρ acts in the finite Fock space of the twofold
degenerate single-electron level in the QD. The four possible
electronic states are |0〉, |σ 〉 = d†

σ |0〉 (σ =↑,↓), and |2〉 =
d†

↑d†
↓|0〉. In this representation the reduced density matrix ρ

contains five nonzero elements: ρ00, ρ↑↑ = ρ↓↓ ≡ ρ1, ρ22,
ρ02, and ρ20. Using the normalization condition ρ00 + 2ρ1 +
ρ22 = 1 one can eliminate the ρ1 component of the density
matrix from further consideration. Therefore, the joint dynam-
ics of the electronic and mechanical subsystems is determined
by the matrix

�̂ = 1

2

(
ρ22 − ρ00 2ρ20

2ρ02 ρ00 − ρ22

)
. (8)

If the amplitude of the CNT displacement is larger than
the amplitude of zero-point oscillation, one can treat the dy-
namics of the CNT bending as a classical with time evolution
governed by Newton’s equation. Introducing the dimension-
less time units as ω0t → t we obtain a closed system of the
relevant equations for the CNT displacement x and matrix �̂

Eq. (8) in the following form:

ẍ + Q−1ẋ + x = α + αTr{σ3�̂}, (9)

ω0 ˙̂� = −i[ε(x)σ3 − �S (φ)σ1, �̂] − �(x)
(
�̂ − κ

2
σ3

)
,

(10)

where dimensionless parameter α = F/ω0, σi (i = 1, 2, 3) are
the Pauli matrices, ε(x) = ε0 − αx, �(x) = � exp(−2x/λ),
and κ = sgn(V ). An environment induced damping of the
mechanical subsystem is determined by the term ∝Q−1, where
Q ∼ 106 [21] is the quality factor.

In the adiabatic limit, ω0/� 
 1, we obtain �̂(t ) from
Eq. (10), and the nonlinear part of Eq. (9) is presented in the
following form (see details in Appendix):

Tr{σ3�̂(t )} ≈ κ

(
1 − 4�2

S (φ)

D(x(t ), φ)

)
+ ẋ(t )η(x(t )), (11)

where D(x, φ) = �2
R(x, φ) + �2(x), �R(x, φ) =

2
√

ε2(x) + �2
S (φ) is the energy difference between two

Andreev levels of the QD-SC subsystem. Notation �R means
that energy difference between two Andreev levels plays the
similar role as the Rabi frequency in the two-level problem
as will be discussed below. A mechanical friction coefficient
η(x), induced by interaction with the electronic degree of
freedom, reads as

η(x) = αI (x)

(
λ−1C1(x) + α

ε(x)

�2(x)
C2(x)

)
. (12)

Here, I (x) = κ4�(x)�2
S (φ)/D(x, φ) is the DC flow of elec-

trons between the STM tip and SC leads, and

C1(x) = 6�2(x) − 2�2
R(x)

D2(x, φ)
, (13)

C2(x) = 20�2(x) + 4�2
R(x)

D2(x, φ)
. (14)

The frequency of a typical CNT-based resonator is ω0 ∼
1 GHz, while the amplitude of zero-point fluctuations is x0 ≈
2 pm. Assuming Vg ∼ 100 mV, h ∼ 10−7m, and the tunnel-
ing length l � 10−10 m we estimate dimensionless coupling
constants to be α ∼ 0.1 and λ−1 ∼ 10−2.

After substituting Eq. (11) in Eq. (9), we found nonlinear
equation for the CNT deformation local in time. In the limit
α, λ−1 
 1 a small shift of the equilibrium position (static
solution) is obtained as

xc = α + κα
4ε2(0) + �2

D(0, φ)
+ O(α2, αλ−1). (15)

The stability of the static solution is studied by linearizing
Eq. (11). In the limit � 	 ω0, the time evolution of the small
CNT deviation from its equilibrium position δx(t ) = x(t ) − xc

is given by [44]

δẍ + (Q−1 − η(0))δẋ + δx = 0. (16)

The static solution xc of the system at η(0) > Q−1 becomes
unstable with respect to the generation of mechanical os-
cillation with amplitude exponentially increasing in time.
Development of instability results in the appearance of
self-sustained mechanical oscillations, governed by the non-
linearity of r.h.s. Eq. (9).

Next, we analyze the influence of various parameters on
the coefficient η(0) which we call a pumping coefficient in
what follows. First, we note that η(0) linearly increases with
the electromechanical coupling α and the DC flow ∝I (0).
Moreover, the pumping coefficient η(0) changes a sign de-
pending on the direction of the electronic flow, i.e., the sign
of eV . At eV > 0 (κ = 1) there is a flow of electrons from
the STM tip to the SC leads, while at eV < 0 (κ = −1) there
is a flow of holes in the same direction. At |eV | 	 2ε0, bias
voltage affects the phenomenon under consideration solely by
this means. Below we analyze the case of eV > 0 only.

The various dependencies of the pumping coefficient η(0)
on the parameters φ, �/�S (0), and ε(0) obtained from
Eqs. (12), (13), and (14) are shown in Fig. 2. Red color
scheme in Fig. 2 indicates the regime of mechanical insta-
bility η(0) > 0, while blue scheme shows the region of the
overdamped mechanical oscillations η(0) < 0. In the case
ε(0) = ε0 = 0, the pumping coefficient η(0) ∝ κα/λ is de-
termined by the ratio between � and �S (φ), since only the
first term in Eq. (12) contributes. The pumping coefficient
changes its sign when � = √

4/3�S (φ), see Fig. 2(a). If
the dependence of the electron hopping on the amplitude of
the CNT oscillations is negligible, i.e., λ−1 = 0, the pump-
ing coefficient η(0) ∝ κα2ε(0) is determined by the sign
of ε(0). Such behavior is illustrated in Fig. 2(b). General
case, when both terms Eq. (13) and Eq. (14) contribute into
the pumping coefficient Eq. (12), is shown in Figs. 2(c)
and 2(d). Figures 2(c) and 2(d) illustrate the cases of “posi-
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FIG. 2. Phase diagrams of the mechanical instability showing
pumping coefficient η(0) as a function of the Josephson phase
difference φ, the QD level width �/�S (0), and the QD energy
level ε(0)/ω0 for: (a) α = 0.2, λ−1 = 0.05, and ε(0) = 0 [when
only Eq. (13) contributes into η(0)]; (b) α = 0.2, �/�S (0) = 0.3,
and λ−1 = 0 [when only Eq. (14) contributes into the pumping
coefficient]; and for general case �/�S (0) = 0.3, λ−1 = 0.05 when
(c) α = 0.2 and (d) α = −0.2. The red and blue color schemes
indicate the mechanical instability (η > 0) and the damping (η < 0)
regimes, respectively. All diagrams are calculated for the case Q−1 =
0 and κ = 1.

tive” (α > 0) and “negative” (α < 0) electrostatic interaction,
respectively.

The origin of the pumping processes and corresponding
mechanical instability can be qualitatively explained as fol-
lows: Since two electronic states |0〉 and |2〉 in the QD are
not the eigenstates of the QD-SC subsystem, the quantum
Rabi oscillations emerge with a frequency proportional to the
energy difference between Andreev levels �R(x, φ). These
Rabi oscillations occur in the form of periodic in time single-
Cooper pair transfer between SC leads and the QD. However,
an incoherent single electron tunneling from the STM tip
to the QD can interrupt the coherent oscillations as well as
resume them.

As this takes place, the averaged charge in the QD is
governed by the interplay between two processes: (i) coherent
Rabi oscillations and (ii) an incoherent single electron tunnel-
ing. Both processes and their main characteristics, �(x) and
�R(x), are controlled by the CNT displacement and vary in
time if δẋ(t ) �= 0. Such variations give rise to a correction
of the average charge in the QD that is proportional to the
velocity of the QD, thereby generating effective friction force.
We note that the amplitude of the effective friction force is
determined by two terms [see Eq. (12)], where the first term
is induced by the time variation of the hopping amplitude of
single electron tunneling �̇(x(t )) ∝ λ−1ẋ, while the second
term is generated by the time variation of the Rabi frequency
�̇R(x(t )) ∝ αε(0)ẋ.

IV. DC ELECTRIC CURRENT

The self-sustained oscillations affect the DC current flow
between the STM tip and SC leads. This phenomenon allows
one to verify the mechanical instability through the electric
current measurement.

In the high-voltage regime eV > 2|ε0|, electron transfer
from the CNT-QD to the STM tip is blocked. The instanta-
neous current between normal metal and the CNT-QD is equal
to twice the product (account spin degree of freedom) of the
transition rate (� exp[−2x/λ]) that determines the number of
electron transfer per second and sum of probabilities of the
QD being in the empty (ρ00) or single occupied (ρ1) states,
see, e.g., Refs. [45,46]. The DC current in the adiabatic regime
reads as follows:

IN (x(t )) = 2e�e− 2x(t )
λ κ[ρ00(t ) + ρ1(t )]

≡ e�(x(t ))(κ − Tr{σ3�̂(t )}). (17)

If the pumping coefficient η(0) < Q−1, the mechanical oscil-
lations of the CNT are damped, and the DC electric current is
expressed as (see Appendix for details)

IN (0) = 4κe�
�2

S (φ)

ε2(0) + �2
S (φ) + �2/4

. (18)

This expression coincides with the DC current obtained in the
absence of electromechanical interaction. Such dependence is
shown in Fig. 3(a). The DC current strongly depends on the
Josephson phase difference φ and the QD energy level ε(0).
The current reaches its maximum at ε(0) = 0 and vanishes
at φ = π . Besides, IN (0) is proportional to ∝��2

S , revealing
Andreev tunneling [47] since only two electrons (the Cooper
pair) can tunnel from the QD to the SC leads.

In the regime of mechanical instability η(0) > Q−1, the
static solution becomes unstable and CNT vibrations develop
into pronounced self-sustained oscillations of finite ampli-
tude. As a result, the current exhibits periodic oscillations with
the frequency ω0. The averaged over the period of mechanical
oscillations DC current is obtained numerically and the result
is presented in Fig. 3(b). The projections of IN at fixed φ

and ε(0) are presented in Figs. 3(c) and 3(d), respectively. As
one can see in Fig. 3, pronounced self-sustained oscillations
of the CNT-QD suppress the charge current in the region of
parameters obeyed η(0) > Q−1 condition. The strength of this
current suppression depends on the amplitude of the CNT
self-oscillations and correspondingly on the pumping strength
η(0).

Qualitatively, the mechanically induced DC current sup-
pression can be understood in the adiabatic limit ω0 
 �,
when the regime of the self-sustained oscillations is achieved.
Thus, the DC current can be approximated as IN (x(t )) ≈
IN (0) + (x2(t )/2)(d2IN/dx2). In the above expression x(t )
can be presented as x = A cos(ω0t + χ ). Then, correction
to the static DC current generated by self-sustained oscilla-
tions reads as (A2/4)d2IN/dx2 after averaging over the period
of mechanical oscillations. Coefficient d2IN/dx2 depends on
various parameters of the system. Under the considered set
of parameters, for which numerical results are presented in
Fig. 3, d2IN/dx2 gives a negative correction and results in the
suppression of the DC current.
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(a) (b)

(c) (d)

FIG. 3. DC electric current IN/I0 normalized to the maximum of
static current I0 = e� as a function of the Josephson phase difference
φ and the QD energy level ε(0)/ω0 at �/�S (0) = 0.3 for the cases:
(a) α = 0 and (b) α = 0.2. Dashed and solid gray lines indicate
projections of the DC current at fixed φ = 2.7 and fixed ε(0)/ω0 = 3,
respectively. These projections are presented in panels (c) and (d),
where the charge current [IN (0) = eI(0)] at α = 0 is shown by black
dashed lines, and the DC current at α = 0.2 is shown by the blue
(solid) lines. Current in the pumping regime is calculated numeri-
cally from Eqs. (18), (9), and (10) by averaging over the period of
mechanical vibrations. All figures are obtained for Q = 106, κ = 1,
and λ−1 = 0.05.

V. SUMMARY AND DISCUSSIONS

We predict the phenomenon of mechanical instability and
corresponding self-sustained oscillations in a hybrid nano-
electromechanical device consisting of a carbon nanotube
suspended between two SC leads and placed near a voltage-
biased normal STM tip. Such an effect is based on a peculiar
interplay of the coherent quantum-mechanical Rabi oscilla-
tions induced by the Andreev tunneling between the CNT
and SC leads, and an incoherent single electron tunneling
between the STM tip and CNT. We obtain that the observed
mechanical instability and self-sustained oscillations of finite
amplitude are determined by two parameters: the relative po-
sition of the single-electron energy level and the Josephson
phase difference between the SC leads. Numerical analysis
demonstrates that the predicted mechanical instability devel-
ops into pronounced self-sustained bending oscillations of the
CNT resonator which, in its turn, result in a suppression of
the DC electric current flowing between the STM tip and SC
leads. This effect allows one to detect the predicted mechani-
cal instability through the DC current measurement. A SQUID

sensitivity to an external magnetic field can be achieved by
using proposed nanomechanical Andreev device through the
control of the Josephson phase difference by a magnetic flux.
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APPENDIX: REDUCED DENSITY MATRIX APPROACH

Here we would like to present the details of the deriva-
tion of Eq. (11). Using notations Ri = Tr{σi�̂} and �R =
(R1, R2, R3)T , master equation (10) can be rewritten in the
following form (in terms of dimensionless time ω0t and dis-
placement x)

ω0 �̇R = Â �R + κ�(x)�e3, (A1)

where operator Â reads

Â =
⎛
⎝−�(x) −2ε(x) 0

2ε(x) −�(x) 2�S (φ)
0 −2�S (φ) −�(x)

⎞
⎠, (A2)

and �e3 = (0, 0, 1)T .
In the adiabatic limit ω0 
 �, we assume that solution

of the reduced density matrix can be presented as a series
�R(t ) ≈ �R(0)(x(t )) + ẋ(t )(ω0/�) �R(1)(t ) + .... Substituting this
ansatz into Eq. (A1) we get

Â �R(0) = −κ�(x)�e3, (A3)

from which one can obtain the stationary solution of Eq. (10):

R(0)
1 = −κ

4�S (φ)ε(x)

D
, R(0)

2 = κ
2�S (φ)�(x)

D
, (A4)

R(0)
3 = κ

4ε2(x) + �2(x)

D
. (A5)

After substitution of the Eqs. (A4) and (A5) in Eq. (A1), we
obtain the first order correction to the reduced density matrix
over small parameter ω0/� 
 1:

d

dx
�R(0)(x) = 1

�
Â �R(1). (A6)

A mechanical friction coefficient induced by the interaction
with the electronic degree of freedom, second term in Eq. (11),
is obtained by solving algebraic equation (A6).
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