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Gate-controlled unitary operation on flying spin qubits in quantum Hall edge states
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The spin and orbital freedoms of electrons traveling on spin-resolved quantum Hall edge states (quantum Hall
ferromagnets) are maximally entangled. The unitary operations on these two freedoms are hence equivalent,
which means that one can manipulate the spins with nonmagnetic methods through the orbitals. Taking the
quantization axis of the spins along the magnetization axis, the zenith angle is determined by the partition
rate of spin-separated edges, while the azimuth angle is defined as the phase difference between the edges.
Utilizing these properties, we have realized an electrically controlled unitary operation on the electron spins
on quantum Hall ferromagnets. The zenith angle of the spin was controlled through the radius of gyration at
a corner by applying voltage to a thin gate placed at one edge. The subsequent rotation in the azimuth angle
was controlled via the distance between the edge channels also by a gate voltage. The combination of the two
operations constitutes a systematic electric operation on spins in quantum Hall edge channels.
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I. INTRODUCTION

Electron spins in semiconductor nanostructures such as
quantum dots are expected to serve as qubits for practical
quantum computation [1]. The flying qubit (FQ) scheme,
which is the usage of traveling electron spins as qubits, is
not only indispensable for long-distance entanglement [2,3]
between localized arrays of qubits, but is also usable for uni-
tary operations on qubits [4]. The flying spin qubits (FSQs)
for electrons considered and tested so far are mostly based
on quantum wires with Rashba and Dresselhaus spin-orbit
interactions (SOIs) [5–7], which work as a magnetic field
effective only on spins [8]. A convenient way to describe
unitary transformations on an FQ is obtained by viewing the
traveling electron from the coordinate fixed at the center of
the electron wave packet (center coordinate). Then, a spa-
tially local Hamiltonian Hloc can be introduced to describe
the dynamics other than translational motion. That is, the
travel of a wave packet through a quantum wire with spatial
potential modulation can be viewed as a process in which the
local Hamiltonian evolves with time [9,10], i.e., the effective
Schrödinger equation for the wave packet |�〉 at the center
coordinate is written as

ih̄
∂ |�〉
∂t

= Hloc(t ) |�〉 . (1)

In this picture, the SOI term in the Hamiltonian also varies
with time, which can cause a unitary transformation of the
spin freedom in |�〉 through a nonadiabatic transition.

Here, we would like to show that there is another type of
SOI without a term that explicitly contains p̂ (momentum op-
erator) and ŝ (spin operator) in Hloc. Generally, an interaction
term in a Hamiltonian introduces quantum entanglement [11]
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between initially unrelated subsystems. Conversely, when we
prepare an initial state with finite quantum entanglement, the
interaction appears between subsystems without any interac-
tion term in the Hamiltonian [12], which is well known as the
Einstein-Podolsky-Rosen (EPR) paradox [13].

For example, let us consider a wave packet |�〉 with Stern-
Gerlach-type entanglement [14] between the orbital {|ξ 〉 , |η〉}
and spin {|↑〉 , |↓〉} as

|�〉 = |ξ 〉
(

cos
θ

2
|↑〉

)
+ |η〉

(
eiφ sin

θ

2
|↓〉

)

(0 � φ < 2π, 0 � θ � π ), (2)

where 〈ξ |ξ〉 = 〈η|η〉 = 1, 〈ξ |η〉 = 0, and φ and θ are the
azimuth and zenith angles of the spin, respectively. We as-
sume that Hloc(t ) has no operator on {|↑〉 , |↓〉}; thus, there
is no explicit interaction term for a certain period, in which
the orbital part evolves to eiχ (|ξ 〉 , eiϕ |η〉). Here, χ is the
phase developed as the wave packet travels, while ϕ, the
phase difference resulting from the path difference, etc., can
be absorbed into the azimuth angle of the spin. The process
hence can be viewed as translational motion with spin pre-
cession, which is simply a phenomenon associated with an
effective magnetic field by an SOI [15]. The equivalence of
the phenomena with a quite different appearance reflects the
inseparability of systems with maximal entanglement. This
idea also suggests the possibility of manipulating the electron
spins through orbital motion, the architecture for which is
theoretically proposed in Ref. [16].

The quantum coherence length of the one-dimensional
channel for FQ propagation should be long enough to preserve
quantum information. In solids, the longest coherence lengths
have been reported for quantum Hall edge channels (QHECs)
[17,18], which are thus strong candidates for FQ channels.
QHECs are known to show spin separation at comparatively
low magnetic fields with the aid of an exchange interaction
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[19], transforming into ferromagnetic phases [20,21]. In such
a ferromagnetic regime, the entanglement of spin and edge
channels occurs, naturally preparing for the realization of the
scheme in (2). A preliminary experiment on such precession
control was reported by Nakajima et al. [22,23]. For zenith
angle tuning, a controlled splitting of the wave packet into two
channels is required. Such experiments have been reported by
Deviatov et al. [24–26] with the use of current imbalance, and
by Karmakar et al. [27,28] with the use of periodic magnetic
gates.

In this paper, we present experimental results regarding
the unitary operations of FSQ in spin-polarized QHECs in
the above scheme with electrostatic gates. With respect to
Eq. (2), a rotation in the zenith angle corresponds to tunneling
between spin-polarized QHECs. It is shown that this can be
achieved by the sharp bending of the edge line. At such a
corner, an angular momentum in the edge orbital emerges,
and Landau-Zener-type tunneling brings about a rotation in
the zenith angle. The rate of Landau-Zener tunneling depends
on the sharpness of the corner. With the addition of a thin gate
to vary the sharpness, we show that the zenith angle can be
controlled more simply. We should note that the same physics
can be described in the terms for the quantum Hall effects. We
believe the present description will bring a fresh perspective
to the traditional quantum Hall effects.

II. EXPERIMENTAL METHOD

Figures 1(a)–1(c) describe the experimental setup in three
different ways for a two-dimensional electron system (2DES)
in the spin-split quantum Hall regime. For simplicity, the
filling factor ν is chosen to be 2 in the figure, although the
region of ν = 4 was mostly used in the present experiment.
Figure 1(a) is a schematic of wave-propagation paths,
Fig. 1(b) shows the gate-electrode configuration for realizing
them, and Fig. 1(c) illustrates a blowup of the down edges
of the side gates (SL, SR) and center gate (C) along with
the propagation paths in Fig. 1(a). The sample edges have
two QHECs for ν = 2, which we here denote channel 1 and
channel 2, in which spins are locked at ↑ and ↓, respectively.
Then, we can write their wave packet as |1〉 |↑〉 and |2〉 |↓〉,
respectively, where |1〉 and |2〉 are the normalized wave func-
tions of the orbital part.

Let us trace a wave packet that is emitted from the right
electrode. Beneath the gates L and R, the filling factors νL

and νR are tuned to 1, and only channel 1 goes through them
[29,30]. Hence, the incident wave packet in Fig. 1(a) can be
written as |ψ1〉 |↑〉. Channels 1 and 2 meet at the lower right
corner edge of the gate SR, where a partial transfer occurs
through a local SOI as a result of the orbits wrapping around
the sharp corner. This scattering process is written as

|1〉 |↑〉 → |�〉SR = t11R |1〉 |↑〉 + t12R |2〉 |↓〉 , (3)

where ti jR are the complex transmission coefficients of the
processes |i〉 → | j〉 at the right corner satisfying the unitary
condition |t11R|2 + |t12R|2 = 1 because of the perfect chirality
of the QHEC. Hence, they can be written as t11R = cos θ/2
and t12R = eiφ0 sin θ/2, where θ reflects the amplitude ratio of
the partial waves and φ0 is the phase difference between t11R

and t12R. Thus, |�〉SR is prepared in the form of |�〉 in (2).
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FIG. 1. (a) Schematic diagram of the “quantum circuit” for elec-
tron wave packets (red and blue circles with arrows indicating spin),
with an illustration of the Bloch sphere description of an FSQ.
(b) Optical micrograph of the sample with an external circuit illus-
tration. The orange regions are metallic gates, three of which are
annotated. The 2DES substrate is trimmed at the white dashed lines.
(c) illustrates the hybridization of (a) and (b) around the lower ends
of the gate SL, C, and SR.

In QHEC, the orbital part of the wave function in the
single-electron picture is written as a quasi-one-dimensional
plane wave in a real-space representation [31],

ψi(r) ∝ exp(ikix) exp

[
− (y − yi )2

2l2

]
, (4a)

yi = −l2ki, (4b)

where l (= √
h̄/eB, B is the magnetic field) is the magnetic

length, i is the channel index counted from outer (lower en-
ergy in bulk) to inner, the x-axis direction is taken as along the
one-dimensional channel, and yi is the guiding center position.
In the edge states, ψi accommodates the propagating wave
packet |i〉. |i〉 travels on ψi along the down edges of the gate
SR, C, and SL, thereby gaining a kinetic phase. At the end of
the travel over total length L, the difference in the acquired
kinetic phase or the azimuth angle rotation of the spin is

φ = (k1 − k2)L (5a)

= (y2 − y1)L

l2
= 2π

ΔyLB

h/e
. (5b)
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Because ΔyLB/(h/e) is the magnetic flux piercing the area
between the two paths measured in units of flux quantum
(h/e), the difference in kinetic phase acquired in the travel
over the two channels is equal to the Aharonov-Bohm (AB)
phase caused by the magnetic field. Thus, we can tune φ using
both the magnetic field and the voltage supplied to gate C,
which varies the interval Δy between the edge states. This
single-electron picture requires a correction with considera-
tion of the screening effect, as will be discussed in the analysis
sections, although the above results can still be applied to real
experiments with some modifications, e.g., B dependence of
�y as given in Eq. (7).

At the left corner of the gate SL, channel 1 with ↑ goes up
to go beneath the region of νL = 1, while channel 2 with ↓
goes down to turn around the region. Because both channels
change their directions abruptly, a crossing transition between
them by a local SOI occurs at the corner, as illustrated in
Figs. 1(a) and 1(c). In this two-in–two-out vertex, the parti-
tion ratio is affected by the phase φ − φ0, and the traverse
across the sample ends up at drain L or drain B with the
probabilities determined by the ratio. Hence, the partition ratio
can be measured as the ratio of the current through L (IL)
to the total current (IL + IR), i.e., current distribution ratio
D ≡ IL/(IL + IR). In a simple model of the two-in–two-out
vertex described in Sec. IV, D is written as

D = C0 + C1 sin θ cos(φ + Δϕ), (6)

where Δϕ represents the phase shift associated with the in-
teredge scattering at the two corners, including −φ0. Equation
(6) is similar to the simplest Young’s double-slit approxima-
tion of an AB interferometer because of the chirality or broken
time-reversal symmetry of the channels and multiterminal
configuration [32]. The partition ratio of the input affects the
visibility, giving the θ dependence.

A two-dimensional electron system (2DES) with an elec-
tron density of 4.4 × 1011 cm−2 and a mobility of 86 m2/V s
in an AlxGa1−xAs/GaAs (x = 0.265) single heterostructure
was used as the base system for the sample. The structure
of the wafer was (from the front surface) 5-nm Si-doped
GaAs cap layer, 40-nm Si-doped (NSi = 2 × 1018 cm−3)
AlxGa1−xAs layer, 15-nm undoped AlxGa1−xAs spacer layer,
and an 800-nm GaAs layer with a 2DES residing near the
interface with the upper layer. The terminal and Au/Ti gate
configurations are shown in Fig. 1(b). We cooled the sample
down to 20 mK and applied a perpendicular magnetic field B
up to 9 T, at which the 2DES is in the quantum Hall state with
a filling factor of ν = 2.

An AC voltage of typically 33 μVrms (except for the mea-
surements in Fig. 5) at 170 Hz was applied to the right-side
contact, and the current was measured at drain L and drain B
with an I-V amplifier by standard lock-in measurements. A
representative difference of the contact and cable resistance
between drains L and B was less than approximately 2%.
Therefore, D is nearly equal to the transmission probability
from source to drain L.

The voltage on gate C (VC) modifies the potential gradient
in the y direction along gate C and thus the distance between
neighboring edge states Δy, which leads to the modulation of
φ [22,23].
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FIG. 2. (a) VC dependence of the current distribution ratio D at
B = 4.84 T. Side gate voltages were set to VSR = VSL = −0.6 V,
where the 2DES under the gates was completely depleted. (b) Calcu-
lation example of D as a function of VC based on the model of Eq. (7).
d = 66 nm from the one-dimensional Poisson-Schrödinger calcula-
tion on the layered structure of the sample (see the Supplemental
Material [33]). Other parameters are as follows: g = −0.6 [19]; ε =
12.35 [34]; C1 sin(θ ) = 0.05, C0 = 0.53, �φ = 0, LC = 7.5 μm;
LSL = LSR = 1.25 μm; the offset in the gate voltage VC, VSL, and VSR

resulting from the contact built-in potential is Voffset = −0.05 V. See
the text for n(y).

III. ROTATION IN AZIMUTH ANGLE

Figure 2(a) shows the VC dependence of D measured at
B = 4.75 T, which corresponds to ν = 4 in the nongated re-
gion. The filling factors underneath gate L and gate R were
kept at 1 (pinch-off conductance traces for gate L are in the
Supplemental Material Sec. III [33]). In this situation, there
are two extra edge states inside the 2DEG compared with
that illustrated in Fig. 1. In the following experiments, we
believe the tunneling rate from the edge states 1 and 2 to these
extra states is small and they are negligible at the precision
level of the present research; then, the channel indices i = 1
and 2 are under our consideration. The detailed discussion is
given in Sec. VII of the Supplemental Material [33]. Side gate
voltages were set to VSR = VSL = −0.6 V, where the 2DES
under the gates was completely depleted. The measured D
shows an oscillation against VC in the range from −0.7 to
−0.98 V, where four peaks are observable, as indicated by
arrows. The oscillation period increased with negative VC. The
region between peaks 3 and 4 is especially wide, and the line
shape shows the rewinding of oscillation. We tested several
other samples with essentially the same gate configuration,
and such behavior was commonly observed.

To verify the above phase modulation scenario (or equiv-
alent rotation in φ), we need to know how Δy in Eq. (5b)
depends on VC taking the electric screening effect into
account. In the single-electron picture of Eq. (4), the one-
dimensional channels are formed on the lines where the
Landau levels cross the Fermi level. In more practical
treatments in Refs. [35,36], the QHECs are described as
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“compressible” stripes separated by “incompressible” insu-
lating regions. In the compressible stripes, the electrostatic
potential is kept constant by the screening effect, while the
group velocity ∂Ei/h̄∂ki is finite. Therefore, Eq. (4b) does not
hold inside the stripes and the wave number ki should also
be kept constant. In other words, Eq. (4b) only holds inside
the incompressible regions. As the value of Δy, we should
thus take the width of the incompressible stripes, which is
generally much narrower than that of the compressible ones.
In Refs. [35,36], such Δy is explicitly given for a simple
classical electrostatic model of the QHEC as

Δy ≈
√

8|ΔE |εε0

πe2(dn/dy)|y=y′
i

, (7)

where y′
i is the position of the ith incompressible liquid strip,

εε0 is the dielectric permittivity of the matrix semiconductor,
n(y) is the electron sheet density profile, and ΔE is the energy
difference between the levels of channels i and i + 1. The
model has been used in analyzing many experimental works
[37–39]. ΔE in the present case (i = 1) of exchange-aided
Zeeman splitting can be written as gμBB, where g is the
effective Landé g-factor, and μB is the Bohr magneton.

Figure 2(b) shows an example of the VC dependence of
D, calculated from Eq. (7) with the parameters noted in
the caption. These parameters are chosen to preserve semi-
quantitative consistency with the analysis of the magnetic
response described later. To calculate n(y) as a function of
VC, we employ the “frozen surface” model and the self-
consistent Thomas-Fermi approximation given in Ref. [36].
Then, (dn/dy)|y=y′

1
can be obtained numerically from n(y).

The characteristic behavior of the oscillation in Fig. 2(a)
is qualitatively reproduced, in that the oscillation phase ad-
vances more rapidly with negative VC at lower |VC|. The
progress in the phase slows down, and the rewinding of the
oscillation with increasing |VC| begins at the point indicated
in the figure as the “minimum point.” This behavior is quali-
tatively explained as follows (a schematic of this description
is in the Supplemental Material [33]). At low VC, the edge
of the 2DES lies near the end of the center gate, and the
electrostatic confinement potential at the edge is soft, leading
to small (dn/dy)|y=y′

1
and large Δy. With increasing negative

VC, the potential becomes steeper, lowering Δy. A further
increase in negative VC causes softening of the potential and
an increase in Δy again. Because Δy must be smooth as
a function of VC, |d (Δy)/dVC| decreases with negative VC,
i.e., the oscillation period becomes slower, until reaching the
minimum point, roughly corresponding to the steepest edge
confinement potential [maximum in (dn/dy)|y=y′

1
], and again

increases with negative VC, resulting in the rewinding of the
oscillation in D.

In spite of the obvious resemblance between Figs. 2(a)
and (b), quantitative fitting that is consistent with a response
to the magnetic field is difficult. We also investigated the
“Fermi-level pinning” model for the surface states, although it
did not improve the quantitative agreement. This discrepancy
indicates the necessity to take into account the effects not
considered, e.g., the geometrical effect of the gate electrode.
However, the close resemblance between Figs. 2(a) and 2(b)
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FIG. 3. (a) Current partition rate D as a function of B
within the plateau regime encompassing the filling factor ν =
4 for several values of gate C voltage VC (traces are offset
for clarity). Vac = 32.8 μVrms. (b) Δy calculated from the equa-
tion Δy = (2/3)(h/e)/L�B for VC = −0.86 V. �B is given by
twice the distance between the adjacent oscillation peak and
dip. The blue line indicates Δyaverage = [Δy(VSL )LSL + Δy(VC)LC +
Δy(VSR )LSR]/(LSL + LC + LSR ) from Eq. (7) with the parameters
used in Fig. 2(b).

still manifests the essential correctness of the scenario de-
scribed so far.

As in Eq. (5b), the azimuth angle rotation is locked to
the AB phase acquired from the magnetic flux piercing the
incompressible regions. This can be readily confirmed by
the oscillatory behavior of D vs B, as shown in Fig. 3(a)
with VC as a parameter. Because a single period ΔB of the
oscillation corresponds to 2π rotation in φ, Δy is given as
Δy = (2/3)(h/e)/LΔB from Eq. (5b) in the local linear ap-
proximation of the B dependence of Δy in (7), where ΔE =
gμBB (details of this calculation are described in the Supple-
mental Material [33]). This gives Δy as a function of B, as
shown in Fig. 3(b) for VC = −0.86 V. The obtained values
of Δy (1–3 nm) are much shorter than the magnetic length
l = 11 nm at B = 5 T, which is consistent with the view of
compressible/incompressible stripes, while the predicted B
dependence of Δy for constant g against B deviates from the
experiment, as indicated by Fig. 3(b).

To visualize the overall trend, the measured and calcu-
lated values of D are color plotted on B-VC in Figs. 4(a) and
4(b), respectively. The oscillation patterns appear as curved
stripes in these plots. Such curving behavior is consistent
with the interpretation of Fig. 2 as follows. With an in-
crease in negative VC from −0.7 V to approximately −0.8 V
for a fixed B, (dn/dy)|y=y′

1
increases and φ thus decreases,
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FIG. 4. (a) Color plot of the measured D as a function of B and
VC. VSR = VSL = −0.6 V. (b) Color plot of the theoretically given D
as a function of B and VC. C0 = 0.42B − 1.45 and C1 sin(θ ) = 0.1
are used. The other parameters are the same as those in Fig. 2(b).

corresponding to the up-going ridges. After reaching the max-
imum at VC ≈ −0.86 V, (dn/dy)|y=y′

1
declines with a further

increase in negative VC.
The observation of arclike curving strongly supports the

legitimacy of the analysis so far. Similar arclike curves were
also observed at filling factors ν = 2 and 3, but with smaller
visibility. At smaller filling factors, B and hence Δy are larger,
making θ , the zenith angle, smaller, as discussed later. Re-
garding visibility, in Fig. 2, the oscillation under the present
consideration is visible in the range of VC from −0.7 to
−1 V, and the visibility is highest around the minimum point.
This tendency is common in the region B in Fig. 4, and the
visibility does not change very much with B. Because an
increase in B denotes an enhancement in the rotation of φ,
the possibility of dephasing by the number of φ rotations is
eliminated. Instead, we speculate that the simple model in
Fig. 1(c) is approximately realized only around the steepest
edge potential condition. When the edge potential is soft, the
QHECs have more chances to experience the effect of local
potential disorder. As a result, the effective edge line fluctu-
ates spatially, creating local orbital angular momentum, which
causes interedge state scattering [40]. The above discussion is
a possible explanation of the dephasing in φ rotation.
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FIG. 5. Three oscillation patterns corresponding to three dif-
ferent values of VSR. B = 4.5 T and VSL = −0.605 V. Vac =
23.8 μVrms. The line for D = 0.57 is indicated by dashed lines to
show that there is almost no movement in the oscillation baseline.

From the above results and analysis, we can safely say
that the current partition ratio D reflects the azimuth an-
gle rotation of FSQ traveling along the down edges of the
gates. The rotation angle can be tuned via center gate voltage
electrostatically.

IV. ROTATION IN ZENITH ANGLE

In Fig. 5, we compare the oscillation patterns for three
representative values of VSR, which strongly affects the os-
cillation amplitude. From VSR = −0.594 V the amplitude
gradually decreases with a further increase in negative VSR.
The characteristic features of the oscillation versus VC ob-
served so far do not change with VSR, other than a phase shift,
which is probably caused by a change in φ0. In the region
VSR > −0.594 V, the oscillation pattern changed drastically
with a slight difference in VSR. This is probably because chan-
nel 2 penetrates the spatial gap between gate C and gate SR.
Hence, this region is excluded from the present discussion.

We should thus look for the origin of the amplitude mod-
ulation in the zenith angle θ , which is determined when the
wave packet turns the down-right corner of the gate SR. At
the turning point, the time-dependent local Hamiltonian in (1)
for the wave packet should contain SOI terms: one from the
in-plane potential gradient [41], the other from the Rashba
and Dresselhaus effects commonly observed in 2DES [8]. In
the present case of spin-polarized QHEC, the former affects
the effective Zeeman energy by the spin-orbit effective field,
while the latter kinematically rotates the spin. Figure 6(a)
illustrates the time evolution of quasieigenenergies for spin-
down and spin-up, i.e., E↑ = 〈↑| 〈1| Hloc(t ) |1〉 |↑〉 and E↓ =
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FIG. 6. (a) Schematic time evolution of quasieigenenergies E↑ =
〈↑| 〈1| Hloc(t ) |1〉 |↑〉 and E↓ = 〈↓| 〈2| Hloc(t ) |2〉 |↓〉. (b) Illustration
of spin-polarized edge states for a straight edge (solid and dashed
lines) and a corner (dotted lines). ξ represents the distance from an
edge of infinite potential [V (0) = ∞]. For simplicity, the Landau
levels are drawn in the single-electron picture.

〈↓| 〈2| Hloc(t ) |2〉 |↓〉. Around the center of the corner region,
E = E↓ − E↑ takes the minimum value Emin.

The transition in Eq. (3) can then be taken as par-
tially nonadiabatic tunneling. By summarizing these effective
time-localized SOIs as HSOI(t ), the probability P of the in-
teredge channel transition is given by slightly modifying a
Landau-Zener-type formula [42] as

P ∝ | 〈↑| 〈1| HSOI |2〉 |↓〉 |2 exp

[
−2π

(Emin/2)2

h̄(dE/dt )

]
, (8)

where dE/dt is the slew rate of E . As indicated by the arrows
in Fig. 6(b), the total process from |1〉 |↑〉 to |2〉 |↓〉 consists
of a nonadiabatic transition from |1〉 |↑〉 to |1〉 |↓〉 and an
adiabatic transition from |1〉 |↓〉 to |2〉 |↓〉. The expression
in (8) indicates that the slew rate and the minimum energy
difference strongly affect the transition probability.

A simple explanation of the tendency in Fig. 5 follows from
Eq. (8) and the electrostatic model in Refs. [35,36]. With in-
creasing negative VSR, QHECs move away from the “steepest
potential” point, where the distance between the outer and
the inner edges is the minimum and the radius of gyration
rt also is the shortest. As rt decreases, dE/dt increases be-
cause of the shorter interaction time, and the potential gradient
is larger; thus, Emin is smaller. From Eq. (8), the transition
probability P is the maximum for the steepest edge potential
condition. As in Fig. 5, this scenario tells us that the steepest
potential condition should correspond to VSR > −0.594 V,
which is considerably smaller than −0.8 V for VC. This dif-
ference may come from the geometrical complexity in the real
gate configuration. As in the Supplemental Material [33], the
equipotential lines around the corner change intricately, and
the maximum of P may appear at smaller VSR than the value
at the steepest potential.

From the oscillation data in Fig. 5, we can estimate the
zenith angle θ , assuming that the dephasing is ignorable at
the largest amplitude region in VC as follows. Even if such
ignorable dephasing is not the case, the lower limit of θ can
be obtained from the analysis. Let ti jL be the complex trans-

mission coefficients of the processes |i〉 → | j〉 at the bottom
left corner of the gate SL; then, from Eq. (3), the wave-packet
state that turns the corner and enters channel 1 to go to drain
L is written as

|�〉L = (
t11Reik1Lt11L + t12Reik2Lt21L

) |1〉 |↑〉 .

For simplicity of expression, we write the complex transmis-
sion coefficients in the modulus-argument form as t11Rt11L =
t1 cos(θ/2)eiϕ1 and t12Rt21L = t2 sin(θ/2)eiϕ2 . This leads to the
simple Young’s double-slit result of the transmission coeffi-
cient TL = 〈�|�〉L as

TL = t2
1 cos2(θ/2) + t2

2 sin2(θ/2)

+t1t2 sin θ cos(φ + Δϕ). (9)

From the comparison with Eq. (6),

C0 = t2
1 + (

t2
2 − t2

1

)
sin2(θ/2), C1 = t1t2. (10)

In Fig. 5, the baseline of oscillation C0 shows almost no
change, while C1 sin θ varies widely. This fact is based on
Eq. (10), where t1 and t2 happen to be close to each other:
t1 ≈ t2, in the present condition (the best visibility condition).
Then, C0 ≈ t2

1 ≈ C1 ≈ 0.57. In Fig. 5, the largest amplitude
gives C1 sin θ as 0.17, which corresponds to θ ≈ 17.4◦. This is
the lower bound of the estimated θ , which inevitably contains
an underestimation because of dephasing. To obtain a precise
estimation of θ , the oscillation of C1 sin θ should be observed.
Unfortunately, in the present case, the maximum obtained
value of θ is less than 90◦, and further analysis is difficult. For
more precise control of FSQ in the present scheme, the corner
gates should be designed to create a sharper corner potential.
Furthermore, the dephasing should be reduced, e.g., by soft
separation of the edges with an extra gate.

V. CONCLUDING REMARK

We have studied the unitary operation of FSQs in QHECs
with electric voltages on metallic gates. This operation uti-
lized the maximal entanglement between spin and edge
channel orbitals. The spin rotation in the azimuth angle with
voltage and with a magnetic field was systematically studied.
A characteristic feature for spin appeared in the rotation in
the zenith angle, for which another type of SOI at a corner
of the edge channel was introduced and controlled with the
gate voltage. With the combination of these two techniques,
all-electrical control of electron spin at spin-resolved quantum
Hall edge states was achieved.
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