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Recent nuclear magnetic resonance experiments measuring the Knight shift in Sr2RuO4 have challenged the
widely accepted picture of chiral pairing in this superconductor. Here we study the implications of helical
pairing on the superconducting state while comparing our results with the available experimental data on
the upper critical field and Knight shift. We solve the Bogoliubov–de Gennes equation employing a realistic
three-dimensional tight-binding model that captures the experimental Fermi surface very well. In agreement
with experiments we find a Pauli limiting to the upper critical field and, at low temperatures and high fields, a
second superconducting transition. These transitions, which form a superconducting subphase in the H-T phase
diagram are first-order in nature and merge into a single second-order transition at a bicritical point (T ∗, H∗),
for which we find (0.8 K, 2.4 T) with experiment reporting (0.8 K, ∼ 1.2 T) [Phys. Rev. B 93, 184513 (2016)].
Furthermore, we find a substantial drop in the Knight shift in agreement with recent experiments.
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I. INTRODUCTION

More than two decades after the discovery of supercon-
ductivity in Sr2RuO4 [1] the nature of its pairing symmetry
remains unsettled. It has been speculated [2] to be a long
sought metallic analog of superfluid helium-3 (3He), and the
possibility of triplet superconductivity has been explored by
various groups (see Refs. [3–7], and references therein). Theo-
retically, it was found that the free energy differences between
different possible pairing symmetries were so small as to be
nearly degenerate, rendering it a far from trivial problem to
predict the pairing symmetry [5], a situation exacerbated by
the large number of symmetry-distinct superconducting order
parameters [8] compatible with the body centered tetragonal
structure. Distinguishing between different order parameters
therefore requires experiments to be performed under very
stringent conditions. An indirect approach, where one de-
termines specific experimental signatures of each pairing
symmetry, thus provides an attractive alternative route to un-
derstanding this material [9].

Early experiments pointed to Sr2RuO4 being an odd-
parity chiral superconductor. Specifically, measurements of
the Knight shift at both O [10] and Ru [11] sites showed
almost no drop in value under a magnetic field applied in
the x-y plane, exactly as expected for the chiral p-wave state.
Confirmation of this result was found in direct measurements
of the field dependent magnetic moment by neutron scattering
[12], although the large experimental error bars implied that
a small Knight shift could not be ruled out. The chiral p-
wave pairing state was further supported by phase sensitive
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measurements [13,14] which, under inversion, reported a
phase change of π in the superconducting order parameter.
The p-wave chiral pairing state picture was also consistent
with experiments such as muon spin rotation (μSR) [15] and
polar Kerr rotation [16], which revealed the time reversal
symmetry breaking (TRSB) when Sr2RuO4 enters the su-
perconducting phase. In contrast, the surface magnetic fields
or associated edge supercurrents expected in the chiral state
were never observed, despite many experimental efforts [17].
Furthermore, recent experiments on x-y plane uniaxial strain
dependence of Tc did not show the expected linear change in
Tc for small strains, as required theoretically for a px + ipy

chiral state [18], raising further doubts as to the existence of
chiral p-wave pairing in this material [19–21].

Studies of the upper critical field [22–27] revealed an-
other serious discrepancy. At low temperatures, a first-order
superconducting to normal transition in the magnetocaloric
effect [26], the specific heat [25], and magnetization [27] was
observed under a magnetic field applied in the x-y plane,
characteristic of Pauli limiting [28,29] and inconsistent with
the Knight shift measurements. For about 20 years there
have been a number of attempts to resolve this puzzling
behavior with little or no success. Recently, new Knight
shift experiments [18], contradicting the original experiments,
observed a large drop in its value below Tc for x-y plane
fields, with the previously observed temperature independent
Knight shift attributed to sample heating during measurement
[30]. These new measurements decisively rule out the chi-
ral p-wave pairing state and instead are consistent with the
helical- or singlet-pairing in the superconducting state [28].
Furthermore, the recent observation of half-quantized fluxoids
[31,32], which require multiple order parameters for the pair-
ing function with both the spin and orbital degrees of freedom
active, implies the possibility of spin-triplet pairing.
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Here we investigate a time reversal symmetry preserving
helical pairing [28,33–36] state under an in-plane magnetic
field using a realistic three-dimensional (3D) tight-binding
(TB) model. We focus on results from two experimental stud-
ies [30,37] to probe the internal symmetry of the Cooper pairs,
and report two key findings. Firstly, as in Ref. [37], we find
two superconducting transitions below a temperature T ∗, as
a spin-only magnetic field is applied. These transitions are
first-order in nature and merge into a single, second-order
transition at a bicritical point (T ∗, H∗), for which we find
(0.8 K, 2.4 T) with experiment reporting (0.8 K, ∼ 1.2 T) [37].
Secondly, our Knight shift results are in good quantitative
agreement with Refs. [18,30]. We find a 44% drop in its
T = 0 K value from the normal-state value at a field of 0.7 T.
Our results therefore suggest that time reversal symmetry
preserving helical pairing could be the appropriate pairing
symmetry to explain many of the experimental features of
Sr2RuO4. Evidently, this would then require a separate ex-
planation for other phenomena that have been interpreted as
evidence of TRSB, including the increased zero-field muon
spin relaxation rate in the superconducting state and the Kerr
effect. A discussion of this is offered towards the end of the
paper.

The remainder of this article is structured as follows. In
Sec. II we describe the theoretical model employed in this
work. We then (Sec. III) detail our results, with the presen-
tation divided into four subsections in which we discuss the
gap function, specific heat, spin susceptibility and Knight
shift, and variation of polar angle. All the calculations are
performed both at fixed temperature (varying the magnetic
field) and vice versa. Thereafter, we conclude our results with
a discussion of possible future research directions in Sec. IV.

II. THREE-DIMENSIONAL TIGHT-BINDING MODEL

We employ a 3D TB Hamiltonian consisting of dxy, dxz,
and dyz orbitals following the approach of Ref. [38], which
was previously applied to the study of chiral pairing in the
superconducting state. The model is built upon the full 3D
Fermi surface consisting of three sheets, as determined exper-
imentally [39]. Superconductivity is introduced into the model
by adding a minimal set of site and orbital dependent negative
U pairing interactions. By introducing horizontal nodal lines
into two of the sheets of the Fermi surface, on which the gap
function vanishes, it was shown that for the chiral supercon-
ducting state the model described the experimental specific
heat very well.

It should be noted that the experimental specific heat may
be captured by either horizontal or vertical line nodes, or
simply deep minima on the gap function. Recent experiments
are in conflict on this matter: whereas the thermal conduc-
tivity measurements show that the gap structure of Sr2RuO4

consists of vertical line nodes [40] with no evidence of deep
minima, both spin resonance in inelastic neutron scattering
measurements [41] and field-angle-dependent specific heat
capacity measurements [42] provided evidence of horizontal
line nodes.

The key difference from Ref. [38] that we introduce here
is to consider a pairing interaction that leads to helical pair-
ing (between the same spin-types) instead of chiral pairing

(between the opposite spin types). This choice of helical
pairing is motivated, as explained in the introduction, by ex-
periments [18,30,43] in which a substantial drop in the Knight
shift and magnetic susceptibility [44] has been observed under
a magnetic field applied parallel to the RuO2 plane.

Our effective pairing Hamiltonian is a multiband attractive
U Hubbard model with an ”off-site” pairing [38]

Ĥ =
∑

i jmm′σ

((εm − μ)δi jδmm′ − tmm′ (i j))c†
imσ c jm′σ

− 1

2

∑
i jmm′σσ ′

U σσ ′
mm′ (i j)n̂imσ n̂ jm′σ ′ , (1)

where m and m′ stand for the three Ruthenium t2g orbitals
a = dxy, b = dxz, c = dyz and i, j refer to the sites of a body
centered tetragonal lattice. The hopping integrals tmm(i j) and
on-site energies εm have been reported in Ref. [38], which
were fitted to reproduce the experimentally determined Fermi
surface. The off-site pairing interaction involves two interac-
tion constants, U‖ for nearest neighbors in the plane and U⊥
for nearest neighbors in adjacent planes. Also, the in-plane
interaction is taken finite only for the a − a pairing and the
out-of-plane interaction is assumed finite for the b − b, c −
c, b − c types of pairings written in terms of a 3 × 3 matrix

Ûm,m′ =
⎛
⎝U‖ 0 0

0 U⊥ U⊥
0 U⊥ U⊥

⎞
⎠, (2)

with the matrix indices ordered as a, b, and c orbitals. This
choice was motivated by the spatial symmetries of different
orbitals: the ”a” orbitals are confined to the x-y plane and
hence give rise to dominant in-plane interactions whereas the
”b” and ”c” orbitals having only one component lying in
the plane and so contribute dominantly to the out-of-plane
interaction.

We do not consider spin-orbit coupling terms in the TB
model Hamiltonian, motivated by the fact that for the high
field properties investigated here its role will be primarily to
break the degeneracy of the four possible helical pairing types
A1u, A2u, B1u, B2u. In preliminary calculations exploring the
role of spin-orbit coupling (SOC), our main result of the high
field subphase is found to be robust.

The pairing basis functions for triplet superconductivity are
the odd-parity functions in k space given by (where for sim-
plicity we have chosen units of length such that the in-plane
lattice constant a = 1)

sin kx, sin ky (3)

and

sin
kx

2
cos

ky

2
cos

kzc

2
, cos

kx

2
sin

ky

2
cos

kzc

2
, (4)

for in-plane and out-of-plane interactions, respectively. The
general form of the gap function for an odd-parity triplet state
can be represented by a 2 × 2 matrix in spin-space as

�̂(k) =
(

�↑↑(k) �↑↓(k)
�↓↑(k) �↓↓(k)

)
, (5)
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which can be conveniently written in the form(−dx(k) + idy(k) dz(k)
dz(k) dx(k) + idy(k)

)
= i[d(k).σ̂]σ̂y, (6)

where the vector d(k) is given by d(k) =
(dx(k), dy(k), dz(k)) and σ̂ = (σ̂x, σ̂y, σ̂z ) is the vector of
Pauli spin matrices.

The Bogoliubov–de Gennes (BdG) equation(
Ĥk(r) �̂k(r)
�̂

†
k(r) −Ĥ∗

−k(r)

)(
unk(r)
vnk(r)

)
= Enk

(
unk(r)
vnk(r)

)
, (7)

is solved self-consistently at every k point. In our TB model,
a spin-only magnetic field H = (Hx, Hy, Hz ) can be added to
Eq. (7) by replacing Ĥk(r) with

Ĥk(r) = Hk(r)σ̂0 + μBμ0σ̂.H, (8)

μB being the Bohr magneton and μ0 being the vacuum per-
meability (in what follows we set μ0 = 1 for convenience).

Pairing vector

As Sr2RuO4 has a body-centered tetragonal crystal struc-
ture there exist several choices for the d vector [45]
corresponding to different irreducible representations of the
point group symmetry. In this work we consider the in-plane
helical d vectors, of which there are four vectors correspond-
ing to the representations A1u, A2u, B1u, B2u. In this work we
consider the form d = (X,Y, 0), which corresponds to the A1u

representation. X and Y are the basis functions as described
in Eqs. (3) and (4). We should stress that in the absence of
SO coupling all four representations are degenerate and the
choice of A1u is thus simply a representative example.

Following the approach of Ref. [46] and using Eqs. (3),
(4), and (5), we can write expressions for the components of
matrix in Eq. (5) as follows:

�σσ
aa (k) = (

η�σσ,x
aa sin kx + i�σσ,y

aa sin ky
)

(9)

for in-plane components and

�σσ
i j (k) =

(
η�σσ,x

i j sin
kx

2
cos

ky

2

+ i�σσ,y
i j cos

kx

2
sin

ky

2

)
cos

kzc

2
(10)

for out-of-plane components where i j = bb, cc, and bc, and
η = +1 for σ =↓ and η = −1 for σ =↑. As previously
mentioned, a = dxy, b = dxz, and c = dyz represent different
orbitals. The coefficients involved are given by

�σσ,x
aa = U‖ ×

∑
n

∫
d3(k)

[
uσ

a,n(k)vσ�
a,n(k)

+ vσ�
a,n(k)uσ

a,n(k)
] × sin kx f (T, En),

�σσ,x
i j = 4U⊥ ×

∑
n

∫
d3(k)

[
uσ

b,n(k)vσ�
b,n(k)

+ vσ�
b,n(k)uσ

b,n(k)
] × sin

kx

2
cos

ky

2
cos

kzc

2
f (T, En),

(11)

where f (T, En) is the Fermi function at a temperature T and
eigenvalue En corresponding to the nth band. Similar relations
hold for the y components �

σσ,y
aa and �

σσ,y
i j . Using the above

equations, along with the symmetry induced relations

�σσ,x
aa = �σσ,y

aa

�
σσ,x/y
bb = �σσ,y/x

cc ,

we self-consistently solve Eq. (7). The only unknown con-
stants are the in-plane ad out-of-plane interaction parameters
U‖ and U⊥. These are chosen such that both the in-plane and
out-of-plane components of the zero-field gap-function have a
common superconducting critical temperature of 1.5 K. Under
this requirement we find

U‖ = 0.461t, (12)

U⊥ = 0.624t, (13)

where t = 0.08162 eV. It should be noted that in the absence
of SOC the Fermi sheets are decoupled into dxy and dyz/dxz

sheets, implying that U‖ and U⊥ can be chosen independently.
While this may appear artificial, implying a model of two
decoupled superconductors, in Ref. [38] the introduction of
additional subdominant interaction parameters coupling the
dxy and dyz/dxz orbitals were shown to have very little impact
on either the gap function or the superconducting transition
temperature. It was thus concluded that the solution of the
BdG equation is not very specific to the precise details of
the model parameters, but represents a generic solution valid
for a range of the possible interaction parameters. Therefore
while the possibility to independently tune the dxy and dyz/dxz

Fermi sheets exists, given that lifting this constraint does not
significantly impact the physics of the model it does not render
the mode artificial.

In Fig. 1 we illustrate the Fermi surface of Sr2RuO4

obtained from our model along with the variation of su-
perconducting gap, obtained by solving the BdG equation
self-consistently. The line nodes incorporated into the model
are visible on the α and β sheets where the gap vanishes at
kz = ±π/c, c = 12.722 Å being the lattice constant along z
axis. These nodes are a direct consequence of the assumed
interlayer pairing interaction acting among the dxz and dyz or-
bitals which are primarily oriented perpendicular to the plane.
In contrast, the γ sheet of the Fermi surface predominantly
corresponds to the dxy orbital lying in the x-y plane. The
quasiparticle gap on this sheet has no nodes, but does have
deep minima for k in the (1, 0, 0) and (0, 1, 0) directions, as
shown in Fig. 1.

III. RESULTS AND DISCUSSION

Using the model described in previous section, we now
numerically solve the BdG equation [Eq. (7)]. In the following
we divide our presentation of results into three subsections. In
Sec. III A we study the gap function as a function of applied
magnetic field for a fixed temperature, and as a function of
temperature for fixed magnetic field. In this way we build
up a magnetic field versus temperature phase diagram for the
superconductor. In Sec. III B we show the results for specific
heat as a function of temperature with fixed magnetic field
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FIG. 1. Fermi surface of Sr2RuO4 obtained from the tight-binding model described in Sec. II, with the variation of superconducting gap at
T = 0 K on three Fermi sheets represented via a color scale as indicated (kx, ky and kz are in units of the in-plane lattice constant a = 3.862 Å).
Horizontal line nodes are visible on the α and β sheets where the gap vanishes at kz = ±π/c, c = 12.722 Å being the lattice constant along
the z axis.

and vice versa. Finally Sec. III C is dedicated to the study of
Knight shift and Sec. III D to the variation of polar angle. In
each case we carefully compare our results with experiment.

A. Gap function and phase diagram

One of the key findings of the experiment of Ref. [37]
was the emergence of a superconducting subphase below
T = 0.8 K upon variation of magnetic field. Motivated by this,
we study the gap function as a function of magnetic field
(aligned along the [100] direction) in Fig. 2 panels (a)–(c),
and as a function of temperature in panels (d)–(f). Different
plots within each panel represent the different components of
the gap function as labeled in the legend.

Field sweep at fixed temperature: In panel (a) we see two
first-order transitions at the lower critical field Hp1 = 2.35 T
and the upper critical field Hp2 = 2.77 T, with the temperature
fixed at 0.2 K. This feature of two superconducting transitions,
in our model, results from different critical fields for the gap
functions on the dxy(�x

aa) and dxz/dyz(�x
bb/�

x
cc) orbitals, re-

spectively, represented by Hp1 for the former and by Hp2 for

the latter. It should be noted that zero temperature difference
in the values of Hp1 and Hp2 in our work, which is ∼0.47 T is
close to the experimental value of ∼0.35 T (Fig. 4(a) of Ref.
[37]) for the samples with the longest average mean free path.
The larger value of Hp2 implies that whereas the gap function
on dxy orbitals becomes zero at a lower value of the field, it
remains finite on the dxz and dyz orbitals until a higher field of
Hp2. When the temperature is increased to a value of 0.6 K in
panel (b), the difference between Hp2 and Hp1 reduces and the
two transitions move closer to each other. Upon further raising
the temperature to T = 0.8 K, panel (c), this difference falls to
zero, which corresponds to a single critical field of the value
Hp = 2.4 T. Above T = 0.8 K, the superconducting transition
is of second order, which will become clearer from the specific
heat results in the next section. This temperature of 0.8 K,
which we denote T ∗, matches the temperature reported in
Refs. [22,25,37] below which a first-order transition has been
seen.

The first order transition is characteristic of Pauli limiting
or spin limiting [28,29], also known as Chandrasekhar-
Clogston limit [47,48]. The paramagnetic suppression of

FIG. 2. Field dependence of the gap-function at temperatures (a) 0.2 K, (b) 0.6 K, (c) 0.8 K and temperature dependence of the gap function
at fields (d) 0 T, (e) 1.49 T, (f) 2.67 T. Different plots within each panel correspond to the different components of the gap function as labeled
in the legend, where the subscripts of the gap function denote orbitals as a = dxy, b = dxz, and c = dyz. The superscript refers to the component
of the gap function; we show only the x component with similar physics found for the y component. Two clear first-order transitions can be
seen in panels (a) and (b) at Hp1 and Hp2 that merge into a single superconducting transition in (c). The superconducting transition in (d)–(f) is
of second or first order depending upon whether the field H < Hp1 or Hp1 < H < Hp2, respectively.
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FIG. 3. H-T phase diagram for Sr2RuO4 under a spin-only mag-
netic field H ‖ [100]. For T < T ∗ two superconducting transitions
occur with first-order transitions at a lower critical field Hp1 and an
upper critical field Hp2. Above this temperature a single second-order
superconducting transition occurs. The bicritical point (T ∗, H∗) at
which the two phase lines merge is (0.8 K, 2.4 T), which can be
compared to the experimental value (0.8 K, ∼1.2 T) [37]. The line
denoted by Tc is the critical temperature calculated via a field sweep,
and agrees to numerical precision with the Hp2 and Hp lines deter-
mined from a temperature sweep at fixed field.

superconductivity takes place due to the magnetic field lifting
the degeneracy of electronic states with opposite momenta k
and −k that form the Cooper pair. Pauli limiting then occurs
when the magnetic energy is larger than the condensation
energy. For a singlet superconductor with an isotropic gap, the
condition at T = 0 K is (1/2)χPH2 = (1/2)N (0)�2, where
χP is the Pauli susceptibility, H is the applied field, N (0) is
the density of states at the Fermi level and � is the super-
conducting gap. The Pauli field can be roughly approximated
to be of the order of the magnetic field that correspond to
the Tc of the material [5], which gives a value of 2.23 T for
Tc = 1.5 K, close to our calculated value of Hp1 = 2.35 T at
0 K. The paramagnetic pair-breaking is active for spin-singlet
pairing or triplet pairing with the d vector locked in the basal
plane [34,36,49].

Temperature sweep at fixed field: We now consider the
temperature dependence of the gap function at constant field
[panels (d)–(f)], where in an experiment [37] two supercon-
ducting transitions forming a superconducting subphase are
again observed. However, as can be seen in panels (d)–(f)
our model exhibits only a single superconducting transition
temperature. Interestingly, as in the experiment [37], we see
that a continuous transition at smaller fields, panels (d) and
(e), goes over to a first- order transition at higher fields,
panel (f).

This disagreement with experiment can be better under-
stood by examining the phase diagram, Fig. 3. In this figure
we show two critical fields Hp1 and Hp2, calculated from a
sweep of H for a fixed T , and the critical line Tc (the green
line) calculated from a sweep of T for a fixed H . (The latter
naturally coincides to numerical precision with Hp2 within

the region of the superconducting subphase.) The reason our
model finds two superconducting transitions with variation
of field but not with temperature is now clear, and results
from the near zero slope of the lower critical line. At tem-
peratures T < T ∗ a fixed T line intersects the graph at both
the fields Hp1 and Hp2 whereas, in contrast, a fixed field line
intersects the graph at only one temperature, and depending
upon whether T < T ∗ or T > T ∗ it will be a first- or second-
order transition. The bicritical point (T ∗, H∗), the point on the
phase diagram where the two critical fields merge into one, is
(0.8 K, 2.4 T). Seemingly, the spin-only field controls only the
upper critical field as a function of temperature whereas ex-
perimental results suggest both Hp1 and Hp2 vary significantly
with temperature.

To explore this further in Fig. 4 we display the variation
of the superconducting quasiparticle energy gap on three dif-
ferent bands of the Fermi surface under a magnetic field of
Hx = 2.67 T. Comparison with Fig. 1 reveals that the gap on
the parts of the Fermi surface corresponding to the dxy and dxz

orbitals is significantly reduced. On the γ sheet, which almost
purely consists of the dxy orbitals, it reduces to approximately
half of the average value of the original gap. On parts of the
α and β sheets, which are mainly dxz orbital in character, it
reduces to a very small value. Interestingly the nodal structure
of the field dependent quasiparticle gap shown in Fig. 4 is
significantly different from the zero field case seen in Fig. 1,
especially on the β sheet.

It is worth pointing out at this stage that the finding of a
”double superconducting transition” in the early studies of
Refs. [22,23] was not subsequently seen in the latter studies
involving much smaller (and thus possibly cleaner) samples
[25]. However, the magnetic torque measurements of Ref.
[37] reported a superconducting subphase for ultraclean sam-
ples under an applied field, very similar to the original work of
Maeno et al. [22,23]. Interestingly, in that work the high field
subphase was seen clearly only in the sample with longest
mean free path, suggesting that the high-field subphase is
highly sensitive to disorder. In our work, this subphase has
its origin in distinct superconducting transitions on the γ and
α, β Fermi sheets, of dxy and dyz/dxz orbital character, respec-
tively. We speculate that disorder that strongly couples these
sheets will likely destroy this high field subphase, although we
note that our preliminary SOC calculations that demonstrate
subphase robustness to the orbital mixing induced by SOC
suggest that very significant mixing is required to destroy the
subphase. Of course, other disorder effects cannot be ruled
out.

B. Specific heat

Contradicting the expectation of a Ce/T versus T curve
deviating downward near Tc from the linear extrapolation of
the data at lower temperatures, an unusual upward deviation
was observed at a field below 1.2 T [23], while Ref. [23]
also studies Ce/T versus H at fixed temperature, with again
a downward deviation of the Ce/T versus H curve near Hp2

observed at 0.5 and 0.7 K and for H ‖ [100], a double-peak
structure was reported below T = 0.8 K [22]. In Fig. 5 we
present our results for the calculations of Ce/T against H for
a range of temperatures. In concordance with the results for
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FIG. 4. Variation of superconducting gap on the three bands comprising the Fermi surface under a magnetic field Hx = 2.67 T (kx, ky and
kz are given in units of the in-plane lattice constant a = 3.862 Å). On the γ Fermi sheet, of almost pure dxy character, the gap reduces to half
the value found in the absence of the field (compare with Fig. 1). Similarly, on regions of the α and β sheets dominated by dxz orbital character
(mostly along ky direction) the gap also significantly reduces. Interestingly, the nodal line structure is strikingly different from that found at
zero field, as can be seen by comparison with Fig. 1. It is to be noted that a corresponding Hy field would couple to the dyz-dyz pairing function
and thus reduce the gap on the dyz dominated kx planes; note also as we employ a fully 3D model consisting of three orbitals the quantities in
Figs. 2 and 4 cannot be directly compared.

the gap function (Fig. 2), we find a single phase transition
above T ∗ = 0.8 K, and a double peak structure below T ∗. As
expected, our results below T ∗ are in qualitative agreement
with the experimental result [22,23] where we see a upward
slope for Ce/T versus H graph near Hp1 and Hp2 at low
temperatures. As mentioned in the previous section, the zero
temperature difference in the values of Hp1 and Hp2 reported
here of ∼ 0.45 T is close to the experimental value of ∼ 0.35 T
(Fig. 4(a) of Ref. [37]). The important difference lies in the
individual values of two critical fields, with our values being
larger than the experimental values. This can be understood
on the basis that we employ a spin-only magnetic field, and
inclusion of a vortex lattice will naturally reduce these field
values.

One should note that the significant difference in the low
field (2.3 T) and high field (2.8 T) jumps in heat capacity
seen in Fig. 5 for T = 0.2 K, with the high field jump much
smaller. This arises as the low field transition takes place
on the dxy orbital dominated Fermi sheet that has a much
more significant weight in the density of states near the Fermi

FIG. 5. Magnetic field dependence of Ce/T at various fixed
temperatures. Whereas a single phase transition exists above T ∗ =
0.8 K, double superconducting transition appears below T ∗ in well
agreement with the Fig. 2.

energy. The absence of a low field
√

H behavior results from
the fact that the magnetic field employed in our calculations
is a spin-only magnetic field, and therefore the contribution of
the vortex lattice has not been considered [50].

Turning to variation of the heat capacity with temperature
we first consider the zero field case, finding a very good agree-
ment with the experimentally measured specific heat [23] as
shown Fig. 6. The feature that at low temperature, specific
heat scales linearly with T is a consequence of horizontal line
nodes built into our model [38] but, as we stress in Sec. II, this
linear dependence can be captured also by vertical line nodes
or deep minima in the gap function.

The results for the specific heat calculations at fixed mag-
netic field are shown in Fig. 7. As the field is increased, Tc

decreases with little change in the height of the jump until
around the field H = 2.4 T ∼ H∗ where the slope of the Ce/T
versus T curve increases near Tc and a peak begins to appear.
This result is again in accordance with our results of the
gap function and the height of this peak increases with the
increase in field. This peak is related to the Pauli paramag-
netic effect [22], which results in a first-order transition and
can be mathematically understood as arising from the energy

FIG. 6. Comparison between experimentally measured [23] and
calculated Ce/T at zero magnetic field.
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FIG. 7. Temperature dependence of Ce/T at various values of the
applied field H ‖ [100]. As the field is increased, a peak begins to
develop at H = 2.35 T ∼ H∗, characteristic of first-order transition.

derivative term, when the temperature derivative of the energy
eigenvalues diverges in [51]

Cv =
∑
n,k

{
kBβ2

2

(
En,k + β

dEk

dβ

)
Eksech2 βEk

2

}
. (14)

C. Spin susceptibility

The measurement of spin susceptibility has proved to be a
useful technique for determination of the internal pairing state
of Cooper pairs in superconductors. Contrary to early results
[10,11], recent results report a very large drop in Knight shift
[18,30,43] and in magnetic susceptibilty [44] in the supercon-
ducting state as compared to the normal state. This throws
into doubt the widely accepted picture of chiral pairing in
Sr2RuO4 [7] and leads to the possibility of helical pairing.
As in our work we consider a magnetic field that couples
only to the spin degree of freedom, we calculate a similar
quantity, the spin susceptibility, and compare our results with
the available experimental data. We plot the ratio of spin
moments in the superconducting state to the normal state in
Fig. 8. We choose the values of field to be 0.7 T from nuclear
magnetic resonance (NMR) [30] and 0.5 T [44], 1 T [12] from
neutron scattering experiments performed on Sr2RuO4.

Our results can be closely compared to the NMR exper-
iments as long as our choice of magnetic field lies in the
linear-response regime so that

K (T ) = ∂M(T )

∂H
= M(T )

H
(15)

holds, where K (T ) is the Knight shift measured at temperature
T and M(T ) is the corresponding spin magnetic moment. As
shown in the inset of Fig. 8, the linearresponse holds up to a
large value of the field of ≈1.4 T. Our results in Fig. 8 where
we see a 46% drop in the T = 0 K, moment compare well with
the neutron scattering results [12,44]. The difference with
the latter could arise as neutron scattering involves the total
magnetization while our calculation provides the spin only
response. Also, as suggested in Ref. [30], the experimental

FIG. 8. Ratio of spin magnetic moment and the normal state
moment at 0.5 , 0.7 , and 1 T as a function of field. The ratio can
be compared to the Knight shift results for spin susceptibility ratio
(see text for explanation). Knight shift data from Ref. [30] at ∼0.7 T
and polarized neutron scattering data from Ref. [44] ∼0.5 T has also
been shown for comparison. Also, shown in the inset is the field
dependence of spin magnetic moment which is linear up to a field
of ∼1.4 T.

drop of a few extra percent below 50% in NMR studies, a
number limited by the expression for the susceptibility tensor
for helical pairing [52]

χ̂s(T ) = χn

2
diag(1 + Y (T ), 1 + Y (T ), 2) (16)

can possibly be captured by Fermi-liquid correction, where
χs, χn represent spin susceptibilities in the superconducting
and normal state, respectively, and Y(T) is the Yosida function
[49].

Further, Refs. [30,43] presented the Knight shift ratio in
the superconducting and normal state as a function of field,
at a fixed temperature of 66 mK. Comparing our results in
Fig. 9 to these NMR measurements at oxygen site, we find
some differences, especially with Ref. [43], which shows a
much larger Knight shift reduction compared to Ref. [30] at
low field values. This could indeed imply that the helical state
is not the correct pairing symmetry and a spin singlet pairing
is more likely. However, the large error bar in the low field
data of Ref. [43] also does not preclude the possibility of
helical pairing enhanced by Fermi liquid suppression of the
susceptibility. Also, it should be noted that we cannot make
a direct comparison with the oxygen NMR results within our
minimal tight-binding model and it is, furthermore, likely that
the O(1) site has a bigger contribution to the γ sheet and the
O(2) site has a bigger contribution to the α and β sheets.
However, a detailed analysis of these subtleties lies beyond
the scope of our present manuscript.

D. Varying the polar angle

Reference [22] also studies the critical field by varying
the polar angle between the normal to the RuO2 plane and
the direction of the applied magnetic field, reporting a very
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FIG. 9. Ratio of spin susceptibilities in the superconducting and
normal state at various temperatures. The result can be compared
with the experimental data provided that the Eq. (15) holds. Knight
shift data from Ref. [30] at 66 mK, Ref. [43] at 25 mK, and polarized
neutron scattering data from Ref. [44] at 0.6 K, for purpose of com-
parison, has also been shown after dividing by the lower critical field
values taken from Ref. [23].

strong dependence on angle with Hp2 reducing sharply with
the angle. This effect cannot be explained by helical pairing
as it is well known that a field perpendicular to the x-y plane
for a helical d vector would leave the gap-function almost
unchanged. In Fig. 10, we present the gap function for dyz

orbitals with a field inclined at angle θ with respect to the
normal. At θ = 0, when the magnetic field is out of plane, the
critical field tends to infinity. As θ increases, the component
of the field in the plane increases as a result of which Hc

decreases and becomes minimal at θ = 90◦. A similar effect
is seen for the other components of the gap function. Cor-
respondingly, the Knight shift will remain unaffected for a
choice of θ = 0◦[33] [see Eq. (16)].

FIG. 10. Magnetic field variation of the gap function |�x
bb| at

T = 0.6 K for different field orientations with respect to the normal.

IV. DISCUSSION

A thorough study of helical pairing in Sr2RuO4 has been
made using a realistic 3D tight-binding approach, with results
compared to experiments where available. Our model based
upon helical pairing agrees with many of the experimental
observations such as the observation of a high field super-
conducting subphase, a first-order transition to the normal
state, and the substantial drop of Knight shifts and magnetic
moments in the superconducting phase. However, although
the temperature T ∗ = 0.8 K of the bicritical point on the
H − T phase diagram agrees with experiment (all experimen-
tal observations of the subphase to date find T ∗ = 0.8 K),
the corresponding experimental values of H∗ ∼ 1.2 T and the
T = 0 K value of the lower and upper critical field 1.5 T and
1.85 T, respectively, do not agree, with our values for these
fields being 2.4, 2.35, and 2.67 T, respectively. Furthermore,
the temperature dependence of Hp1 also differs from experi-
ments with our results showing a much weaker dependence.

These differences can likely be attributed to the orbital
contribution to the critical field, which we do not include
in our model. This will lead to some obvious differences
with experiment, for example a spin-only magnetic field
cannot capture the in-plane anisotropy of Hp1 and Hp2 mea-
sured via ac susceptibility studies [53], and so the impact
on the magnitude of these fields requires further discus-
sion. The orbital limit of the upper critical field can be
estimated using the Wethamer-Helfand-Hohenberg formula
as Horb

c2 (0) = −0.75|dHp2/dT |Tc Tc. This formula, applied to
Sr2RuO4, gives a value of 3.3 T [54], which would correspond
to a value of Hp2 if the superconductivity was orbitally limited,
significantly larger than the experimental value of 1.5 T [23].
This strongly indicates that the superconductivity in Sr2RuO4

is Pauli limited. Nevertheless, vortex lattice contribution to
critical fields cannot be ignored [55–57], and may be impor-
tant for obtaining quantitative agreement even in the case of
Pauli limiting. Furthermore, it needs to be stressed that in
our calculation we assumed that the Cooper pairs have a net
zero momentum thereby excluding the possibility of Fulde-
Ferrell-Larkin-Ovchinnikov phase at high field, as found, for
example, in CeCoIn5 [58], a Pauli-limited heavy-fermion su-
perconductor.

As discussed in the introduction to this paper, experimental
evidence concerning time reversal symmetry breaking in the
superconducting state of Sr2RuO4 presents a contradictory
picture; our model does not support experiments which show
that TRS is broken in the superconducting phase. It is, how-
ever, of interest to consider how TRSB could be recovered in
the context of helical p-wave pairing. In general, helical pair-
ing states, in contrast to the the chiral pairing state, preserve
TRS. This is a direct consequence of spin-orbit coupling,
which implies that the four states of helical type are non-
degenerate:

d = (X,Y, 0),

d = (Y,−X, 0),

d = (X,−Y, 0),

d = (Y, X, 0), (17)
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each corresponding to one of the 1d irreducible representa-
tions A1u, A2u, B1u, and B2u of the D4h point group. However
in the absence of spin-orbit coupling they all derive from the
Eu irreducible representation of the tetragonal point group and
among the distinct pairing states allowed are TRSB states [8].
Some of these TRSB states are the superposition of the four
states in Eq. (17) and in this context it is interesting to note
that inclusion of SOC results in accidental or near degeneracy
between pairs of the helical states above [45,59]. Such super-
position states are worthy of future study as, in addition to
possibly capturing the superconducting subphase described in
this work, they may plausibly (i) yield a nonzero Kerr effect
and finite orbital magnetic moment similar to those found in
the chiral state [60,61], and (ii) may resolve the contradiction
of the absence of edge supercurrents, as the occurrence of such
currents for TRSB helical states is unclear (in contrast to the
TRSB chiral state in which they are expected).

Such pairing states are also interesting as degeneracies
among helical states could explain the recently reported
anomaly in the B2g channel [62,63], interpreted as indicating
multiple order parameters (which of course is also consist with
chiral p-wave, or d + id pairing). Furthermore, experiments
indicating possible half-flux vortices [31,32] imply a non-
Abelian gauge symmetry, also requiring a multiple component
order parameter. An in-plane d vector as present in the helical
triplet states was the first such model [64] of half-flux vortices
in Sr2RuO4. Of course other non-Abelian gauge elements,
such as pseudospin symmetry in orbital space [65] are also
possible. It is also worth mentioning that the claim that the
strain experiments [18] rule out multiple component order
parameters is not general; while strain breaks x-y rotational
symmetry and so would split the degeneracy present in the
chiral p-wave pairing state, it is not clear whether other de-
generacies would also be lifted by strain.

In conclusion, helical pairing can explain several of the
experimental features and could be a viable candidate in the
search for the internal pairing symmetry of the Cooper pairs.
The fact that the A1u pairing captures both the high field sub-

phase as well as the suppression of Knight shift suggests that
variations on helical pairing (e.g., superposition states) could
represent a vital further research direction. Improvements to
our model include the addition of orbital contribution and SO
coupling, however, our preliminary calculations show that the
effect of superconducting subphase is robust to the addition of
the latter, as expected.

The possibility of other types of singlet pairings such as
d-wave or extended s-wave can, of course, not be ruled out
[33,66,67], in particular since the sharp variation of Hp2 with
polar angle cannot be explained with helical pairing. Fur-
thermore, whereas the experiments [18,30] showed a drop of
around 50−65% at T = 0 K, hinting towards triplet helical
pairing rather than the singlet pairing – for which a 100% drop
is expected – the latest measurements on Knight shift [43]
reports a 80−90% reduction compared to the normal state
at lower field values. The rather large error bar at low field
value, however, does not allow one at this stage to definitively
rule out a helical pairing symmetry augmented by Fermi liquid
corrections. Further experiments on the NMR measurements
with a field applied along the z axis can help resolve the issue
to some extent since no drop in Knight shift is expected for
a helical pairing and such an observation would rule out any
possibilities of singlet s- or d-wave pairing.
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Magnetic field induced rotation of the d-vector in the spin-
triplet superconductor Sr2RuO4, Phys. Rev. B 78, 054511
(2008).

[53] H. Yaguchi, T. Akima, Z. Mao, Y. Maeno, and T. Ishiguro,
Detailed study of the ac susceptibility of Sr2RuO4 in oriented
magnetic fields, Phys. Rev. B 66, 214514 (2002).

[54] A. G. Lebed and N. Hayashi, Paramagnetic-like destructive
mechanism against superconductivity in Sr2RuO4: A triplet sce-
nario versus a singlet one, Physica C 341, 1677 (2000).

[55] D. F. Agterberg, Vortex Lattice Structures of Sr2RuO4, Phys.
Rev. Lett. 80, 5184 (1998).

[56] D. Agterberg, R. Heeb, P. Kealey, T. Riseman, E. Forgan, A.
Mackenzie, L. Galvin, R. Perry, S. Lee, D. M. Paul, R. Cubitt,
Z. Mao, S. Akima, and Y. Maeno, Vortex lattice structures and
pairing symmetry in Sr2RuO4, Physica C 341, 1643 (2000).

[57] R. P. Kaur, D. F. Agterberg, and H. Kusunose, Quasiclassical
determination of the in-plane magnetic field phase diagram of
superconducting Sr2RuO4, Phys. Rev. B 72, 144528 (2005).

[58] J. S. White, P. Das, M. R. Eskildsen, L. DeBeer-Schmitt, E. M.
Forgan, A. D. Bianchi, M. Kenzelmann, M. Zolliker, S. Gerber,
J. L. Gavilano, J. Mesot, R. Movshovich, E. D. Bauer, J. L.

Sarrao, and C. Petrovic, Observations of pauli paramagnetic
effects on the flux line lattice in CeCoIn5, New J. Phys. 12,
023026 (2010).

[59] Z. Wang, X. Wang, and C. Kallin, Spin-orbit coupling and spin-
triplet pairing symmetry in Sr2RuO4, Phys. Rev. B 101, 064507
(2020).

[60] M. Gradhand, J. F. Annett, and K. I. Wysokiński, Three-
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