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Optical signatures of electron-phonon decoupling due to strong light-matter interactions
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Phonon interactions in solid-state photonics systems cause intrinsic quantum decoherence and often present
the limiting factor in emerging quantum technology. Due to recent developments in nanophotonics, exciton-
cavity structures with very strong light-matter coupling rates can be fabricated. We show that in such structures,
a regime emerges where the decoherence is completely suppressed due to decoupling of the dominant phonon
process. Using a numerically exact tensor network approach, we perform calculations in this nonperturbative,
non-Markovian dynamical regime. Here, we identify a strategy for reaching near-unity photon indistinguisha-
bility and also discover an interesting phonon dressing of the exciton-cavity polaritons in the high-Q regime,
leading to multiple phonon sidebands when the light-matter interaction is sufficiently strong.
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I. INTRODUCTION

The development of scalable solid-state quantum technol-
ogy is challenged by lattice vibrations, i.e., phonons, which
even at zero temperature deteriorate the quantum coherence
[1,2]. The interaction of electrons and phonons thus leads to
remarkable features in the optical emission spectrum, such
as broad spectral sidebands and incoherent scattering [3–7].
This is detrimental to the optical coherence and important to
circumvent for applications in quantum technology. It also
presents an open quantum system with rich physics, operating
in a regime of pronounced non-Markovian dynamics [8].

Recent developments in nanophotonics have opened up the
possibility of creating dielectric nanocavities with deep sub-
wavelength confinement of light [9], leading to light-matter
interaction strengths otherwise far beyond reach in dielectrics
[10,11]. Moreover, experiments have demonstrated very high
coupling strengths between a plasmonic nanocavity and two-
dimensional transition metal dichalcogenides [12–17] or a
single dye molecule [18]. These developments open the door
to a regime of nanophotonic electron-phonon interactions,
where the light-matter coupling rate is comparable to or larger
than the dominating phonon frequencies in the environment.
Previous theoretical studies in the context of quantum chem-
istry have shown that decoupling of electronic and nuclear
dynamics in chemical reactions can occur in this regime
[19–21]. In this paper, we theoretically study the impact of
electron-phonon decoupling on light emission from exciton-
cavity systems and identify the fundamental requirements for
complete elimination of phonon signatures in the generated
light. We consider a generic system consisting of an exciton
mode coupled to a single quantized cavity mode and a contin-
uum of phonon modes. Here, the comparability of phononic
and optical timescales makes calculations of the dynamical
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properties highly challenging and has demanded extensive de-
velopment of nonperturbative and non-Markovian theoretical
methods [22–27]. In this work, we have implemented a nu-
merically exact and computationally efficient tensor network
formulation, which allows us to calculate two-time averages
[28,29], thus forming the basis for assessing optical emission
properties. Furthermore, we make use of a variational polaron
perturbation theory to derive analytical results that explain the
dynamical decoupling process.

As an important example system, we consider a nanocavity
containing a semiconductor quantum dot, which is coupled to
the continuum of longitudinal acoustic phonon modes of the
host lattice [30–33]. For this system, we calculate the emis-
sion spectrum and the photon indistinguishability, which is a
useful and generic measure of the optical coherence [34]. We
find that the interplay between the phonon cutoff frequency
(i.e., the dominating vibrational frequency scale in the envi-
ronment), the light-matter coupling strength, and the cavity
decay rate determines the type of phonon decoupling process
that can be observed. Specifically, the phonon signatures in
the optical emission can be completely suppressed, when the
nanocavity is in the low-Q Purcell regime and the light-matter
interaction strength exceeds the phonon cutoff frequency. This
opens a route towards realizing single-photon sources with
near-unity photon indistinguishability. Additionally, we pre-
dict an interesting effect in the high-Q limit, where each of
the exciton-polariton peaks in the spectrum is dressed with an
individual phonon sideband, demonstrating nonperturbative
dynamics, where polaritons and polarons occur at an equal
footing. The observed decoupling effects can occur for any
type of excitonic system and rely only on the general form of
the exciton-phonon coupling.

II. ELECTRON-PHONON DECOUPLING REGIME

Our analysis is based on a generic system consisting of a
localized exciton state |X 〉, a cavity mode with annihilation
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operator a, and a vibrational environment with phonon
annihilation operators {bk}. When an exciton is created, the
equilibrium position of the ions of the lattice or molecule is
displaced due to the electrostatic interaction. This leads to an
exciton-phonon coupling described by the Hamiltonian [35]

Hep = |X 〉〈X |
∑

k

h̄(gkbk + g∗
kb†

k ), (1)

where {gk} are the exciton-phonon coupling strengths. The
free evolution of the phonons is governed by the Hamiltonian
Hp = ∑

k h̄νkb†
kbk, where νk is the frequency of the phonon

mode with momentum k. Together with the coupling Hep, this
defines the phonon spectral density J (ν) = ∑

k |gk|2δ(ν −
νk ), which fully characterizes the influence of the vibrational
environment on the exciton. For any realistic physical system,
this spectral density has a cutoff frequency ξ such that
J (ν) � 0 for ν � ξ . This cutoff frequency is related to the
length scale of the exciton wave function and the properties
of available phonon modes in the material [35–37]. The
evolution of the exciton-cavity system is governed by the
Hamiltonian

Hs = h̄ωX |X 〉〈X | + h̄ωca†a + h̄g(|0〉〈X |a† + |X 〉〈0|a), (2)

where ωX and ωc are the resonance frequencies of the exciton
and cavity, respectively, g is the light-matter coupling strength,
and |0〉 is the electronic ground state. Furthermore, cavity
losses with a rate κ , exciton losses with a rate γ , and exci-
ton dephasing with a temperature-dependent rate γ ∗(T ) are
treated through the Lindblad formalism [38,39] as Markovian
effects [40–42]. To describe the optical emission properties of
the system, we initialize it in the exciton state with zero pho-
tons in the cavity and calculate the spectral correlation func-
tion of the emitted photons as the system relaxes, S(ω,ω′) =
κ〈a†(ω)a(ω′)〉 = κ

∫ ∞
−∞ dt

∫ ∞
−∞ dt ′e−i(ωt−ω′t ′ )〈a†(t ′)a(t )〉.

From this spectral function, we can calculate the emis-
sion spectrum as S(ω,ω) [43]. In addition, it provides
access to the coherence properties of the emitted pho-
tons, for example, their indistinguishability [44] I =
[
∫

dω S(ω,ω)]−2
∫

dω
∫

dω′|S(ω,ω′)|2, which quantifies the
interference visibility of two subsequently emitted photons.

There are three main parameter regimes of this system:
In the Purcell regime [Fig. 1(a)], attained when 4g < κ (in
the limit where pure dephasing can be neglected), the exci-
ton decays and emits a photon into the cavity with a rate
of � = 4g2/κ . In this process, a phonon wave packet may
be emitted or absorbed, generating a broad sideband in the
emission spectrum. At low temperatures kBT 	 h̄ξ , the side-
band is asymmetric and red detuned from the zero-phonon
line, reflecting that phonon emission dominates over phonon
absorption [45]. In the strong coupling regime [Fig. 1(b)], the
coupling strength exceeds the decay 4g > κ , but is still well
below the phonon cutoff frequency. Here, the exciton and cav-
ity form hybrid polaritons |±〉 = |1, 0〉 ± |0, X 〉 (where |n, e〉
denotes a n-photon cavity state and electronic state e ∈ {0, X })
that are spectrally well resolved and split by a frequency of 2g.
The dominating decoherence mechanism in this regime arises
from a resonant transition from the upper polariton to the
lower polariton under the emission of a phonon wave packet
with energy ∼2h̄g. If the temperature is sufficiently high to

(a) (b) (c) Phonon decouplingStrong couplingPurcell enhancement

FIG. 1. Illustration of phonon-mediated optical emission pro-
cesses. (a) In the Purcell regime, the exciton decays and emits a
photon (orange arrow). During this process, a phonon wave packet
(blue wiggly arrow) might be emitted or absorbed, resulting in a
photon with lower or higher energy. (b) In the strong light-matter
coupling regime, a phonon wave packet can be emitted either by
relaxation from the upper polariton to the lower one (downwards
wiggly arrow), or when one of the polaritons decays to the ground
state. (c) In the phonon decoupling regime, where the polariton
splitting 2g exceeds the phonon cutoff frequency ξ , the phonon side-
bands on the two polaritons do not overlap and are hence spectrally
resolved.

populate the phonon modes, the reverse process can also take
place by phonon absorption. At low temperatures, the phonon
emission process |+〉 → |−〉 dominates, and a spectral polari-
ton asymmetry can be observed, because photons are thus pre-
dominantly emitted from the lower polariton state [24,46,47].
Since the polariton splitting is small compared to the phonon
cutoff frequency, the sideband seen in the Purcell regime is
not resolved into contributions from the two polaritons.

Increasing the coupling strength further leads to a regime
of phonon decoupling [Fig. 1(c)], where 2g exceeds the
phonon cutoff frequency. Due to this, there are no phonon
modes with sufficiently high energy to drive polariton transi-
tions, and this decoupling leads to a recovery of the quantum
coherence. Additionally, the spectral symmetry between the
polariton peaks is restored and the polaritons are now so far
separated that the individual phonon-polariton sidebands are
spectrally resolved.

Calculating the temporal correlation function entering
S(ω,ω′) is a technically demanding task due to the non-
Markovian interactions with the phonon environment. Our
approach, based on a tensor-network representation of the
phonon influence functional, is described in Appendix A. To
illustrate the three different regimes in Fig. 1, we use a semi-
conductor quantum dot in a nanocavity as an example. Here,
the phonon cutoff frequency is typically on the order of a few
ps−1 [47], and the spectral density is J (ν) = αν3 exp −(ν/ξ )2,
where α is an overall phonon coupling strength [37]. The opti-
cal emission spectra for parameters corresponding to the three
characteristic parameter regimes are shown in Fig. 2. The
spectra in the upper panels are calculated for a temperature
of T = 4 K, and in the lower panels for T = 150 K.

In the Purcell regime [Figs. 2(a) and 2(b)], the spectrum
exhibits a narrow zero-phonon line dressed by a broad phonon
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(a) (c) (e)

(b) (d) (f)

FIG. 2. Optical emission spectra in of a quantum dot in a cavity in the (a), (b) Purcell regime g = 0.05 ps−1, κ = 0.5 ps−1, (c), (d) strong
coupling regime g = 1.1 ps−1, κ = 0.5 ps−1, and (e), (f) phonon decoupling regime g = 10.0 ps−1, κ = 0.5 ps−1. For the upper panels, the
temperature is T = 4 K, and for the lower panels, T = 150 K. We have used an overall phonon coupling strength α = 0.025 ps2 and phonon
cutoff frequency ξ = 2.23 ps−1, corresponding to a GaAs quantum dot of size 3 nm. The cavity and exciton were taken resonant, ωc = ωX + Rv,
and the exciton decay γ = 0.01 ps−1.

sideband, which is asymmetric in the low-temperature limit.
In addition, thermal phonon scattering and dephasing broad-
ens the zero-phonon line at higher temperatures. In the strong
coupling regime [Figs. 2(c) and 2(d)], the polariton peaks are
asymmetric at low temperature, and the polariton peaks are
dressed by a single-phonon sideband. In the regime of phonon
decoupling [Figs. 2(e) and 2(f)], the polaritons are split be-
yond the phonon cutoff frequency, and thus the polaritons
are dressed by spectrally resolved sidebands. Furthermore, the
polariton symmetry in the spectrum is recovered.

Earlier theoretical work has identified a related phe-
nomenon for an emitter driven with an external laser field,
described by a semiclassical driving, instead of the quantized
cavity mode considered here. Specifically, a reappearance of
Rabi oscillations was observed when the laser driving strength
exceeds the phonon cutoff frequency [48]. These findings
were later supported by intuitive and accurate perturbation
theories based on a variational polaron transformation [37,49]
that led to a deeper understanding of the system, and it has
further been shown that such variational strategies could be
combined with coupling to a quantized cavity mode [50].
Inspired by these approaches, we now proceed to develop a
variational polaron theory for our system with a quantized
cavity mode and use this theory to interpret our numerical
results.

III. VARIATIONAL POLARON THEORY

The variational polaron formalism is based on a unitary
transformation generated by the operator

V = |X 〉〈X |
∑

k

fk

νk
(b†

k − bk ), (3)

which transforms the Hamiltonian as Hv = eV He−V . The
parameters fk, which define the transformation, are then deter-
mined by minimizing the Feynman-Bogoliubov upper bound
on the free energy [51,52] (see Appendix C). In the variational

frame, the system part of the Hamiltonian is given by

Hs,v = h̄(ωX + Rv)|X 〉〈X | + h̄ωca†a

+ h̄gv(|X 〉〈0|a + |0〉〈X |a†), (4)

with Rv = ∑
k fk( fk − 2gk )/νk the variational renormal-

ization of the exciton transition frequency and gv =
gBv is the variationally renormalized light-matter cou-
pling strength, with the renormalization factor Bv = 〈e±V 〉 =
exp[− 1

2

∑
k

f 2
k

ν2
k

coth(β h̄νk/2)], where β = 1/kBT .

The effect of the variational polaron transformation is
to dress the excitonic dipole operator by a vibrational dis-
placement, such that |0〉〈X | → |0〉〈X |e−V . In this dressing,
the displacement of the phonon mode with momentum k
depends on the the relative magnitude of g and νk; modes
with νk 	 2g are effectively left undisplaced, and modes
with νk � 2g are displaced by gk/νk. In the intermediate
regime νk � 2g, the modes are displaced between these two
limits. This k-dependent displacement reflects the ability of
the phonon modes to follow the dynamics of the exciton
and cavity. Thus, the variational theory predicts that phonon
modes with frequencies below 2g are effectively decoupled
from the exciton-cavity system because they are too slow to
follow the vacuum Rabi oscillations between the exciton and
cavity. Since the cutoff frequency ξ sets the characteristic
frequency scale for the phonon modes that interact with the
exciton, the variational theory predicts that all the relevant
phonon modes are decoupled when 2g � ξ . However, as we
have seen in Fig. 2, this is not the full story: The polaritonic
phonon sidebands that emerge in the decoupling regime are a
manifestation of vibrational dressing of the polaritons, which
persist even though 2g � ξ .

An important characteristic that quantifies the transfor-
mation is the variational renormalization factor Bv, which
depends on g and takes a value between 0 and 1, such that
Bv � 1 when 2g � ξ [see Fig. 3(a)]. The significance of Bv

is twofold: First, the light-matter interaction in the trans-
formed Hamiltonian Hv is renormalized as g → gBv, meaning
that the phonons reduce the effective coupling strength.
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(a)

(b)

(c)

FIG. 3. (a) Phonon spectral density evaluated at ν = 2g (green,
left axis) and variational renormalization factor Bv (right axis) at
T = 4K (blue) and T = 150 K (red) as a function of the light-matter
coupling strength g. The phonon cutoff frequency is indicated as ξ/2
by a solid black line. (b) Photon indistinguishability as a function of
light-matter coupling strength g for fixed cavity decay κ = 0.5 ps−1

(blue line and open circles) and cavity decay rate pinned to the cou-
pling strength κ = 4g (orange line and dots) at T = 4 K. (c) Same as
in (b), but at T = 150 K. The line signatures are the same as in (b).
The exciton decay is γ = 0.01 ps−1 for all calculations.

Furthermore, when the exciton-cavity system is in the low-Q
Purcell regime, 4g < κ , and κ � ξ , the probability of gen-
erating a phonon wave packet jointly with the emission of a
photon is given by 1 − B2

v, i.e., the phonon sideband consti-
tutes a fraction of 1 − B2

v of the total emission spectrum; in
the limit g → 0, B2

v reduces to the Franck-Condon factor [2].
However, as shown in Figs. 2(c) and 2(d), this branching ratio
does not hold in the phonon decoupling regime, where the po-
lariton peaks are dressed with a phonon sideband, even though
g is sufficiently large to ensure Bv � 1. Thus, the polari-
tonic phonon sidebands are a strongly nonperturbative effect
that cannot be captured even by the variationally optimized
perturbation theory. In analogy with the coupling strength
renormalization, the variational transformation also shifts the
exciton resonance by Rv = ∑

k fk( fk − 2gk )/νk. This effect
is of minor importance, but needs to be taken into account
when setting the cavity frequency to resonance with the
exciton.

IV. RESTORING THE OPTICAL COHERENCE

To investigate the overall influence of the phonons in the
decoupling regime, the photon indistinguishability is shown
in Fig. 3(b) as a function of g. The blue line with open
circles signifies a configuration with fixed cavity decay rate,

(a)

(b)

FIG. 4. Quantum efficiency of photon emission η as a function
of exciton-cavity coupling strength g. The parameters are the same
as in Fig. 3.

corresponding to the blue spectra in the upper panels of Fig. 2.
Here, it is clearly seen that the impact of the phonon environ-
ment is most significant when J (2g) is maximal, meaning that
the scattering process from the upper polariton to the lower is
resonantly enhanced, and the photon emission process is ex-
posed to strong decoherence. However, when 2g exceeds the
cutoff frequency, the indistinguishability converges to ∼0.95,
due to the persistent polariton phonon sidebands. Alterna-
tively, the orange line with dots shows the indistinguishability
in a Purcell configuration, where κ is pinned at 4g, ensuring
that the system never enters the strong coupling regime. Here,
the phonon sideband can be completely eliminated when the
zero-phonon line broadens sufficiently to absorb the entire
sideband.

The difference between the polariton and Purcell regimes
becomes even more pronounced in the high-temperature limit
[Fig. 3(c)], where the sideband is more dominating. Due
to thermal phonon population, the exciton dephasing here
is stronger, meaning that the increase in indistinguishability
with light-matter coupling strength is slower than for the
low-temperature case. It is noteworthy that even at this high
temperature, it is possible to achieve phonon decoupling and
thus near-unity indistinguishability.

In addition to the photon coherence, the quantum efficiency
is another important feature of interest in the context of single-
photon sources [53]. The quantum efficiency is the probability
that an exciton is successfully converted into a photon in the
detection channel. In our case, the cavity mode is the relevant
detection channel, and the efficiency can be calculated as [2]

η = κ

∫ ∞

0
dt〈a†(t )a(t )〉. (5)

This efficiency is plotted in Fig. 4 for T = 4 K [Fig. 4(a)]
and T = 150 K [Fig. 4(b)] for the same parameters as the
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FIG. 5. Asymmetry of polariton peaks A as a function of cou-
pling strength (solid line and open circles, left axis), overlaid
with analytically calculated differential polariton scattering rate �A

(shaded area, right axis). The parameters are the same as in Fig. 3 at
T = 4 K with κ = 0.5 ps−1.

indistinguishability in Fig. 3. In the Purcell regime, the decay
of the exciton into cavity mode can be approximated as a
Markovian process with the rate � = 4g2/[κ + γ ∗(T )] [54].
This process competes with the exciton losses due to other
processes (most notably spontaneous emission into noncav-
ity modes), with the rate γ . Thus, the efficiency approaches
ηPurcell = �/(� + γ ) (shown with black dotted lines), and thus
asymptotically approaches unity with increasing light-matter
coupling. In the configuration with fixed cavity decay, the
emission of photons into the detection channel is limited by κ

and the quantum efficiency therefore converges to a subunity
value as the coupling strength increases.

We now turn our attention towards the phonon-induced
polariton asymmetry in the spectrum that arises when the
upper polariton decays to the lower polariton, which is the
dominant dephasing mechanism in the strong coupling regime
at low temperatures. In Fig. 5, we show, as a function of g,
the spectral asymmetry between the polariton peaks (solid
line and open circles, left axis), calculated as A = (S− − S+)/
(S− + S+), where S± := S(ω±, ω±) is the emission spectrum
evaluated at the upper (+) and lower (−) polariton peaks. As
expected, the polariton symmetry is recovered in the limit
2g � ξ . To support this finding, we use a master equation
in the variational frame to derive the asymmetry-driving dif-
ferential scattering rate from the upper to the lower polariton
(see Appendix D),

�A � π

2
J (2gBv)[1 − F 2(2gBv)], (6)

where F (ν) is the dimensionless variational displacement
function F (νk ) = fk/gk. This analytical scattering rate is also
shown in Fig. 5 (shaded area, right axis) and exhibits a similar
behavior as the polariton asymmetry. These findings show
that the phonon-induced polariton scattering can indeed be
eliminated in the phonon decoupling regime because there are
no available phonon modes with sufficiently high frequency
to match the polariton energy difference. However, as shown
in Figs. 2 and 3, this does not mean that the phonons are
fully decoupled in this regime since the polaritonic phonon
sidebands do not rely on resonant transitions, but occur due to
vibrational dressing of the individual polaritons.

NV center [65,66]

Quantum dot in sub-
wavelength cavity [9]

Transition metal 
dicalchogenide [13,16,17]

Single molecule [18]

Quantum dot  [61, 63]

FIG. 6. Examples of exciton-cavity coupling strength and
phonon cutoff frequency for a range of different material platforms.
The green shaded area indicates the regime 2g > ξ , where electron-
phonon decoupling can occur. The dotted line corresponds to the
parameter range used in Figs. 2 and 3. The parameters are summa-
rized in Table I.

V. EXPERIMENTAL PLATFORMS

The exciton-phonon decoupling regime can be reached by
several material platforms. In Fig. 6, we show typical val-
ues for exciton-cavity coupling strength and phonon cutoff
frequency for different quantum optical systems. The green
shaded area indicates the regime 2g > ξ , where the light-
matter coupling is sufficiently strong to decouple the phonons.
There are several experimental examples of systems operat-
ing in this regime, namely, two-dimensional transition metal
dichalcogenides (black circles) and single dye molecules (or-
ange cross) coupled to plasmonic nanocavities. In addition,
we predict that recently proposed dielectric cavities with deep
subwavelength confinement [9–11] can bring semiconductor
quantum dots into the decoupling regime (blue dot), although
the current experimental state-of-the-art quantum dot cavity
systems (red triangles) operate below the decoupling limit.

VI. CONCLUSION

In conclusion, we have shown that the phonons in the en-
vironment of a localized exciton coupled to a nanocavity can
be dynamically decoupled when the light-matter coupling is
sufficiently strong. We have found that an effective decoupling
occurs in the Purcell regime, where the zero-phonon transition
occurs with a rate much higher than the phonon cutoff fre-
quency. Furthermore, we have found that the phonon-induced
polariton scattering in the strong light-matter coupling regime
can be eliminated when the polariton splitting exceeds the
phonon cutoff frequency. However, we also find a significant
phonon dressing of the individual polaritons in the high-Q
limit that persists into the phonon decoupling regime, demon-
strating the importance of operating in the Purcell regime.
These principal observations only rely on the relative magni-
tude of the exciton-cavity coupling strength and the phonon
cutoff frequency, and generally hold for any exciton-cavity
system.
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APPENDIX A: TENSOR NETWORK IMPLEMENTATION

Here we describe how the two-time correlation function
〈a†(t )a(t ′)〉 can be calculated numerically using a tensor net-
work representation of the phonon influence functional. Our
implementation of the tensor network algorithm is based on
the general technique described in Ref. [28], but applied to
the cavity QED system investigated here. Below, we give a
brief account of the method.

The relevant subspace of quantum states in the system
Hilbert space is spanned by the three-dimensional basis
{|0, 0〉, |1, 0〉, |0, X 〉}; we enumerate these basis states by
|s〉, where s = 0, 1, 2. In general, we have s = 0, . . . , d − 1,
where d is the dimension of the system Hilbert space. All
dynamical information pertaining to the system degrees of
freedom, comprising n-point temporal correlation functions,
can be calculated from the so-called process tensor [55]. This
object is a rank-(2k + 1) tensor, where k is the number of
discrete time steps in the numerical calculation of the dynam-
ics. Formally, it is constructed on an enlarged system Hilbert
space, where two additional copies of the system Hilbert space
are created at each of the k time steps; the two partitions
at time step t j (0 � j � k) correspond to quantum channels
going into and out from, respectively, the system at time
t j . The infinitesimal time-evolution operator Uδt = e−iHδt/h̄

is then applied to every copy, followed by a trace over the
environmental degrees of freedom. The process tensor can be
formally written as

ϒk:0 =Tr
{
U (s′

kr′
k sk−1rk−1 )

δt · · ·U (s′
1r′

1s0r0 )
δt

[
χ

(r′
0s′

0 )
0

]}
× |s′

ksk−1 . . . s′
1s0s′

0〉〈r′
krk−1 . . . r′

1r0r′
0|, (A1)

where repeated indices are summed over (s j, r j = 0, 1, 2) and
U (s′r′sr)

δt is a superoperator working on the environment density
operator as

U (s′r′sr)
δt [ρp] = 〈s′|Uδt (|s〉〈r| ⊗ ρp)Uδt |r′〉 (A2)

and χ
(r′

0s′
0 )

0 is the matrix element 〈r′
0|χ0|s′

0〉 of the initial den-
sity operator, which we take to be separable with a thermal
environmental state χ0 = ρs(0) ⊗ e−βHp/Tr[e−βHp ] with the
inverse temperature β = 1/kBT and ρs(0) the initial den-
sity operator of the exciton-cavity system. Using the process
tensor, any k-point correlation function can be evaluated as
〈Ak (tk ) . . .A0(t0)〉 = Trk:0[(Ak ⊗ · · · ⊗ A0)ϒk:0], where the
trace is over all the copies of the system Hilbert space in the
process tensor and A j denotes a superoperator working on one
partition of the jth system space and A j is the corresponding
Choi representation. In the present situation, we are interested
in evaluating two-point correlation functions 〈a†(ti )a(ti′ )〉,
which are obtained by setting all superoperators with j �= i, i′
to the identity and Ai[ρs] = a†ρs, Ai′ [ρs] = aρs.

Through the Trotter decomposition [56], the infinitesi-
mal time-evolution superoperator can be written as Uδt =
Vδt/2WδtVδt/2, where Vδt/2 describes free system evolution
over half a time step and Wδt contains the environmental
dynamics and interactions, i.e., phonon scattering. In our

implementation, the free evolution contains both the unitary
dynamics generated by Hs and Markovian effects correspond-
ing to cavity decay, exciton decay, and temperature-dependent
pure dephasing of the exciton. Formally, we have Vδt/2 =
eLδt/2, with the Liouvillian

L[ρ] = − i

h̄
[Hs, ρs] + κD[a, ρs] + γD[|0〉〈X |, ρs]

+ 2γ ∗(T )D[|X 〉〈X |, ρs], (A3)

and D[A, ρ] = AρA† − 1
2 (A†Aρ − ρA†A) is the Lindblad su-

peroperator. The temperature-dependent pure dephasing rate
is described in Appendix B. In practice, we work in a frame
rotating with the emitter frequency ωX , such that Hs →
−h̄δa†a + g(|X 〉〈0|a + H.c.), where δ = h̄ωX − h̄ωc.

In turn, the Trotter decomposition allows a separation of
the process tensor into a system part and an environmental
influence functional Fk:0, as

ϒk:0 =
{[

k⊗
j=1

Vδt/2 ⊗ V∗
δt/2

]
Fk:0

}
⊗ ρs(0), (A4)

such that all the complicated memory effects are now con-
tained in the rank-2k tensor Fk:0. Importantly, this tensor has

a diagonal structure Fαkα
′
k−1...α1α

′
0

k:1 = F̂αk ...α1
k:0 δαkα

′
k−1

. . . δα1α
′
0
,

where α j = (s j, r j ) is a composite index and F̂k:0 is a rank-k
tensor. This diagonal structure directly stems from the fact that
Hep is diagonal in the |s〉 basis, which is a requirement for the
current formulation of the strategy to work.

The rank-k influence functional F̂k:0 can be decomposed as
a product of rank-2 tensors as

F̂αk ...α1
k:0 =

k∏
i=1

i∏
j=1

[bi− j]
αiα j , (A5)

where [bi− j]αiα j are the influence tensors

[bi− j]
αiα j = e−(λsi −λri )(ηi− jλs j −η∗

i− jλr j )
. (A6)

Here, λs is the eigenvalue of |X 〉〈X | corresponding to |s〉, i.e.,
|X 〉〈X |s〉 = λs|s〉, and ηi− j are the memory kernel elements

ηi− j =
⎧⎨
⎩

∫ ti
ti−1 dt ′ ∫ t j

t j−1 dt ′′C(t ′ − t ′′), i �= j∫ ti
ti−1 dt ′ ∫ t ′

t j−1 dt ′′C(t ′ − t ′′), i = j
(A7)

with the environmental correlation function

C(τ ) = 1

π

∫ ∞

0
dν J (ν)

cosh[ν(β/2 − it )]

sinh[βν/2]
. (A8)

The computational challenge is thus reduced to efficiently
calculating the product in Eq. (A5). In Ref. [28] it is described
in detail how this can be carried out as the contraction of a
tensor network, and the effective dimensionality of the prob-
lem can be considerably reduced through compression based
on a singular value decomposition, truncating singular values
below a cutoff value. As the cutoff is lowered, the numerical
representation of F̂k:0 converges towards the exact influence
functional.
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APPENDIX B: TEMPERATURE-DEPENDENT
PURE DEPHASING

In the main text, we use semiconductor quantum dots for
example calculations. In such systems, there is a temperature-
dependent pure dephasing process that arises from virtual
scattering of thermal phonons to higher-lying excitonic states
[42]. This rate is given by [40,41]

γ ∗(T ) = α2μ

ξ 4

∫ ∞

0
dν ν10e−2(ν/ξ )2

nB(ν)[nB(ν) + 1], (B1)

where nB(ν) = [e−ν/(kBT ) − 1]−1 is the Bose distribution and
μ together with the overall electron-phonon coupling α quan-
tifies the strength of the virtual scattering process. For a
typical GaAs quantum dot, we find μ = 0.023 ps2 [47], which
together with α = 0.025 ps2 and ξ = 2.2 ps−1 correspond to
γ ∗(4 K) = 6.7×10−6 ps−1 and γ ∗(150 K) = 0.08 ps−1.

APPENDIX C: VARIATIONAL MINIMIZATION
OF FREE ENERGY

Here we derive the condition that determines the vari-
ational parameters fk by minimization of the free energy.
In the variational frame, we write the total Hamiltonian as
Hv = Hs,v + He,v + Hep,v, where

Hs,v = h̄(ωX + Rv)|X 〉〈X | + h̄ωca†a

+ h̄gv(|X 〉〈0|a + |0〉〈X |a†), (C1)

with Rv = ∑
k fk( fk − 2gk )/νk the variational renormal-

ization of the exciton transition frequency and gv =
gBv is the variationally renormalized light-matter cou-
pling strength, with the renormalization factor Bv = 〈e±V 〉 =
exp[− 1

2

∑
k

f 2
k

ν2
k

coth(β h̄νk/2)], where β = 1/kBT . The varia-

tional interaction Hamiltonian is given by

Hep,v = h̄XBX + h̄Y BY + h̄ZBZ , (C2)

where X=g(|X 〉〈0|a+|0〉〈X |a†),Y= ig(|X 〉〈0|a−|0〉〈X |a†),
Z =|X 〉〈X |, and BX = (eV + e−V − 2Bv)/2, BY =
i(eV − e−V )/2, BZ = ∑

k(gk − fk )(b†
k + bk ). Note that the

partitioning of Hv into system, environment, and interaction
terms is constructed such that Tr[Hep,ve−βHp ] = 0.

The Feynman-Bogoliubov upper bound on the free energy
in the variational polaron frame is [37]

AB = − 1

β
ln(Tr[e−βH0,v ]) + 〈Hep,v〉H0,v + O

(〈
H2

ep,v

〉
H0,v

)
,

(C3)

where H0,v = Hs,v + Hp,v and 〈·〉H0,v = Tr[·e−βH0,v ]/
Tr[e−βH0,v ]. Ignoring higher-order terms and realizing that the
second term vanishes by construction, we are left with the
first term. The partition function can be factored into system
and environment parts, Tr[e−βH0,v ] = Tr[e−βHp,v ]Tr[e−βHs,v ],
where the environment part does not depend on the variational
parameters fk and thus only contribute to the free energy with
a constant term. The partition function of the system is given

by [57]

Tr[e−βHs,v ] = 1 + 2
∞∑

n=0

cosh(β h̄ηv,n/2)e−β[h̄δv/2+h̄ωc (n+1)],

(C4)

where ηv,n =√
4g2

v(n + 1)+δ2
v, δv =ωX +Rv−ωc := δ+Rv.

Assuming that the thermal energy 1/β is significantly lower
than h̄ωc, only the first term in the summation yields an
appreciable contribution.

AB � − 1

β
ln[1 + 2 cosh(β h̄ηv/2)e− 1

2 β h̄(ωX +Rv+ωc )], (C5)

where ηv := ηv,0. We now require that AB is stationary with re-
spect to fk, i.e., that ∂AB/∂ fk = 0. This requirement amounts
to the condition

fk =
gk

[
1 − δv

ηv
tanh(β h̄ηv/2)

]
1 − δv

ηv
tanh(β h̄ηv/2)

[
1 − 2g2

v
νkδv

coth(β h̄νk/2)
] . (C6)

Since some of the quantities on the right-hand side depend on
fk, this equation needs to be solved self-consistently. To this
end, we define the dimensionless function F (ν) such that fk =
gkF (νk ). Thus, we may write the renormalized quantities as

Rv =
∫ ∞

0
dν

J (ν)

ν
F (ν)[F (ν) − 2],

Bv = exp

[
−1

2

∫ ∞

0
dν

J (ν)F 2(ν)

ν2
coth(β h̄ν/2)

]
. (C7)

Using Eqs. (C6) and (C7), the variational function F (ν) can
be determined through a simple iterative numerical approach.

APPENDIX D: POLARITON SCATTERING RATES

To calculate the scattering rate between the polaritons, we
start out by deriving a Markovian master equation in the vari-
ational polaron frame. Before doing so, we perform a rotating
frame transformation within the exciton-cavity subspace with
unitary U = exp[iωrt (|X 〉〈X | + a†a)]. Choosing the rotation
frequency to be ωr = ωX + Rv, the system Hamiltonian be-
comes

Hs,v = −h̄δva†a + h̄gv(|0〉〈X |a† + |X 〉〈0|a). (D1)

The second-order Markovian master equation obtained by
tracing out the phonon environment in the variational frame
is then [38]

∂t

∂ρ
(t ) = − i

h̄
[Hs,v, ρ] −

∑
i j

∫ ∞

0
dτ Ci j (τ )[Ai, Â j (−τ )ρ]

+ Cji(−τ )[ρÂ j (−τ ), Ai], (D2)

where Ai ∈ {X,Y, Z}, Âi(−τ ) = e−iHs,vτ AieiHs,vτ is the in-
teraction picture time evolution of the system operators,
and Ci j (τ ) = TrE [B̂i(τ )BjρE ]. We shall use the superop-
erator shorthand notation K[ρ] to refer to the last term
in Eq. (D2). From Ref. [37], we find that the correlation
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FIG. 7. The three contributions to the differential polariton scat-
tering rate �A. The shaded area shows �A = εZZ + εYY + εZY , the
solid green line shows εZZ , the dashed orange line shows εYY , and
the dotted red line shows εZY .

functions CXY , CY X , CXZ , and CZX are zero, and the remain-
ing are given by

CXX (τ ) = B2
v

2
(eφ(τ ) + e−φ(τ ) − 2),

CYY (τ ) = B2
v

2
(eφ(τ ) − e−φ(τ ) ),

CZZ (τ ) =
∫ ∞

0
dν J (ν)[1 − F 2(ν)]

× [coth(β h̄ν/2) cos(ντ ) − i sin(ντ )],

CY Z (τ ) = −Bv

∫ ∞

0
dν J (ν)ν−1F (ν)[1 − F (ν)]

× [i cos(ντ ) + coth(βν/2) sin(ντ )],

CZY (τ ) = −CY Z (τ ), (D3)

where φ(τ ) = ∫ ∞
0 dν J (ν)ν−2F 2(ν)[coth(β h̄ν/2) cos(ντ ) −

i sin(ντ )]. The full variational master equation (which also
includes losses and dephasing as described in Appendix A),
can be written in the compact form ∂t

∂ρ
(t ) = Lv[ρ(t )], where

Lv is the variational Liouvillian superoperator. From the vari-
ational Liouvillian we can extract rates for various processes.
The rate corresponding to the transition from states |α〉 to |β〉
is given by

�αβ = 〈β|Lv[|α〉〈α|]|β〉. (D4)

Here, we are particularly interested in the scattering rates
between the polaritons. In the case where the cavity and
exciton are resonant in the variational frame δv = 0 (i.e., the
resonance condition considered in all calculations in the main
text), the polariton states within the single-excitation sector
are given by |±〉 = (|1, 0〉 ± |0, X 〉)/

√
2. In the context of

analyzing the phonon-induced polariton asymmetry, we are
interested in the differential polariton scattering rate �A :=
�+− − �−+. Using the transition rate in Eq. (D4), we find that
this rate has three contributions �A = εZZ + εYY + εZY :

εZZ = −
∫ ∞

0
dτ sin(2gvτ )ImCZZ (τ ),

εYY = −4g2
∫ ∞

0
dτ sin(2gvτ )ImCYY (τ ),

εZY = −4g
∫ ∞

0
dτ cos(2gvτ )ImCZY (τ ).

(D5)

The first and last contributions can be calculated
analytically as

εZZ = π

2
J (2gv)[1 − F 2(2gv)],

εZY = πJ (2gv)F (2gv)[1 − F (2gv)]. (D6)

The contribution εYY cannot be resolved analytically. How-
ever, from its form, we can deduce that it vanishes in the
strong coupling limit, where F (ν) → 0 leads to CYY (τ ) → 0.
Furthermore, in Fig. 7, we show the three contributions to
�A as a function of the coupling strength, showing that the
contributions εYY and εZY almost cancel out, and thus �A �
π
2 J (2gv)[1 − F 2(2gv)].

APPENDIX E: PARAMETERS

In Table I, the parameters used for Fig. 5 in the main text
are presented with references to the sources. Our theoretical
prediction for a quantum dot in a dielectric bowtie cavity with
deep subwavelength confinement is calculated as [54]

g =
√

d2ωeg

2h̄ε0εV
, (E1)

where d is the quantum dot dipole moment, ε is the dielectric
constant of the background material, and V is the cavity mode
volume. We took the dipole moment to be d = 9×10−29 cm,
which is a typical magnitude for self-assembled quantum

TABLE I. Light-matter coupling strength and phonon cutoff frequency for different material systems used for Fig. 5 in the main text. The
annotation (th.) in the second column signifies coupling strengths that have been theoretically predicted.

Material Coupling strength h̄g Cutoff frequency h̄ξ

Transition metal dichalcogenide, WS2 93 meV [16], 82 meV [17] 53 meV [58]
Transition metal dichalcogenide, WSe2 70 meV [13] 50 meV [59]
Single methylene blue molecule 305 meV [18] 213 meV [60]
Quantum dot in tunable microcavity 18 μeV [61] 3 meV [62]
Quantum dot in photonic crystal cavity 113 μeV [63] 0.84 meV [64]
Quantum dot in dielectric bowtie cavity 2.0 meV [9] (th.) 2.23 meV [47]
NV center in photonic crystal cavity 5 μeV [65] 65 meV [36]
NV center in nanobeam photonic crystal cavity 10 μeV [66] (th.) 65 meV [36]
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dots [67,68], the dielectric constant was taken to be 12.25,
corresponding to GaAs at a wavelength of 950 nm, which
was taken as the transition wavelength. The mode volume
predicted in Ref. [9] is 7.01×10−5λ3.

For the nitrogen-vacancy (NV) center in Ref. [65], the
cavity is operating in the Purcell regime. We estimated the
coupling strength from the Purcell-enhanced spontaneous
emission rate �P through the relation �P = 4g2/κ .
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