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Effects of frustration on the nonequilibrium dynamics of photoexcited lattice systems
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We theoretically investigate the effects of spin frustration on the nonequilibrium dynamics of photoexcited
carriers in a half-filled two-dimensional Hubbard model. Using a nonequilibrium generalization of the dynamical
cluster approximation, we compare the relaxation dynamics in lattices which interpolate between the triangular
lattice and square lattice configuration. To clarify the influence of the density of states of the different lattices,
we also consider the corresponding single-site dynamical mean-field theory results. Our study shows that the
cooling effect resulting from the disordering of the spin background is less effective in the triangular case because
of the frustration. This manifests itself in a longer relaxation time of the photodoped population, as measured
by the time-resolved photoemission signal, and a higher effective temperature of the photodoped carriers in the
nonthermal steady state after the intra-Hubbard-band thermalization.
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I. INTRODUCTION

Rich physics can be expected in systems which combine
strongly correlated electrons and effects of frustration due to
the lattice geometry [1–4]. This is the result of an inability of
the system to minimize simultaneously all the interactions. A
good illustration is an electron system with antiferromagnetic
interactions on a two-dimensional triangular lattice. Placing
two electrons on a triangle with antiparallel spin orientations
makes it impossible for the third one to form two antiferro-
magnetic bonds. Hence, frustrated lattice systems typically
exhibit not only asymmetric electron bands, due to the broken
particle-hole symmetry, but also a large manifold of highly
degenerate states associated with the spin frustration, and may
therefore be highly susceptible to external perturbations.

A potential playground for studying frustrated systems are
cold atoms in optical lattices, where all parameters can be
adjusted independently. Recent advances in cooling proce-
dures have enabled simulations of the two-dimensional (2D)
Hubbard model and the observation of antiferromagnetic or-
der [5], the structure of the chemically doped states [6], as
well as anomalous transport [7] at elevated temperatures. This
progress may soon enable the study of exotic phases of matter,
like quantum spin liquid (QSL) states, that exhibit a variety
of new features associated with their topological character
[8]. Moreover, recently several solids have been proposed to
host QSL states, including organic materials [9–14], quan-
tum kagome lattices [15–17], and other triangular systems
like 1T-TaS2 [18,19]. While the low-temperature properties
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of frustrated materials have been investigated for decades,
much less is known about the effect of frustration on their
nonequilibrium dynamics [20,21]. In view of the nontrivial
underlying physics, it is interesting to identify the finger-
prints of frustration in nonequilibrium probes. Here, it may
be necessary to distinguish the spin frustration from effects
related to the density of states (DoS), which can also affect
the nonequilibrium dynamics of the system.

An established approach for studying the properties of a
strongly correlated electron system out of equilibrium is the
nonequilibrium implementation [22] of dynamical mean field
theory (DMFT) [23,24]. This method is able to describe the
different electronic structures which arise from the different
lattice configurations. However, it accounts for nonlocal cor-
relations and interactions only at the mean field level, which
is not sufficient to capture the effects of spin frustration.
Extensions of DMFT, such as extended DMFT (EDMFT)
[25–27] or the combination of GW and EDMFT [28,29], were
successfully used in nonequilibrium settings [30,31], and in
particular enabled to study the dynamical screening associated
with nonlocal interactions [30].

While the EDMFT scheme employed in Ref. [32] can
describe the effect of short-range spin correlations, standard
DMFT and GW + DMFT do not capture the coupled dy-
namics of electron and spin fluctuations, which is important
for the nonequilibrium description of frustrated systems. For
the purpose of this work, extensions of the DMFT approach
which explicitly treat the short-range correlations within
a small cluster are therefore more suitable [33,34]. These
cluster-based extensions have been extensively used in the
equilibrium context and have already provided useful insights
into the properties of the Hubbard model on a triangular lattice
[35–37]. Implementations of cluster-based DMFT methods
for out-of-equilibrium problems are however still rare and
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nonequilibrium studies of nonlocal correlation effects repre-
sent a frontier in this research field [38–41].

In the present work, we reveal possible fingerprints of
spin frustration in photodoped Mott insulating systems. The
photoexcitation of electrons across a large Mott gap leads to
the creation of long-lived doublon (holon) type charge carriers
in the upper (lower) Hubbard band. For a fixed density of
photoexcited charge carriers, we investigate how their dy-
namics and quasi-steady-states are influenced by frustration.
Specifically, we explore this question within Mott insulating
Hubbard models on different two-dimensional (2D) lattices
configurations at half filling, using a nonequilibrium gen-
eralization of the dynamical cluster approximation (DCA)
[33,34]. When comparing the relaxation dynamics for differ-
ent lattices, one must take into account that in addition to
the spin frustration, the systems may have qualitatively dif-
ferent electronic structures. In particular, the square lattice is
particle-hole symmetric, while the triangular lattice is not. In
order to rule out an important effect of the asymmetric bands
on the nonequilibrium dynamics, we compare the DCA results
to single-site DMFT simulations. The latter approach does not
properly describe nonlocal spin correlations but captures the
differences in the relaxation which arise from the different
electronic structures.

Because the ordering temperature in the frustrated system
can be expected to be much lower than in the unfrustrated
system, we consider systems without long-range magnetic
order but treat the short-range spin correlations within the
clusters. This allows us to characterize the effect of frustration
already in the disordered state without the need for realiz-
ing long-range order. On nonfrustrated lattices, the doublons
and holons can efficiently dissipate their kinetic energy by
reducing the short-range spin correlations that are present
even above the Néel temperature. Spin frustration leads to a
less effective spin cooling in the triangular case, compared
to a square lattice geometry. We demonstrate this effect by
analyzing the time-dependent spin correlation functions and
the photoemission spectrum. Slow relaxation times of dou-
blons and holons and their hot energy distributions in the
nonthermal steady states are nonequilibrium fingerprints of
spin frustration.

The paper is organized as follows. Section II describes the
model and observables. Section III presents the results of our
study for electronic systems with spin frustration in and out of
equilibrium, while Sec. IV summarizes the main findings.

II. MODEL AND METHOD

We consider a half-filled Hubbard model on a triangular
lattice with anisotropic hopping parameters, which is de-
scribed by the time-dependent Hamiltonian

Ĥ (t ) = −
∑
〈i, j〉σ

(ti, j (t )ĉ+
iσ ĉ jσ + H.c.) − μ

∑
i

n̂i

+ U
∑

i

n̂i↑n̂i↓. (1)

Here ĉ(+)
i,σ annihilates (creates) an electron on lattice site i with

spin σ and 〈i, j〉 represent pairs of nearest-neighbor sites. The

FIG. 1. (a) Illustration of the triangular lattice in real space and
of the direction-dependent electron hoppings. A real-space cluster
with Nc = 2 × 2 sites is marked by the black line. (b) Corresponding
reciprocal space representation with Nc cells. The coarse graining
around the momentum points K in the first Brillouin zone (1. BZ) is
indicated by the colored areas.

density operator is n̂i = n̂i↑ + n̂i↓ with n̂i,σ = ĉ+
i,σ ĉi,σ , U is the

onsite interaction parameter, and μ the chemical potential.
The hopping is direction dependent and takes the form [see
Fig. 1(a)]:

ti, j (t ) =
{

th(t ) along ê1, ê2

t ′
h along ê2 − ê1

, (2)

where t ′
h varies from the unfrustrated limit t ′

h = 0 (distorted
square lattice) to the fully frustrated triangular case with
t ′
h = th. The bare dispersion εk for the system with direction-

dependent hopping parameters takes the form

εk = −2

[
th cos(kx ) + th cos

(
1

2
kx +

√
3

2
ky

)

+ t ′
h cos

(
1

2
kx −

√
3

2
ky

)]
. (3)

We note that the bandwidth W of the noninteracting system
depends on the degree of the frustration, namely W = 8th for
t ′
h = 0 and W = 9th for t ′

h = th.
In order to study the relaxation dynamics of photodoped

doublons and holons in Mott insulating systems described by
Eq. (1), we employ the nonequilibrium generalization of the
dynamical cluster approximation (DCA) in combination with
a noncrossing approximation (NCA) impurity solver [41–43].
Within this formalism, the cluster reference system (without
bath) is represented by the cluster Hamiltonian

Hc(t ) = −
∑
〈i, j〉σ

[
t c
i, j (t )d̂+

iσ d̂ jσ + H.c.
] − μ

∑
i

n̂i

+U
∑

i

n̂i↑n̂i↓, (4)

with d̂ (+)
iσ denoting the annihilation (creation) operators on the

cluster. The cluster hopping parameters t c
i, j (t c

i, j = 6ti, j/π
2)

are renormalized by the averaging over momentum patches in
the DCA method, which also imposes translation invariance
on the cluster. All the sites of this cluster are hybridized with
a self-consistently determined bath. In this work, we use
a 2 × 2 cluster, which corresponds to Nc = 4 patches in
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reciprocal space (see Fig. 1) around the momentum
points K = {(0, 0), (π, π/

√
3), (π,−π/

√
3), (0, 2π/

√
3)}

[35,37,44].
The photodoping of the large-gap Mott insulating state is

generated by a time-dependent modulation of the hopping
parameter along the ê1 and ê2 directions (see Fig. 1):

th(t ) = t0
h + �the−(t−t0 )2/τ 2

sin(�p(t − t0)), (5)

with amplitude �th. The hopping modulation has a Gaussian
envelope with a maximum at time t0 and a full width at half
maximum τ . The excitation frequency �p is chosen according
to the gap size and the bandwidth. We measure the energy in
units of the hopping t0

h of the unfrustrated system and time
in units of h̄/t0

h . This excitation protocol is chosen because
treating electric fields in the DCA formalism (which enforces
translation invariance on the cluster) within a gauge-invariant
formulation is not straightforward [45]. In an experiment, one
could choose to selectively modulate the hopping parameter
th along the ê1 and ê2 directions, if the polarization is per-
pendicular to the direction of the t ′

h bond, or affect all three
bonds. Such excitations can be directly implemented in cold
atom experiments and also in solid state systems by driving
an IR-active phonon mode coupled to the intersite hopping.
However, the details of the excitation protocol should not
be of qualitative importance for our results: The effect of
the excitation protocol is to generate a broad distribution of
nonequilibrium carriers by an almost impulsive perturbation,
while the main focus of this study is on the relaxation of car-
riers after the excitation. We have checked that an additional
temporal modulation of t ′

h does not qualitatively change the
results.

A. Observables

In this section, we define the observables that will be used
to analyze the properties of these 2D lattice systems in and
out of equilibrium. Whereas the single-particle observables
are equivalent on the lattice and on the cluster, we measure
the two-particle observables only on the cluster to avoid the
computationally challenging solution of Bethe-Salpeter equa-
tions. The cluster results, e.g., for the spin correlations, may
not be identical to the lattice observables, but we expect them
to reproduce the qualitative trends [34].

1. Double occupation

The double occupancy (or doublon density) D(t ) is defined
as

D(t ) = 1

Nc

Nc∑
i=1

〈n̂i↑(t )n̂i↓(t )〉 (6)

with i labeling the cluster sites. Within the DCA formalism,
it is convenient to measure D(t ) in momentum space, as dis-
cussed in Ref. [41].

2. Spin-spin correlation function

To measure the short-range spin correlations we calculate
the nearest neighbor (NN) spin-spin correlation function on

the 2 × 2 cluster. For the relevant cases of the fully frustrated
triangular system (t ′

h = th) and the tilted square lattice (t ′
h =

0), we define the spin-spin correlation function as

SNN(t ) = 1

Nδ

∑
〈i, j〉

〈
Ŝz

i (t )Ŝz
j (t )

〉
(7)

with Ŝz
i denoting the spin operator in the z direction at site i

and Nδ the number of pairs of neighboring sites connected by
th, see also Ref. [39]. Taking into account the periodicity of
the cluster, the spin frustrated system has Nδ = 12, while the
tilted square lattice has Nδ = 8.

3. Spectral functions

To calculate the equilibrium spectral functions, we perform
the Fourier transformation of the retarded component of the
local Green’s function:

A(ω) = − 1

π
Im

∫ tmax

0
dte−iωt GR(t ) (8)

with the Fourier time window tmax = 10 and GR =
1/Nc

∑
K GR

K. Here, GK(t, t ′) = −i〈dK(t )d+
K (t ′)〉 is the cluster

Green’s function, and GR denotes the retarded part. We ana-
lyze the relaxation dynamics of the photodoped population by
computing the nonequilibrium photoemission spectrum [46]

I (ω, tp) = − Im
∫

dt̄dt̄ ′e−iω(t̄−t̄ ′ )G<(tp + t̄, tp + t̄ ′)

× S(t̄ )S(t̄ ′), (9)

where S(t ) ∝ exp[−(t2/(2�t2
probe)] is the envelope of the

probe pulse of length �tprobe = 1.5, and G< the lesser com-
ponent of the Green’s function.

III. RESULTS

A. Equilibrium properties

In this section we discuss equilibrium properties of the
half-filled 2D Hubbard models with different lattice geome-
tries. The temperature of the system is set to T = 0.1, unless
otherwise specified, and we focus on the paramagnetic Mott
phase.

1. Double occupancy

The U dependence of the double occupancy Deq [Eq. (6)]
in equilibrium is plotted in Fig. 2(a) for a square lattice
(green dashed line with squares), tilted square lattice (trian-
gular lattice with t ′

h = 0, green solid line with diamonds), and
triangular lattice with t ′

h = th (red solid line with triangles). To
take into account the different bandwidths W of the electronic
systems, we normalize the horizontal axis by W . The tem-
perature T = 0.1 is above the critical endpoint of the Mott
transition, which occurs around U/W ∼ 1 for the triangular
lattice [2,3,37] and U/W ∼ 0.5 for the square lattice [37,39].
On all lattices, the double occupancies Deq are decreasing
with increasing interaction U , however, there are quantitative
differences between the lattices.
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FIG. 2. (a) Double occupancy calculated at T = 0.1 using DCA for different lattice geometries: the tilted square lattice (t ′
h = 0, solid green

line with diamonds), the square lattice (dashed green line with squares), and the triangular lattice (t ′
h = th, solid red line with triangles). For

comparison, we also show results from DMFT calculations at the same temperature for the square (black line with squares) and triangular
lattice (black line with triangles). The horizontal axis is normalized by the noninteracting bandwidth W . (b) Corresponding nearest neighbor
spin-spin correlation function calculated using DCA with the same color coding as in panel (a).

First, we compare the results for the square lattice with
those for the tilted square lattice (triangular lattice with
t ′
h = 0). These two cases actually correspond to the same

lattice Hamiltonian. The slight discrepancy in the results
originates from averaging over different patches in the Bril-
louin zone (square-shaped patches centered at K = {(0, 0),
(π, 0), (0, π ), (π, π )} versus hexagonal patches centered
at K = {(0, 0), (π, π/

√
3), (π,−π/

√
3), (0, 2π/

√
3)}), and

therefore quantifies a DCA coarse graining error. In the fully
frustrated triangular system with t ′

h = th the double occupancy
is suppressed compared to the square lattice case. This can
be explained by the effect of the spin frustration, which
suppresses antiferromagnetic spin correlations and thus in-
creases the Pauli blocking of virtual hopping processes which
contribute to Deq. This effect will be further confirmed by
analyzing the spin-spin correlation functions in the following
subsection.

It is also interesting to compare the DCA double occu-
pancies within the corresponding single-site DMFT results,
plotted by black lines in Fig. 2(a). We see that in the latter
case the double occupancy is reduced. This can be explained
by the fact that in contrast to DMFT, the DCA simulation
captures nonlocal antiferromagnetic spin correlations, which
reduce the Pauli blocking effect. Hence, nonlocal correlations
have also a significant effect on local observables, such as the
double occupation. We further notice that the effect of t ′

h on
Deq is not correctly captured by single-site DMFT, which only
takes into account the effect of t ′

h on the density of states but
misses the effect of frustration.

2. Short range spin correlations

The frustration picture is confirmed by analyzing the
nearest-neighbor spin-spin correlations, see Eq. (7). The
equilibrium results obtained using the DCA approxima-
tion are plotted in Fig. 2(b) as a function of U/W for
the square lattice, tilted square lattice (t ′

h = 0), and trian-
gular lattice (t ′

h = th). In contrast, single-site DMFT does

not capture the effect of short-range correlations on the
electrons.

Again, we see that the spin-spin correlation functions are
very similar on the square lattice and the tilted square lat-
tice, and the small numerical differences originate from the
different patch geometries. However, in the triangular lattice
case (t ′

h = th) the spin-spin correlations in the z direction are
suppressed by about a factor of two due to the effect of
spin frustration in the presence of antiferromagnetic nearest-
neighbor correlations.

3. Spectral function

In Fig. 3(a), we plot the equilibrium spectral functions [see
Eq. (8)] obtained using the DCA approximation for several
lattice configurations: the square lattice (green dashed line),
the tilted square lattice (t ′

h = 0, green solid line), and the tri-
angular lattice (t ′

h = th, red solid line). In order to eliminate ef-
fects associated with carrier recombination after the photoex-
citation (discussed in Sec. III B), we choose the value of the
interaction strength U such that the corresponding Mott gap is
almost twice as large as the bandwidth. Comparing A(ω) for
the square and the tilted square lattice we see that the results
are in good agreement: (i) both calculations yield almost the
same value of the Mott gap (�Mott ≈ 15), and (ii) the sym-
metric Hubbard bands (with width W ≈ 8.2) exhibit a similar
two-peak structure. However, the details differ between the
two spectra due to the averaging over different patches.

Including t ′
h = th leads to a smaller value of the Mott

gap and to asymmetric Hubbard bands, due to the lack of
particle-hole symmetry in the triangular lattice. The lat-
ter is illustrated in the inset of Fig. 3(b) which shows
the corresponding noninteracting DoS. The frustrated lat-
tice configuration also results in different bandwidths of the
lower Hubbard band (WLHB ≈ 8.6) and upper Hubbard band
(WUHB ≈ 7.9). For a meaningful comparison between the
models, we adjust the interactions U in the models with t ′

h > 0
in such a way that the spectral functions roughly reproduce
the gap size of the model with t ′

h = 0. Additionally, for a
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FIG. 3. Equilibrium spectral functions for different lattice ge-
ometries obtained using (a) the DCA and (b) the DMFT approx-
imation. The interaction strengths U and the hopping parameters
th have been adjusted to roughly match the gap size and the band
width. (a) Spectral function for a tilted square lattice with t ′

h = 0,
U = 22 (solid green line) and a triangular lattice (solid red line) with
renormalized parameters (t ′

h = th → 0.8t0
h , U = 22.5). For compar-

ison, we also plot the spectral function for a square lattice with
U = 22 (dashed green line). (b) DMFT spectral function for the
square lattice (green solid line) with the renormalized parameters
(th → 0.87t0

h , U = 22.6) and for the triangular lattice (red solid line)
with renormalized parameters (t ′

h = th → 0.76t0
h , U = 22.56). The

inset shows the noninteracting DoS for the corresponding square and
triangular lattices, respectively.

given degree of frustration t ′
h > 0 the hopping parameter th

is renormalized with respect to its counterpart for the square
lattice (th → αt0

h with a scaling factor α) in order to roughly
match the bandwidths of the models. Due to the asymmetry of
the Hubbard bands in the triangular case, the resulting LHB is
thus slightly broader than its counterpart for the square lattice,
while the width of the upper Hubbard band is reduced by a
corresponding amount. As an illustration, we plot in Fig. 3 the
spectral function of the Hubbard model in the triangular case
with the renormalized hopping parameters t ′

h = th → 0.8t0
h

(red solid line).
We complement the DCA discussion by analyzing the

single-site DMFT results, see Fig. 3(b). Again, for a mean-
ingful comparison between different models, we adjust the
interactions U and hopping parameters th in order to re-
produce the gaps and bandwidths of the spectral functions
obtained using DCA. While the asymmetry (symmetry) be-
tween the UHB and the LHB for the triangular (square) lattice
is captured by the DMFT spectrum, the fine structure of the

FIG. 4. Pulse-induced change in the double occupation. The
parameters of the Mott-Hubbard systems are the same as in the
equilibrium calculations (see Fig. 3). (a) The DCA evolution of
the double occupancy after a short excitation for the tilted square
lattice (green line) and the triangular lattice (red line). The inset
shows the Fourier transform of the data directly after pumping (with
a smooth background subtracted) to illustrate the oscillations with
a frequency ω ≈ U . (b) The DMFT evolution for the double occu-
pancy on the square lattice (green line) and on a triangular lattice (red
line). The excitation strength is chosen such that the same photodop-
ing is achieved for the longest propagation time, namely �th ≈ 0.4
for the tilted square lattice and �th ≈ 0.47 for the triangular lattice
in the DCA case. The excitation strengths in the DMFT case are
�th ≈ 0.55 and �th ≈ 0.45 for the square and triangular lattices,
respectively. The black line in (b) represents the pulse (th(t ) − t0

h )
in arbitrary units. Horizontal dotted lines in (a) and (b) serve as a
guide to the eye.

Hubbard bands is different. The fine structure is influenced by
short-range correlations, whereas the splitting of the Hubbard
bands into subbands is likely to be overemphasized in the
four-site DCA, as a result of the coarse discretization of the
self-energy in momentum space. In the following nonequilib-
rium analysis, we will fix the parameters for each lattice as
discussed in this section and only vary the parameters of the
hopping modulation [Eq. (5)].

B. Nonequilibrium properties

A hopping modulation of the form (5) with appropriate fre-
quency creates charge excitations across the Mott gap. For the
parameters of the photoexcitation we use a pulse with �p =
29 centered at t0 ≈ 0.73, with a full width at half maximum
τ = 0.2 (the pulse lasts up to t ≈ 1.8, see Fig. 4). Here, we
are interested in the relaxation dynamics of the photoinduced
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FIG. 5. Nearest-neighbor spin-spin correlation function (normal-
ized by its equilibrium value) for a tilted square lattice (solid green
line) and a triangular lattice (solid red line). The excitation protocols
are the same as in Fig. 4(a).

doublons within the UHB, which results from electron-
electron scattering and interactions with the spin background.
To end up with a given density of photoinduced doublons for
the different lattice geometries, we adjust the intensity of the
photoexcitation accordingly. The dynamics is then analyzed
by means of the time-dependent observables introduced in
Sec. II A.

1. Double occupancy

First, we compare the time-dependent double occupancy
during and after the photodoping pulse in the tilted square
lattice (t ′

h = 0) and the triangular lattice (t ′
h = th). The

nonequilibrium DCA results are shown by the green and red
solid lines in Fig. 4(a), respectively. The excitation inten-
sity in these calculations has been adjusted in such a way
that the increase in the long-lived doublons, measured at the
longest accessible time, is approximately the same in both
models, D(t = 18.7) − Deq ≈ 0.01. The corresponding pulse
amplitudes are �th = 0.4 and ≈0.47 for the square and the
triangular lattices, respectively.

Because of the large Mott gap, the lifetime of the
photodoped doublons and holons is much longer than the
maximum simulation time [43], so that their density is almost
conserved at t � 10. In the DCA case, there is however a
small difference in the lifetime of the doublons on the square
and triangular lattices. One possible reason could be the effect
of spin correlations. In the square-lattice model with strong
antiferromagnetic correlations the system can convert the en-
ergy released by a doublon-holon recombination process into
spin excitations [47]. However, the doublon lifetime scales
exponentially with the gap size [48,49], and rough estimates
suggest a decay rate which is much smaller than observed
in Fig. 4(a). A more plausible explanation rests on the ob-
servation that the small decaying component evolves on a
timescale comparable to the dynamics of the spin correlations
(see Fig. 5). D(t ) measures both the number of excited charge
carriers and a contribution from virtual quantum fluctuations
which dress the Mott state. Due to the Pauli exclusion prin-
ciple, these fluctuations are possible only on a bond with
antiferromagnetic nearest neighbor correlations, as explained

in Sec. III A 1. Therefore the double occupancy D(t ) contains
a small decaying component proportional to the nearest neigh-
bor spin correlations, which is larger for the square lattice,
compared to the triangular lattice.

Further evidence for the role of spin correlations is found
in the time evolution after the pulse. The photoexcitation
of the system lasts only up to t ≈ 1.8 [see black curve in
Fig. 4(b)]. However, in D(t ) − Deq we observe strong photoin-
duced oscillations with a frequency ≈U [see inset in Fig. 4(a)]
superimposed on an almost step-function-like increase. These
oscillations originate from hoppings of electrons to nearest
neighbors and back, similar to virtual fluctuations. With in-
creasing frustration (increasing value of t ′

h), the amplitude
of these fluctuations is reduced, since the reduced antifer-
romagnetic nearest-neighbor correlations enhance the Pauli
blocking. The latter effect also explains why a larger pulse
strength is needed in the frustrated lattice to produce the same
doublon density as in the square lattice.

For comparison, we also performed nonequilibrium single-
site DMFT calculations for the square and triangular lattice,
where we again adjusted the density of the long-lived pho-
toinduced doublons to approximately the same value. The
single-site DMFT results in Fig. 4(b) show a very rapid sup-
pression of the oscillations in D(t ) after the end of the pump
pulse and an almost identical dynamics for the square and
triangular lattice geometry. Since single-site DMFT does not
capture short-range spin correlations, and the oscillations are
controlled by U , this result is expected and shows that details
of the DoS have little effect on the doublon production and
damping behavior. By comparing the single-site DMFT with
the DCA results one can conclude that spin frustration, via
its effect on the short-range spin correlations and the Pauli
blocking, has a significant impact on the doublon dynamics
after a short pulse excitation and in particular leads to a strong
damping of the ω ≈ U oscillations.

2. Short-range spin correlations

While the density of doublons and holons is essentially
conserved after the pulse, the spin-spin correlations decrease
monotonically with increasing time (see Fig. 5), apart from
small oscillations associated with the previously mentioned
nearest-neighbor hopping processes. To compare the dynam-
ics in the models with t ′

h = 0 and t ′
h = th, we normalize the

values of SNN(t ) by the equilibrium value, which makes it
clear that the decay rate is approximately independent of the
degree of frustration. This is consistent with the picture of spin
disorder resulting from the hopping of doublons and holons
in the initially correlated spin background, assuming that the
hopping rate is approximately the same for both values of t ′

h.
Qualitatively similar results were previously obtained and

discussed in Ref. [39] for the case of a square lattice. The de-
cay of the spin-spin correlation function implies a transfer of
(kinetic) energy to the spin sector, which is directly detectable
in the time evolution of the doublon distribution function as
shown in the following subsection. Since in absolute values
SNN(t ) is about a factor of two larger in the square lattice
compared to the triangular counterpart [c.f. Fig. 2(b)], this
means that the amount of energy transferred to the spin sector
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FIG. 6. (a),(b) Occupation in the upper Hubbard band for a tilted square lattice with t ′
h = 0 (left) and for a triangular lattice with t ′

h = th

(right) after photodoping (colored solid lines) obtained using the DCA approximation. The black dashed line corresponds to the spectral
function calculated from the retarded component of the Green’s function in equilibrium, whereas the green solid line corresponds to the
effective inverse temperature βeff calculated at tp ≈ 11. (c),(d) Effective distribution function calculated at tp ≈ 11. (e),(f) Time-dependent
photoemission spectrum integrated in the frequency window [� − ��, � + ��] [shown by shaded areas in (a),(b) with �� = 0.5] and
normalized to the value at time tp = 5 for a tilted square lattice and a triangular lattice, respectively.

(for fixed photodoping concentration) is larger in the square
lattice case. We thus anticipate a more effective spin cooling
in the square lattice compared to the triangular lattice.

3. Nonequilibrium spectral functions

In this section, we calculate nonequilibrium spectral func-
tions [Eq. (9)] in the energy range of the UHB, which provides
information about the relaxation dynamics of the photoexcited
charge carriers, the energy dissipation to the spin background,
and its dependence on spin frustration. These simulations and
analyses represent the main result of our study. In particular,
in Figs. 6(a) and 6(b) we plot I (ω, tp) for several times after
the excitation (which lasts up to t ≈ 1.8). The left panel cor-
responds to the tilted square lattice, whereas the right panel
shows the result for the triangular lattice with t ′

h = th. The
frequency of the excitation pulse is chosen in such a way that
the short pulse generates a broad and rather uniform occupa-
tion in the UHB with a peak closer to its upper edge. After
the pulse the corresponding spectral weight is redistributed
within the UHB as shown in Figs. 6(a) and 6(b) by the colored
solid lines. To analyze more quantitatively the redistribution

of the spectral weight within the Hubbard band, we integrate
the nonequilibrium spectral function in frequency windows of
width 2��, centered at different �:

I��(�, tp) =
∫ �+��

�−��

I (ω, tp)dω. (10)

The results are plotted in Figs. 6(c) and 6(d) for the
tilted square lattice and triangular lattice, respectively. Here,
the curves are normalized to the value at probe time tp = 5
and we use �� = 0.5. As one can see, in both models the
spectral weight is shifting towards lower frequencies, i.e.,
the photodoped doublons lose kinetic energy. However, the
occupation transfer in the tilted square lattice is much more
pronounced than in the triangular case. For example, the rel-
ative decrease of the spectral weight at the upper band edge
(� = 14.5) between tp = 5 and tp = 14 is about 50% in the
tilted square lattice, while it is only ∼20% in the triangular
lattice. Even more remarkable is the difference between the
two models when we consider the relative increase in spectral
weight near the lower band edge where the increase is >100%
in the square lattice as compared to ∼10% in the triangular
lattice. In contrast, in DMFT simulations (see Fig. 8 in the
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FIG. 7. (a) Relaxation time (measured in units of th) extracted from the PES spectral weight at the upper edge of the UHB as a function of
the hopping parameter t ′

h. (b) Effective temperature measured at the lower edge of the UHB at time t ≈ 11.

Appendix), where short-range correlations do not play any
significant role, the distribution of the spectral weight in the
UHB hardly changes after the photo excitation for both the
square and triangular lattices [49].

For a more quantitative analysis of the relaxation dynamics
in systems with different degrees of frustration, we extracted
the relaxation time from the time-dependent spectral weight at
the upper edge of the UHB. The corresponding data are fitted
in the time interval t ∈ [6, 10] by a single exponential function
of the form:

I��(t ) = A + B exp(−t/τdec), (11)

where A and B are fitting parameters and τdec is the relaxation
time. The results are plotted in Fig. 7(a) as a function of the
hopping parameter t ′

h (degree of frustration). As one can see,
increasing frustration leads to a monotonous increase of the
relaxation time, which almost doubles for t ′

h = th compared to
the case with t ′

h = 0. This is consistent with the observation
in Sec. III B 2, where it was shown that the amount of energy
transferred to the spin background is about a factor of two
lower in the triangular lattice compared to the square lattice.
The longer relaxation time in the triangular lattice hence il-
lustrates the reduced coupling between the charge and spin
degrees of freedom in the frustrated system and the resulting
less effective spin cooling. A significant effect of the different
DoS can again be ruled out by comparing with the single-site
DMFT simulations (see Fig. 8), where we find almost no
difference between the relaxation dynamics of the doublons
in the square and triangular lattices.

Looking back at Fig. 4 we notice that the effect of t ′
h on

the relaxation of the spectral weight I��(t ) is opposite to
the effect on the damping of the oscillations in the double
occupation D(t ). This is no contradiction because the latter
oscillations are averaged out in the measurement of I�� due
to the width of the probe pulse �tprobe  2π

U . On average,
D(t ) is conserved after the photodoping, up to small drifts re-
lated to modifications in the virtual hopping contribution. The
oscillations shown in Fig. 4 represent a hopping of electrons
back-and-forth between neighboring sites, which happens on
top of an overall relaxation in the kinetic energy of the dou-
blon population. This hopping is damped more strongly in
the triangular lattice case because of enhanced Pauli blocking.
The overall relaxation of the doublon population towards the

lower edge of the UHB, measured by I��(t ), is however
slower in a spin-frustrated lattice [Fig. 7(a)], because it is
controlled by the dissipation of kinetic energy to the spin
background.

4. Effective temperature

To characterize the nonthermal steady state after the pho-
toexcitation, we calculate the effective temperature from the
fluctuation-dissipation theorem [40,50]

h(ω, tp) = log[−ImGR(ω, tp)/ImG<(ω, tp) − 1] (12)

with GR and G< denoting the retarded and lesser compo-
nents of the nonequilibrium Green’s function. The Fourier
time window for the calculation of GR(ω, tp) and G<(ω, tp)
[analogous to Eq. (8) for fixed tp] is set to 10. The slope
of h(ω, tp) defines a frequency-dependent effective inverse
temperature βeff = 1/Teff . The results measured at t ≈ 11 for
the tilted square and triangular lattice are shown by the solid
green line in Figs. 6(a) and 6(b), respectively. As one can see,
βeff (ω) shows a strong ω dependence and even sign changes,
especially in the region of the “pseudogap” in A(ω) (which
may be overestimated in DCA due to the piece-wise constant
self-energy in momentum space). This implies that on the
short timescales of this simulation, the system has not yet
thermalized very well, and the distribution function is not
a Fermi function with a single temperature over the whole
energy range. This is also directly seen by the distribution
function feff(ω, tp) = ImG<(ω, tp)/ImGR(ω, tp), as shown in
panels (c) and (d) of Fig. 6 for tp = 11. On the other hand,
it is evident that compared to the tilted square lattice, in the
triangular lattice there is a broader occupation function, a
much weaker accumulation of spectral weight at the lower
band edge, and correspondingly a flatter distribution function,
so that a mean effective inverse temperature in the triangular
lattice would be substantially lower (Teff is higher). For a
quantitative comparison, we focus on the lowest energy peak
in the nonequilibrium spectral function and extract βeff at the
corresponding energy. The resulting Teff = 1/βeff is plotted in
Fig. 7 for different values of the hopping parameter t ′

h (degree
of frustration in the system). As one can see, the effective
temperature Teff of the photodoped doublons increases sys-
tematically as t ′

h is increased. These results demonstrate that
the cooling effect associated with energy transfer to the spin
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background is much reduced in a spin frustrated system. This
is confirmed by the DMFT simulations [see Figs. 8(a) and
8(b) in the Appendix], where the absence of spin cooling leads
to an effective inverse temperature βeff close to zero or even
negative, independent of the degree of frustration.

IV. DISCUSSION AND CONCLUSIONS

In this work we investigated the effects of spin frustration
on the relaxation dynamics of photodoped carriers in the para-
magnetic Mott phase of half-filled two-dimensional Hubbard
models. We simulated the real-time dynamics of these sys-
tems by using the nonequilibrium extension of the dynamical
cluster approximation in combination with an NCA impurity
solver. The use of a 2 × 2 cluster with variable diagonal
hoppings allowed us to interpolate between the unfrustrated
square lattice and fully frustrated triangular lattice limits and
thus to analyze the effects of spin frustration on the short range
spin correlations and time-resolved photoemission spectra. In
order to rule out a significant effect of the asymmetric density
of states in the frustrated case, we compared the DCA results
to single-site DMFT simulations, which capture the density of
states effects but not the short range correlations. In the DMFT
simulations the relaxation, e.g., of the double occupancy, is
the same for the two lattices, which shows that the different
relaxation in the square and triangular lattices is not merely
a result of the different density of states but primarily due to
different spin correlations.

We showed that spin frustration manifests itself in different
nonequilibrium probes. On the one hand, the increased Pauli
blocking in a system with suppressed antiferromagnetic spin
correlations leads to suppressed oscillations in the double
occupation after a photodoping pulse and a reduced energy
absorption from the pulse. On the other hand, after doublons
have been created with high kinetic energy (with a population
centered in the upper half of the UHB) the spin frustration
has a significant effect on the dissipation of kinetic energy
to the spin background and hence the time evolution of the
energy distribution function and effective temperature of the
doublons. These can serve as fingerprints of the spin frustra-
tion in nonequilibrium studies.

The spin-charge coupling results in a relaxation of the
photodoped carriers to lower energies and a simultaneous
reduction in the nearest-neighbor spin correlations. Consistent
with the results of Ref. [39], we found that this spin cooling of
the photodoped carriers is very effective in the square lattice
case. By systematically varying the hopping parameters we
further showed that spin frustration has a significant effect on
the dynamics, since it leads to a reduced energy dissipation at
a given hopping rate. As a result, the triangular lattice system
exhibits an intra-Hubbard band thermalization of the doublons
at a much higher effective temperature than the square lattice
system. This effect is not present in single-site DMFT simula-
tions, where the effect of short-range spin correlations on the
electrons is not captured.

Our results show that nonlocal effects, such as spin frustra-
tion, not only affect the low energy properties of correlated
electron systems but also play an important role in highly
excited nonequilibrium states. This highlights the need for de-
veloping computational methods for nonequilibrium systems
which go beyond the local DMFT approximation.
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APPENDIX: DMFT

For the purpose of comparison with the DCA results in
Fig. 6, we show in Fig. 8 the corresponding nonequilibrium
photoemission spectra [Eq. (9)] in the energy range of the
UHB obtained using the single-site DMFT approximation.
The left panels correspond to the case of a square lattice,
whereas the right panels show the results for a triangular
lattice (t ′

h = th). The photoexcitation protocol is the same as
discussed in Sec. III B 1 in connection with Fig. 4(b).

As one can see in Figs. 8(a) and 8(b), the photoinduced
spectral weight in the UHB does not significantly change with
time for both lattice geometries. This can be explained by a
very fast relaxation towards a nonthermal steady state due
to the lack of short-range spin correlations. The calculated
inverse effective temperature βeff in this state at t ≈ 11 (green
line) shows in both cases almost frequency independent values
close to zero [similar to the effective distribution function
shown in panels (c) and (d)], which is also consistent with
the absence of spin cooling.

To get more quantitative insights into the dynamics of
the spectral weight within the UHB, we calculate the inte-
grated spectral function I��(�, tp) according to Eq. (10). The
normalized results with respect to I��(�, tp = 5) are plotted
in Figs. 8(e) and 8(f). Whereas the system in the square lattice
case shows no changes in I��(�, tp) with probing time tp, the
spectral weight for the triangular lattice geometry is shifting
from the lower edge of the UHB to its upper edge. We note,
however, that this result is obtained from the division of two
very small numbers. In absolute values the time-dependent
changes are tiny.
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FIG. 8. (a),(b) Occupation in the upper Hubbard band for a square lattice (left) and for a triangular lattice with t ′
h = th (right) after

photodoping (colored solid lines) obtained using the DMFT approximation. The black dashed line corresponds to the spectral function
calculated from the retarded component of the Green’s function in equilibrium, whereas the green solid line corresponds to the effective
inverse temperature βeff calculated at tp ≈ 11. (c),(d) Effective distribution function calculated at tp ≈ 11. (e),(f) Time-dependent photoemission
spectrum integrated in the frequency window [� − ��, � + ��] [shown by shaded areas in (a),(b) with �� = 0.5] and normalized relative
to the value at tp = 5 for a square lattice and a triangular lattice, respectively. The excitation protocols are the same as in Fig. 4(b).

[1] P. Sahebsara and D. Sénéchal, Phys. Rev. Lett. 100, 136402
(2008).

[2] T. Yoshioka, A. Koga, and N. Kawakami, Phys. Rev. Lett. 103,
036401 (2009).

[3] T. Shirakawa, T. Tohyama, J. Kokalj, S. Sota, and S. Yunoki,
Phys. Rev. B 96, 205130 (2017).

[4] M. Ye and A. V. Chubukov, Phys. Rev. B 100, 035135 (2019).
[5] A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-

Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M.
Greiner, Nature (London) 545, 462 (2017).

[6] T. A. Hilker, G. Salomon, F. Grusdt, A. Omran, M. Boll, E.
Demler, I. Bloch, and C. Gross, Science 357, 484 (2017).

[7] P. T. Brown, D. Mitra, E. Guardado-Sanchez, P. Schauß, S. S.
Kondov, E. Khatami, T. Paiva, N. Trivedi, D. A. Huse, and W. S.
Bakr, Science 357, 1385 (2017).

[8] L. Balents, Nature (London) 464, 199 (2010).
[9] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G.

Saito, Phys. Rev. Lett. 91, 107001 (2003).
[10] K. Kanoda, J. Phys. Soc. Jpn. 75, 051007 (2006).

[11] T. Itou, A. Oyamada, S. Maegawa, M. Tamura, and R. Kato,
J. Phys.: Condens. Matter 19, 145247 (2007).

[12] M. Yamashita, N. Nakata, Y. Senshu, M. Nagata, H. M.
Yamamoto, R. Kato, T. Shibauchi, and Y. Matsuda, Science
328, 1246 (2010).

[13] S. Yamashita, T. Yamamoto, Y. Nakazawa, M. Tamura, and R.
Kato, Nat. Commun. 2, 275 (2011).

[14] T. Isono, H. Kamo, A. Ueda, K. Takahashi, M. Kimata, H.
Tajima, S. Tsuchiya, T. Terashima, S. Uji, and H. Mori, Phys.
Rev. Lett. 112, 177201 (2014).

[15] T.-H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-
Rivera, C. Broholm, and Y. S. Lee, Nature (London) 492, 406
(2012).

[16] M. R. Norman, Rev. Mod. Phys. 88, 041002 (2016).
[17] M. Gomilšek, R. Žitko, M. Klanjšek, M. Pregelj, C. Baines, Y.

Li, Q. Zhang, and A. Zorko, Nat. Phys. 15, 754 (2019).
[18] M. Klanjšek, A. Zorko, J. Mravlje, Z. Jagličić, P. K. Biswas, P.

Prelovšek, D. Mihailovic, D. Arčon et al., Nat. Phys. 13, 1130
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