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Accessing the ordered phase of correlated Fermi systems: Vertex bosonization and mean-field
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We present a consistent fusion of functional renormalization group and mean-field theory which explicitly
introduces a bosonic field via a Hubbard-Stratonovich transformation at the critical scale, at which the order
sets in. We show that a minimal truncation of the flow equations, that neglects order-parameter fluctuations,
is integrable and fulfills fundamental constraints as the Goldstone theorem and the Ward identity connected
with the broken global symmetry. To introduce the bosonic field, we present a technique to factorize the most
singular part of the vertex, even when the full dependence on all its arguments is retained. We test our method
on the two-dimensional attractive Hubbard model at half-filling and calculate the superfluid gap as well as
the Yukawa couplings and residual two-fermion interactions in the ordered phase as functions of fermionic
Matsubara frequencies. Furthermore, we analyze the gap and the condensate fraction for weak and moderate
couplings and compare our results with previous functional renormalization group studies, and with quantum
Monte Carlo data. Our formalism constitutes a convenient starting point for the inclusion of order-parameter
fluctuations by keeping a full, nonsimplified, dependence on fermionic momenta and/or frequencies.
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I. INTRODUCTION

When dealing with correlated Fermi systems, one has very
frequently to face the breaking of one or more symmetries
of the model through the development of some kind of or-
der. Mean-field theory provides a relatively simple but often
qualitatively correct description of ground-state properties in
the ordered phase. Remarkably enough, this is not limited
to weak coupling calculations but it may survive at strong
coupling [1,2]. On the other hand, fluctuations of the order
parameter play a key role at finite temperature T [3] and
in low dimensionalities. In particular, they are fundamental
in two-dimensional systems, where they prevent continuous
symmetry breaking at any T �= 0 [4,5]. In the specific case
of U(1) or SO(2) symmetry groups, fluctuations are respon-
sible for the formation of the Berezinskii-Kosterlitz-Thouless
(BKT) phase, characterized by quasi-long-range order [6,7].

The functional renormalization group (fRG) provides a
framework to deal with interacting Fermi systems and order-
ing tendencies [8,9]. The inclusion of an infrared cutoff in the
bare model allows for the treatment of different energy scales
� in a unified approach. In the most typical cases of symmetry
breaking, as those associated with the onset of magnetic or
superfluid/superconducting orders, at high energies the sys-
tem is in its symmetric phase, while by decreasing the scale
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�, the effective two-fermion interaction grows until it reaches
a divergence at a scale �c in one (or more) specific momen-
tum channel [10–12]. This divergence, however, can be an
artifact of a poor approximation of the flow equations, such
as the one-loop truncation. Indeed, better approximations, as
the two-loop or the multiloop truncation, can significantly
reduce the value of �c, even down to zero [13–15]. In order to
continue the flow into the low-energy regime � < �c, one has
to explicitly introduce an order parameter taking into account
spontaneous symmetry breaking. Various approaches are pos-
sible. One can, for example, decouple the bare interaction via
a Hubbard-Stratonovich transformation and run a flow for a
mixed boson-fermion system above [16–21] and below the
critical scale. In this way, one is able to study fluctuation ef-
fects both in the symmetric and in the ordered phases [22–27].
Moreover, the two-fermion effective interaction generated by
the flow can be rebosonized scale by scale, with a technique
called flowing bosonization, either decoupling the bare inter-
action from the beginning [28,29] or keeping it along the flow,
reassigning to the bosonic sector only contributions that arise
on top of it [30–32]. A different approach to fluctuation effects
consists in including below the critical scale �c the anomalous
terms arising from the breaking of the global symmetry, by
keeping only fermionic degrees of freedom [33–37]. If one
is not interested in the effects of bosonic fluctuations, as it
could be for ground-state calculations, a relatively simple
truncation of flow equations can reproduce a mean-field-like
(MF) solution [33,38–40].

Concerning the symmetric phase above the critical scale,
recent developments have made the fRG a more reliable
method for quantitative and/or strong coupling calculations.
We refer, in particular, to the development of the multiloop
fRG, that has been proven to be equivalent to the parquet
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approximation [15,41–43] and the fusion of the fRG with the
dynamical mean-field theory (DMFT) [44] in the so-called
DMF2RG scheme [45,46]. Within these frameworks, the full
dependence of the effective two-fermion interaction on all
three Matsubara frequencies is often kept.

On the other hand, many efforts have been made in order
to reduce the computational complexity of the effective in-
teraction with a full dependence on its fermionic arguments.
This is mainly achieved by describing the fermion-fermion
interaction process through the exchange of a small number
of bosons. Many works treat this aspect not only within the
fRG [31,32,47], but also within the DMFT, in the recently
introduced single-boson exchange approximation [48,49], its
nonlocal extensions, the TRILEX approach (TRiply irre-
ducible local EXpansion) for example [50], or the dual-boson
theory [51–54]. Describing the fermionic interactions in terms
of exchanged bosons is important not only to reduce the
computational complexity, but also to identify those collective
fluctuations that play a fundamental role in the ordered phase.

In this paper, we present a truncation of the fRG flow
equations, in which a bosonic field is explicitly introduced,
and we prove it to be equivalent to the fusion of the fRG with
MF theory introduced in Refs. [39,40]. These flow equations
fulfill fundamental constraints as the Goldstone theorem and
the global Ward identity connected with spontaneous symme-
try breaking (SSB), and they can be integrated, simplifying
the calculation of correlation functions in the ordered phase
to a couple of self-consistent equations, one for the bosonic
field expectation value, and another one for the Yukawa cou-
pling between a fermion and the Goldstone mode. In order
to perform the Hubbard-Stratonovich transformation, we de-
compose the effective two-fermion interaction in terms of
an exchanged boson, which becomes massless at the critical
scale, and a residual interaction, and we present a technique
to factorize the fRG vertex when its full dependence on
fermionic Matsubara frequencies is kept. We prove the fea-
sibility and efficiency of our formalism by applying it to
the two-dimensional half-filled attractive Hubbard model, cal-
culating the superfluid gap, Yukawa couplings, and residual
two-fermion interactions in the SSB phase and comparing
our results with previous fRG and quantum Monte Carlo
studies. One notable aspect of our formalism is that the full
dependence on fermionic momenta and/or frequencies can be
retained. This makes it suitable for a combination with the
newly developed methods within the fRG, to continue the flow
with a simple truncation in those cases in which the effective
two-fermion interaction diverges. In the one-loop truncation,
both in plain fRG [55] and in the DMF2RG [46], these diver-
gences are actually found at finite temperature, indicating the
onset of spontaneous symmetry breaking. Our method can be
also combined with the multiloop fRG, where no divergences
are found at finite temperature in two dimensions (2D) [15], to
study three-dimensional systems or zero-temperature phases.
Furthermore, the introduction of the bosonic field makes our
method a convenient starting point for the inclusion of order-
parameter fluctuations on top of the MF, and paves the way for
the study of the SSB phases with a full treatment of fermionic
Matsubara frequency dependencies.

This paper is organized as follows. In Sec. II we give a
short overview of the fRG and its application to correlated

Fermi systems. In Sec. III we introduce the attractive Hubbard
model, that will be the prototypical model for the application
of our method. In Sec. IV we review the MF approximation
within the fRG by making use only of fermionic degrees of
freedom. In Sec. V we introduce our method by reformulating
the fermionic MF approach with the introduction of a bosonic
field and we prove the equivalence of the two methods. In
Sec. VI we expose a strategy to extract a factorizable part from
the effective two-fermion interactions, necessary to imple-
ment the Hubbard-Stratonovich transformation. This strategy
is suitable for the application to the most frequently used
schemes within the fRG. In Sec. VII we present some exem-
plary results for the attractive Hubbard model. A conclusion
in Sec. VIII closes the presentation.

II. FUNCTIONAL RENORMALIZATION GROUP

In this section we present a short review of the fRG applied
to interacting Fermi systems and we refer to Ref. [8] for
further details. Providing the bare fermionic action with a
regulator R�,

S[ψ,ψ] → S[ψ,ψ] + (ψR�,ψ ), (1)

where the symbol (·, ·) indicates a sum over quantum numbers
and fermionic Matsubara frequencies ν = (2 j + 1)πT , with
j ∈ Z, one can derive an exact differential equation for the
effective action as a function of the scale � [56,57]:

∂���[ψ,ψ] = −1

2
∂̃�tr ln[�(2)�[ψ,ψ] + R�], (2)

where �(2)� is the matrix of second derivatives of the effective
action with respect to the fermionic fields, ∂̃� is a derivative
acting only on the explicit � dependence of R�, and the trace
is intended to run over all the quantum numbers and Matsub-
ara frequencies. In general, the regulator can be any generic
function of the scale � and the fermionic “d+1 momentum”
k = (k, ν) (with k being the spatial momentum), provided
that R�→�init → ∞ and R�→�fin → 0. In this way, Eq. (2) can
be complemented with the initial condition

��=�init [ψ,ψ] = S[ψ,ψ]. (3)

Equation (2) is, however, very hard to tackle. A common
procedure is to expand the effective action �� in polynomi-
als of the fields up to a finite order, so that one is limited
to work with a finite number of scale-dependent couplings.
Rather often, in the context of correlated Fermi systems, this
truncation is restricted to a flow equation for the self-energy
�� and a vertex V �, describing the two-fermion effective
interaction. The differential equations for these couplings can
be inferred directly from Eq. (2). Furthermore, when working
with systems that possess U(1) charge, SU(2) spin rotation,
and translational symmetries, the vertex V � as a function of
the spin variables σi and the four d + 1 momenta ki of the
fermions (two incoming, two outgoing) can be written as

V �
σ1σ2σ3σ4

(k1, k2, k3)

= V �(k1, k2, k3)δσ1σ4δσ2σ3 − V �(k2, k1, k3)δσ1σ3δσ2σ4 , (4)

where the fermions labeled as 1 and 2 are considered as
incoming and the ones labeled as 3 and 4 as outgoing in
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the scattering process. Furthermore, thanks to translational
invariance, the vertex is nonzero only when the total momen-
tum is conserved, that is when k1 + k2 = k3 + k4. So, one
can shorten the momentum dependence to three momenta,
the fourth being fixed by the conservation law. By exploiting
the relation above, one is left with the calculation of a single
coupling function V � that summarizes all possible spin com-
binations. Its flow equation reads as (dropping momentum
dependencies for the sake of compactness)

∂�V � = T �
pp + T �

ph + T �
phx + �(6)� ◦ ∂̃�G�, (5)

where the last term contains the three-fermion coupling �(6)�

contracted with the single scale propagator ∂̃�G�. This term
is often neglected or treated in an approximate fashion in most
applications. The remaining three terms can be expressed as
loop integrals involving two fermionic propagators and two
vertices V �. They are grouped in three channels, namely,
particle-particle (T �

pp ), particle-hole (T �
ph ), and particle-hole-

crossed (T �
phx), depending on which combination of momenta

is transported by the loop. For the expressions of all the terms
in Eq. (5), see Ref. [8].

In numerous applications of the fRG to various systems,
the vertex function V � diverges before the numerical integra-
tion of Eq. (5) reaches the final scale �fin. This fact signals
the tendency of the system to develop some kind of order
by spontaneously breaking one (or more) of its symmetries.
One can often trace back the nature of the order tendency by
looking at which of the terms in Eq. (5) contributes the most to
the flow of V � near the critical scale �c, where the divergence
occurs.

III. MODEL

In this section we present the prototypical model that
we use for the application of our method. This is the two-
dimensional (2D) attractive Hubbard model, that exhibits an
instability in the particle-particle channel, signaling the onset
of spin-singlet superfluidity. Our formalism, however, can be
extended to a wide class of models, including the 2D repul-
sive Hubbard model, to study the phases in which (generally
incommensurate) antiferromagnetism and/or d-wave super-
conductivity appear. The bare action of the model describes
spin- 1

2 fermions on a 2D lattice experiencing an attractive
onsite attraction

S = −
∫

k,σ

ψk,σ [iν − ξk]ψk,σ

+ U
∫

k,k′,q
ψk,↑ψq−k,↓ψq−k′,↓ ψk′,↑,

(6)

where ν is a fermionic Matsubara frequency, ξk is the bare
band dispersion measured relative to the chemical potential
μ, and U < 0 is the local interaction. The symbol

∫
k =

T
∑

ν

∫
d2k

(2π )2 (T being the temperature) denotes an integral
over the Brillouin zone and a sum over Matsubara frequencies.

This model, in d = 2 or 3, at zero or finite temperature,
has been subject of extensive studies with several methods,
in particular the fRG [26,35], quantum Monte Carlo [58–62],
and DMFT and extensions [63–66].

In the next sections, we will assume that a fRG flow is
run for this model, up to a stopping scale �s, very close to
a critical scale �c where the vertex V � diverges due to a
pairing tendency, but still in the symmetric regime. From now
on, we will also assume an infrared regulator such that the
scale � is lowered from �init to �fin, so that the inequality
�init > �s � �c > �fin holds.

IV. BROKEN-SYMMETRY PHASE: FERMIONIC
FORMALISM

In this section we will present a simple truncation of flow
equations that allows to continue the flow beyond �s in the su-
perfluid phase within a MF-like approximation, that neglects
any kind of order-parameter (thermal or quantum) fluctua-
tions. This approximation can be formulated by working only
with the physical fermionic degrees of freedom. In order to
tackle the breaking of the global U(1) symmetry, we introduce
the Nambu spinors

�k =
(

ψk,↑
ψ−k,↓

)
, �k =

(
ψk,↑
ψ−k,↓

)
. (7)

A. Flow equations and integration

In the SSB phase, the vertex function V acquires anoma-
lous components due to the violation of particle-number
conservation. In particular, aside from the normal vertex de-
scribing scattering processes with two incoming and two
outgoing particles (V2+2), in the superfluid phase also compo-
nents with three (V3+1) or four (V4+0) incoming or outgoing
particles can arise. We avoid to treat the 3+1 components
since they are related to the coupling of the order parameter
to charge fluctuations [35], which do not play any role in a
MF-like approximation for the superfluid state. It turns out to
be useful to work with combinations

VA = Re{V2+2 + V4+0},
V = Re{V2+2 − V4+0},

(8)

that represent two-fermion interactions in the longitudi-
nal and transverse order-parameter channels, respectively.
They are related to the amplitude and phase fluctuations
of the superfluid order parameter, respectively. In principle,
a longitudinal-transverse mixed interaction can also appear,
from the imaginary parts of the vertices in Eq. (8), but it has
no effect in the present MF approximation because it vanishes
at zero center-of-mass frequency [67].

Below the stopping scale � < �s, we consider a truncation
of the effective action of the form

��
SSB[�,�] = −

∫
k
�k [G�(k)]−1�k

+
∫

k,k′,q
V �
A (k, k′; q) S1

k,q S1
k′,−q

+
∫

k,k′,q
V �

 (k, k′; q) S2
k,q S2

k′,−q, (9)

with the Nambu bilinears defined as

Sα
k,q = �k τα �k−q, (10)
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where the Pauli matrices τα are contracted with Nambu spinor
indexes. The fermionic propagator G�(k) is given by the
matrix(

Q�
0 (k) − ��(k) ��(k)

��(k) −Q�
0 (−k) + ��(−k)

)−1

, (11)

where Q�
0 (k) = iν − ξk + R�(k), R�(k) is the regulator,

��(k) is the normal self-energy, and ��(k) is the superfluid
gap. The initial conditions at the scale � = �s require ��s to
be zero and both V �s

A and V �s
 to equal the vertex V �s in the

symmetric phase.
We are now going to introduce the MF approximation to

the symmetry-broken state, that means that we focus on the
q = 0 component of VA and V and neglect all the rest. So,
from now on we drop all the q dependencies. We neglect the
flow of the normal self-energy below �s, that would require
the inclusion of charge fluctuations in the SSB phase, which
is beyond the MF approximation. In order to simplify the pre-
sentation, we introduce a matrix-vector notation for the gaps
and vertices. In particular, the functions VA and V are ma-
trices in the indices k and k′, while the gap and the fermionic
propagator behave as vectors. For example, in this notation
an object of the type

∫
k′ V �

A (k, k′)��(k′) can be viewed as a
matrix-vector product V �

A ��.
Within our MF approximation, we consider in our set of

flow equations only the terms that involve only the q = 0
components of the functions VA and V. This means that in
a generalization of Eq. (5) to the SSB phase, we consider only
the particle-particle contributions. In formulas we have

∂�V �
A = V �

A
[̃
∂���

11

]
V �
A + �(6)� ◦ ∂̃�G�, (12)

∂�V �
 = V �



[̃
∂���

22

]
V �

 + �(6)� ◦ ∂̃�G�, (13)

where we have defined the bubbles

��
αβ (k, k′) = −1

2
Tr[τα G�(k) τβ G�(k)]δk,k′ , (14)

where δk,k′ = (2π )2/T δ(2)(k − k′)δνν ′ , and the trace runs
over Nambu spin indexes. The last terms of Eqs. (12) and
(13) involve the three-particle interaction, which we treat here
in the Katanin approximation, that allows us to replace the
derivative acting on the regulator ∂̃� of the bubbles with the
full scale derivative ∂� [68]. This approach is useful for it
provides the exact solution of mean-field models, such as the
reduced BCS, in which the bare interaction is restricted to
the zero center-of-mass momentum channel [33]. In this way,
the flow equation (12) for the vertex VA, together with the
initial condition V �s

A = V �s , can be integrated analytically,
giving

V �
A =[

1 + V �s
(
��s − ��

11

)]−1
V �s

=[
1 − Ṽ �s��

11

]−1
Ṽ �s ,

(15)

where

��s (k, k′) = G�s (k)G�s (−k)δk,k′ (16)

is the (normal) particle-particle bubble at zero center-of-mass
momentum,

G�(k) = 1

Q�
0 (k) − ��s (k)

(17)

is the fermionic normal propagator, and

Ṽ �s = [1 + V �s��s ]−1V �s (18)

is the irreducible (normal) vertex in the particle-particle
channel at the stopping scale. The flow equation for the
transverse vertex V exhibits a formal solution similar to the
one in Eq. (15), but the matrix inside the square brackets is
not invertible. We will come to this aspect later.

B. Gap equation

Similarly to the flow equations for vertices, in the flow
equation of the superfluid gap we neglect the contributions
involving the vertices at q �= 0. We are then left with

∂���(k) =
∫

k′
V �
A (k, k′) ∂̃�F�(k′), (19)

where

F�(k) = ��(k)

[G�(k) G�(−k)]−1 + [��(k)]2 (20)

is the anomalous fermionic propagator, with G defined as in
Eq. (17), and with the normal self-energy kept fixed at its
value at the stopping scale. By inserting Eq. (15) into Eq. (19)
and using the initial condition ��s = 0, we can analytically
integrate the latter, obtaining the gap equation [39]

��(k) =
∫

k′
Ṽ �s (k, k′) F�(k′). (21)

In the particular case in which the contributions to the ver-
tex flow equation from other channels (different from the
particle-particle) as well as the three-fermion interaction and
the normal self-energy are neglected also above the stopping
scale, the irreducible vertex is nothing but −U , the (sign-
reversed) bare interaction, and Eq. (21) reduces to the standard
Hartree-Fock approximation to the SSB state.

C. Goldstone theorem

In this section we prove that the present truncation of
flow equations fulfills the Goldstone theorem. We revert our
attention on the transverse vertex V. Its flow equation in
Eq. (13) can be (formally) integrated too, together with the
initial condition V �s

 = V �s , giving

V �
 =[

1 + V �s
(
��s − ��

22

)]−1
V �s

=[
1 − Ṽ �s��

22

]−1
Ṽ �s .

(22)

However, by using the relation

��
22(k, k′) = F�(k)

��(k)
δk,k′ , (23)

one can rewrite the matrix in square brackets in the second
line of Eq. (22) as

δk,k′ − Ṽ �s (k, k′)
F�(k′)
��(k′)

. (24)

Multiplying this expression by ��(k′) and integrating over
k′, we see that it vanishes if the gap equation (21) is obeyed.
Thus, the matrix in square brackets in Eq. (22) has a zero
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eigenvalue with the superfluid gap as eigenvector. In matrix
notation this fact can be expressed as[

1 − Ṽ �s��
22

]
�� = 0. (25)

Due to the presence of this zero eigenvalue, the above matrix
is not invertible. This is nothing but a manifestation of the
Goldstone theorem. Indeed, due to the breaking of the global
U(1) symmetry, transverse fluctuations of the order parameter
become massless at q = 0, leading to the divergence of the
transverse two-fermion interaction V.

V. BROKEN-SYMMETRY PHASE: BOSONIC FORMALISM

The SSB phase can be accessed also via the introduction
of a bosonic field, describing the fluctuations of the order
parameter, and whose finite expectation value is related to the
formation of anomalous components in the fermionic propa-
gator. In order to introduce this bosonic field, we express the
vertex at the stopping scale in the following form:

V �s (k, k′; q) = h�s (k; q) h�s (k′; q)

m�s (q)
+ Q�s (k, k′; q). (26)

We assume from now on that the divergence of the vertex,
due to the appearance of a massless mode, is absorbed into
the first term, while the second one remains finite. In other
words, we assume that as the stopping scale �s approaches
the critical scale �c at which the vertex is formally divergent,
the (inverse) bosonic propagator m�s (q) at zero frequency and
momentum vanishes, while the Yukawa coupling h�s (k; q)
and the residual two-fermion interaction Q�s (k, k′; q) remain
finite.

In Sec. VI we will introduce a systematic scheme to extract
the decomposition (26) from a given vertex at the stopping
scale.

A. Hubbard-Stratonovich transformation and truncation

Since the effective action at a given scale � can be viewed
as a bare action with bare propagator G0 − G�

0 (with G�
0

the regularized bare propagator) [69], one can decouple the
factorized (and singular) part of the vertex at �s via a Gaus-
sian integration, thus introducing a bosonic field. By adding
source terms which couple linearly to this field and to the
fermionic ones, one obtains the generating functional of con-
nected Green’s functions, whose Legendre transform reads as,
at the stopping scale

��s [ψ,ψ, φ] =−
∫

k,σ

ψk,σ [G�s (k)]−1ψk,σ −
∫

q
φ∗

q m�s (q) φq

+
∫

k,k′,q
Q�s (k, k′; q) ψk,↑ψq−k,↓ψq−k′,↓ψk′,↑

+
∫

k,q
h�s (k; q)[ψk,↑ψq−k,↓φq + H.c.],

(27)

where φ represents the expectation value (in presence of
sources) of the Hubbard-Stratonovich field. Note that we
have avoided to introduce an interaction between equal spin
fermions. Indeed, since we are focusing on a spin-singlet

superconducting order parameter, within the MF approxima-
tion this interaction has no contribution to the flow equations.

The Hubbard-Stratonovich transformation introduced in
Eq. (27) is free of the so-called Fierz ambiguity, according
to which different ways of decoupling of the bare interaction
can lead to different mean-field results for the gap (see, for ex-
ample, Ref. [28]). Indeed, through the inclusion of the residual
two-fermion interaction, we are able to recover the same equa-
tions that one would get without bosonizing the interactions,
as proven in Sec. V D. In essence, the only ambiguity lies in
selecting what to assign to the bosonized part of the vertex and
what to Q, but by keeping both of them all along the flow, the
results will not depend on this choice.

We introduce Nambu spinors as in Eq. (7) and we decom-
pose the bosonic field into its (flowing) expectation value plus
longitudinal (σ ) and transverse (π ) fluctuations [26]:

φq = α� δq,0 + σq + i πq,

φ∗
q = α� δq,0 + σ−q − i π−q,

(28)

where we have chosen α� to be real. For the effective action
at � < �s in the SSB phase, we use the following ansatz:

��
SSB[�,�, σ, π ] = ��

�2 + ��
σ 2 + ��

π2

+ ��
�2σ + ��

�2π + ��
�4 , (29)

where the first three quadratic terms are given by

��
�2 = −

∫
k
�k[G�(k)]−1�k,

��
σ 2 = −1

2

∫
q
σ−q m�

σ (q) σq,

��
π2 = −1

2

∫
q
π−q m�

π (q) πq,

(30)

and the fermion-boson interactions are

��
�2σ =

∫
k,q

h�
σ (k; q)

{
S1

k,−q σq + H.c.
}
,

��
�2π =

∫
k,q

h�
π (k; q)

{
S2

k,−q πq + H.c.
}
,

(31)

with Sα
k,q as in Eq. (10). The residual two-fermion interaction

term is written as

��
�4 =

∫
k,k′,q

A�(k, k′; q) S1
k,q S1

k′,−q

+
∫

k,k′,q
�(k, k′; q) S2

k,q S2
k′,−q. (32)

As in the fermionic formalism, in the truncation in Eq. (29) we
have neglected any type of longitudinal-transverse fluctuation
mixing in the Yukawa couplings, bosonic propagators and
two-fermion interactions because at q = 0 they are identically
zero. In the bosonic formulation, as well as for the fermionic
one, the MF approximation requires to focus on the q = 0
components of the various terms appearing in the effective
action and neglect all the rest. So, from now on we drop all
the q dependencies. We will make use of the matrix notation
introduced in Sec. IV, for which the newly introduced Yukawa
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FIG. 1. Schematic representation of flow equations for the mass
and the couplings in the longitudinal channel. Full lines represent
Nambu matrix propagators, triangles the Yukawa coupling hσ , and
squares the residual interaction A. The black dots over fermionic
legs represent full derivatives with respect to the scale �.

couplings behave as vectors and bosonic inverse propagators
as scalars.

B. Flow equations and integration

Here we focus on the flow equations for two-fermion
interactions, Yukawa couplings, and bosonic inverse propa-
gators in the longitudinal and transverse channels within a
MF approximation, that is we focus only on the Cooper chan-
nel (q = 0) and neglect all the diagrams containing internal
bosonic lines or the couplings A,  at q �= 0. Furthermore,
we introduce a generalized Katanin approximation to account
for higher-order couplings in the flow equations. We refer to
Appendix A for a derivation of the latter. We now show that
our reduced set of flow equations for the various couplings
can be integrated. We first focus on the longitudinal channel,
while in the transverse one the flow equations possess the
same structure.

The flow equation for the longitudinal bosonic mass (in-
verse propagator at q = 0) reads as

∂�m�
σ =

∫
k,k′

h�
σ (k)

[
∂���

11(k, k′)
]
h�

σ (k′)

≡[
h�

σ

]T [
∂���

11

]
h�

σ .

(33)

Similarly, the equation for the longitudinal Yukawa coupling
is

∂�h�
σ = A�

[
∂���

11

]
h�

σ , (34)

and the one for the residual two-fermion longitudinal interac-
tion is given by

∂�A� = A�
[
∂���

11

]
A�. (35)

The above flow equations are pictorially shown in Fig. 1. The
initial conditions at � = �s read as, for both channels,

m�s
σ = m�s

π = m�s ,

h�s
σ = h�s

π = h�s ,

A�s = �s = Q�s .

(36)

We start by integrating the equation for the residual two-
fermion longitudinal interaction A. Equation (35) can be
solved exactly as we have done in the fermionic formalism,
obtaining for A

A� = [
1 − Q̃�s��

11

]−1Q̃�s , (37)

where we have introduced a reduced residual two-fermion
interaction Q̃:

Q̃�s = [1 + Q�s��s ]−1Q�s . (38)

We are now in the position to employ this result and plug it in
Eq. (34) for the Yukawa coupling. The latter can be integrated
as well. Its solution reads as

h�
σ = [

1 − Q̃�s��
11

]−1
h̃�s , (39)

where the introduction of a “reduced” Yukawa coupling

h̃�s = [1 + Q�s��s ]−1h�s (40)

is necessary. This Bethe-Salpeter–type equation for the
Yukawa coupling is similar in structure to the parquetlike
equations for the three-leg vertex derived in Ref. [49]. Finally,
we can use the two results of Eqs. (37) and (39) and plug
them in the equation for the bosonic mass, whose integration
provides

m�
σ = m̃�s − [̃h�s ]T ��

11 h�
σ , (41)

where, by following definitions introduced above, the “re-
duced” bosonic mass is given by

m̃�s = m�s + [̃h�s ]T ��s h�s . (42)

In the transverse channel, the equations have the same struc-
ture and can be integrated in the same way. Their solutions
read as

� = [
1 − Q̃�s��

22

]−1Q̃�s , (43)

h�
π = [

1 − Q̃�s��
22

]−1
h̃�s , (44)

m�
π = m̃�s − [̃h�s ]T ��

22 h�
π . (45)

Equation (45) provides the mass of the transverse mode,
which, according to the Goldstone theorem, must be zero. We
will show later that this is indeed fulfilled.

It is worthwhile to point out that the combinations

h�
σ

[
h�

σ

]T

m�
σ

+ A�,

h�
π

[
h�

π

]T

m�
π

+ �

(46)

obey the same flow equations (12) and (13) as the vertices in
the fermionic formalism and share the same initial conditions.
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FIG. 2. Schematic representation of flow equations for the
bosonic expectation value α� and fermionic gap ��. Aside from
the slashed lines, representing Nambu matrix propagators with a
scale derivative acting only on the regulator, the conventions for the
symbols are the same as in Fig. 1.

Therefore, the solutions for these quantities coincide with
expressions (15) and (22), respectively. Within this equiva-
lence, it is interesting to express the irreducible vertex Ṽ �s

of Eq. (18) in terms of the quantities Q�s , h�s , and m�s ,
introduced in the factorization in Eq. (26):

Ṽ �s = h̃�s [̃h�s ]T

m̃�s
+ Q̃�s , (47)

where Q̃�s , h̃�s , and m̃�s were defined in Eqs. (38), (40),
and (42). For a proof, see Appendix B. Relation (47) is of
particular interest because it states that when the full vertex is
expressed as in Eq. (26), then the irreducible one will obey a
similar decomposition, where the bosonic propagator, Yukawa
coupling, and residual two-fermion interaction are replaced
by their “reduced” counterparts. This relation holds even for
q �= 0.

C. Ward identity for the gap and Goldstone theorem

We now focus on the flow of the fermionic gap and the
bosonic expectation value and express a relation that connects
them. Their flow equations are given by (see Appendix A)

∂�α� = 1

m�
σ

[
h�

σ

]T
∂̃�F� (48)

and

∂��� = ∂�α� h�
σ + A�∂̃�F�

=
[

h�
σ

[
h�

σ

]T

m�
σ

+ A�

]̃
∂�F�,

(49)

with F� given by Eq. (20). In Fig. 2 we show a pictorial
representation. Equation (48) can be integrated, with the help
of the previously obtained results for A, hσ , and mσ , yielding

α� = 1

m̃�s
[̃h�s ]T F�. (50)

In the last line of Eq. (49), as previously discussed, the object
in square brackets equals the full vertex VA of the fermionic
formalism. Thus, integration of the gap equation is possible

and the result is simply Eq. (21) of the fermionic formalism.
However, if we now insert the expression in Eq. (47) for the
irreducible vertex within the “fermionic” form [Eq. (21)] of
the gap equation, and use relation (23), we get

��(k) = α�h�
π (k). (51)

This equation is the Ward identity for the mixed boson-
fermion system related to the global U(1) symmetry [26]. In
Appendix C we propose a self-consistent loop for the calcula-
tion of α, hπ , through Eqs. (50) and (44), and subsequently the
superfluid gap �. Let us now come back to the question of the
Goldstone theorem. For the mass of the Goldstone boson to be
zero, it is necessary for Eq. (45) to vanish. We show that this is
indeed the case. With the help of Eq. (23), we can reformulate
the equation for the transverse mass in the form

m�
π = m̃�s −

∫
k

h̃�s (k)F�(k)
h�

π (k)

��(k)

= m̃�s − 1

α�

∫
k

h̃�s (k)F�(k),

(52)

where the Ward identity � = αhπ was applied in the last
line. We see that the expression for the Goldstone boson
mass vanishes when α obeys its self-consistent equation (50).
This proves that our truncation of flow equations fulfills the
Goldstone theorem.

Constructing a truncation of the fRG flow equations which
fulfills the Ward identities and the Goldstone theorem is, in
general, a nontrivial task. In Ref. [25], in which the order-
parameter fluctuations have been included on top of the
Hartree-Fock solution, no distinction has been made between
the longitudinal and transverse Yukawa couplings and the
Ward identity (51) as well as the Goldstone theorem have
been enforced by construction, by calculating the gap and the
bosonic expectation values from them rather than from their
flow equations. Similarly, in Ref. [26], in order for the flow
equations to fulfill the Goldstone theorem, it was necessary
to impose hσ = hπ and use only the flow equation of hπ for
both Yukawa couplings. Within the present approach, due to
the mean-field-like nature of the truncation, the Ward identity
(51) and the Goldstone theorem are automatically fulfilled by
the flow equations.

D. Equivalence of bosonic and fermionic formalisms

As we have proven in the previous sections, within the MF
approximation the fully fermionic formalism of Sec. IV and
the bosonized approach introduced in this section provide the
same results for the superfluid gap and for the effective two-
fermion interactions. Notwithstanding the formal equivalence,
the bosonic formulation relies on a further requirement. In
Eqs. (43) and (44) we assumed the matrix [1 − Q̃�s��

22] to be
invertible. This statement is exactly equivalent to assert that
the two-fermion residual interaction  remains finite. Other-
wise, the Goldstone mode would lie in this coupling and not
(only) in the Hubbard-Stratonovich boson. This fact cannot
occur if the flow is stopped at a scale �s coinciding with
the critical scale �c at which the (normal) bosonic mass m�

turns zero, but it could take place if one considers symmetry
breaking in more than one channel. In particular, if one allows
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the system to develop two different orders and stops the flow
when the mass of one of the two associated bosons becomes
zero, it could happen that, within a MF approximation for
both order types, the appearance of a finite gap in the first
channel makes the two-fermion transverse residual interaction
in the other channel diverging. In that case one can apply the
technique of the flowing bosonization [31,32] by reassigning
to the bosonic sector the (most singular part of the) two-
fermion interactions that are generated during the flow. It can
be proven that also this approach gives the same results for the
gap and the effective fermionic interactions in Eq. (46) as the
fully fermionic formalism.

VI. VERTEX BOSONIZATION

In this section we present a systematic procedure to extract
the quantities in Eq. (26) from a given vertex, within an ap-
proximate framework. The full vertex in the symmetric phase
can be written as [70,71]

V �(k1, k2, k3) = V �init (k1, k2, k3) + φ�
p (k1, k3; k1 + k2)

− φ�
m (k1, k2; k2 − k3)−1

2
φ�

m (k1, k2; k3 − k1)

+ 1

2
φ�

c (k1, k2; k3 − k1), (53)

where V �init is the vertex at the initial scale, and we call φp

pairing channel, φm magnetic channel, and φc charge chan-
nel. Each of this functions depends on a bosonic and two
fermionic variables. Within the so-called one-loop approxima-
tion, where one neglects the three-fermion coupling in Eq. (5),
in the Katanin scheme [68], or in more involved schemes,
such as the two-loop [14] or the multiloop [41,42], one is
able to assign one or more of the terms of the flow equation
(5) for V � to each of the channels, in a way that their last
bosonic argument enters only parametrically in the formulas.
This is the reason why the decomposition in Eq. (53) is useful.
The vertex at the initial scale can be set equal to the bare
(sign-reversed) Hubbard interaction −U in a weak coupling
approximation, or as in the recently introduced DMF2RG
scheme, to the vertex computed via DMFT [45,46].

In order to simplify the treatment of the dependence on
fermionic spatial momenta of the various channels, one often
introduces a complete basis of Brillouin zone form factors
{ f �

k } and expands each channel in this basis [72]

φ�
X (k, k′; q) =

∑
��′

φ�
X,��′ (ν, ν ′; q) f �

k+(sgnX )q/2 f �′
k′−q/2, (54)

with X = p, m, or c, and sgn p = −1, sgn c = sgn m = +1.
For practical calculations the above sum is truncated to a finite
number of form factors and often only diagonal terms � = �′
are considered. Within the form-factor truncated expansion,
one is left with the calculation of a finite number of channels
that depend on a bosonic “d + 1 momentum” q = (q,�) and
two fermionic Matsubara frequencies ν and ν ′.

We will now show how to obtain the decomposition intro-
duced in Eq. (26) within the form-factor expansion. We focus
on only one of the channels in Eq. (53), depending on the type
of order we are interested in, and factorize its dependence
on the two fermionic Matsubara frequencies. We introduce

the so-called channel asymptotics, that is, the functions that
describe the channels for large ν, ν ′. From now on we adopt
the shorthand limν→∞ g(ν) = g(∞) for whatever g, function
of ν. By considering only diagonal terms in the form-factor
expansion in Eq. (54), we can write the channels as [73]

φ�
X,�(ν, ν ′; q) = K(1)�

X,� (q) + K(2)�
X,� (ν; q)

+ K(2)�
X,� (ν ′; q) + δφ�

X,�(ν, ν ′; q), (55)

with

K(1)�
X,� (q) = φ�

X,�(∞,∞; q),

K(2)�
X,� (ν; q) = φ�

X,�(ν,∞; q) − K(1)�
X,� (q),

K(2)�
X,� (ν ′; q) = φ�

X,�(∞, ν ′; q) − K(1)�
X,� (q),

δφ�
X,�(ν,∞; q) = δφ�

X,�(∞, ν ′; q) = 0.

(56)

According to Ref. [73], these functions are related to physical
quantities. K(1)

X,� turns out to be proportional to the relative sus-

ceptibility and the combination K(1)
X,� + K(2)

X,� (or K(1)
X,� + K(2)

X,�)
to the so-called boson-fermion vertex, that describes both the
response of the Green’s function to an external field [74] and
the coupling between a fermion and an effective boson. In
principle, one should be able to calculate the above quanti-
ties diagrammatically (see Ref. [73] for the details) without
performing any limit. However, it is well known how fRG
truncations, in particular the one-loop approximation, do not
properly weight all the Feynman diagrams contributing to the
vertex, so that the diagrammatic calculation and the high-
frequency limit give two different results. To keep the property
in the last line of Eq. (56), we choose to perform the limits. We
rewrite Eq. (55) in the following way:

φ�
X,�(ν, ν ′; q) =

[
K(1)�

X,� + K(2)�
X,�

][
K(1)�

X,� + K(2)�
X,�

]
K(1)�

X,�

+ R�
X,�

= φ�
X,�(ν,∞; q)φ�

X,�(∞, ν ′; q)

φ�
X,�(∞,∞; q)

+ R�
X,�(ν, ν ′; q),

(57)

where we have made the frequency and momentum depen-
dencies explicit only in the second line and we have defined

R�
X,�(ν, ν ′; q) = δφ�

X,�(ν, ν ′; q) − K(2)�
X,� (ν; q)K(2)�

X,� (ν ′; q)

K(1)�
X,� (q)

.

(58)
From the definitions given above, it is obvious that the rest
function RX,� decays to zero in all frequency directions.

Since the first term of Eq. (57) is separable by construction,
we choose to identify this term with the first one of Eq. (26).
Indeed, in many cases the vertex divergence is manifest al-
ready in the asymptotic K(1)�

X,� , that we recall to be proportional
to the susceptibility of the channel. There are, however, sit-
uations in which the functions K(1) and K(2) are zero even
close to an instability in the channel, an important example
being the d-wave superconducting instability in the repulsive
Hubbard model. In general, this occurs for those channels
that, within a Feynman diagram expansion, cannot be con-
structed with a ladder resummation with the bare vertex. In
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the Hubbard model, due to the locality of the bare interaction,
this happens for every � �= 0, that is for every term in the
form-factor expansion different than the s-wave contribution.
In this case one should adopt a different approach and, for
example, replace the limits to infinity in Eq. (57) by some
given values of the Matsubara frequencies, ±πT for example.

VII. RESULTS FOR THE ATTRACTIVE HUBBARD MODEL
AT HALF-FILLING

In this section we report some exemplary results of the
equations derived within the bosonic formalism, for the at-
tractive two-dimensional Hubbard model. We focus on the
half-filled case. For pure nearest neighbors hopping with am-
plitude −t , the band dispersion ξk is given by

ξk = −2t (cos kx + cos ky) − μ, (59)

with μ = 0 at half-filling. We choose the onsite attraction and
the temperature to be U = −4t and T = 0.1t . All results are
presented in units of the hopping parameter t .

A. Symmetric phase

In the symmetric phase, in order to run a fRG flow, we
introduce the � regulator [70]

R�(k) = (iν − ξk )
�2

ν2
, (60)

so that the initial scale is �init = +∞ (fixed to a large number
in the numerical calculation) and the final one �fin = 0. We
choose a one-loop truncation, that is, we neglect the last term
of Eq. (5), and use the decomposition in Eq. (53) with a form-
factor expansion. We truncate Eq. (54) only to the first term,
that is, we use only s-wave, f (0)

k ≡ 1, form factors. Within
these approximations, the vertex reads as

V �(k1, k2, k3) = −U + P�
ν1ν3

(k1 + k2) − M�
ν1ν2

(k2 − k3)

− 1

2
M�

ν1ν2
(k3 − k1) + 1

2
C�

ν1ν2
(k3 − k1),

(61)

where P , M, C, are referred as pairing, magnetic, and charge
channel, respectively. Furthermore, we focus only on the spin-
singlet component of the pairing (the triplet one is very small
in the present parameter region), so that we require the pairing
channel to obey [75]

P�
νν ′ (q) = P�

�−ν,ν ′ (q) = P�
ν,�−ν ′ (q), (62)

with q = (q,�). The initial condition for the vertex reads as

V �init (k1, k2, k3) = −U, (63)

so that P�init = M�init = C�init = 0. Neglecting the fermionic
self-energy ��(k) ≡ 0, we run a flow for these three quanti-
ties until one (ore more) of them diverges. Under a technical
point of view, each channel is computed by keeping 50 pos-
itive and 50 negative values for each of the three Matsubara
frequencies (two fermionic, one bosonic) on which it de-
pends. Frequency asymptotics are also taken into account,
by following Ref. [73]. The momentum dependence of the
channel is treated by discretizing with 38 patches the re-
gion B = {(kx, ky) : 0 � ky � kx � π} in the Brillouin zone

FIG. 3. Flow of the maximum values of the pairing, magnetic,
and charge channels. The maximum value of the charge channel at
zero frequency and momentum (π, π ) and the one for the pairing
channel at q = 0 coincide, within the numerical accuracy, and both
exceed the threshold 103t at the stopping scale, signaling an insta-
bility to the formation of an order parameter given by any linear
combination of the superfluid and the charge density wave ones.

and extending to the other regions by using lattice symme-
tries. The expressions of the flow equations are reported in
Appendix D.

Due to particle-hole symmetry occurring at half-filling,
pairing fluctuations at q = 0 combine with charge fluctuations
at q = (π, π ) to form an order parameter with SO(3) sym-
metry [76]. Indeed, with the help of a canonical particle-hole
transformation, one can map the attractive half-filled Hub-
bard model onto the repulsive one. Within this duality, the
SO(3)-symmetric magnetic order parameter is mapped onto
the above-mentioned combined charge-pairing order parame-
ter and vice versa. This is the reason why we find a critical
scale �c at which both C((π, π ), 0) and P (0, 0) diverge, as
shown in Fig. 3. On a practical level, we define the stopping
scale �s as the scale at which one (or more, in this case) chan-
nel exceeds 103t . With our choice of parameters, we find that
at �s � 0.378t both C and P cross our threshold. In the SSB
phase, we choose to restrict the ordering to the pairing chan-
nel, thus excluding the formation of charge density waves.
This choice is always possible because we have the freedom
to choose the “direction” in which our order parameter points.
Indeed, in the particle-hole dual repulsive model, our choice
would be equivalent to choose the (antiferro)magnetic order
parameter to lie in the xy plane. This choice is implemented
by selecting the particle-particle channel as the only one con-
tributing to the flow in the SSB phase, as exposed in Secs. IV
and V.

In order to access the SSB phase with our bosonic formal-
ism, we need to perform the decomposition in Eq. (26) for
our vertex at �s. Before proceeding, in order to be consistent
with our form-factor expansion in the SSB phase, we need to
project V in Eq. (61) onto the s-wave form factors because
we want the quantities in the ordered phase to be functions
of Matsubara frequencies only. Therefore, we define the total
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vertex projected onto s-wave form factors

V
�s

νν ′ (q) =
∫

k,k′
V �s(k, q − k, k′). (64)

Furthermore, since we are interested only in spin-singlet pair-
ing, we symmetrize it with respect to one of the two fermionic
frequencies, so that in the end we are dealing with

V �s
νν ′ (q) = V

�s

νν ′ (q) + V
�s

ν,�−ν ′ (q)

2
. (65)

In order to extract the Yukawa coupling h�s and bosonic prop-
agator m�s , we employ the strategy described in Sec. VI. Here,
however, instead of factorizing the pairing channel P�s alone,
we subtract from it the bare interaction U . In principle, U can
be assigned both to the pairing channel, to be factorized, or to
the residual two-fermion interaction, giving rise to the same
results in the SSB phase. However, when in a real calculation
the vertices are calculated on a finite-frequency box, it is more
convenient to have the residual two-fermion interaction Q�s

as small as possible, in order to reduce finite-size effects in
the matrix inversions needed to extract the reduced couplings
in Eqs. (38), (40), and (42), and in the calculation of hπ , in
Eq. (44). Furthermore, since it is always possible to rescale the
bosonic propagators and Yukawa couplings by a constant such
that the vertex constructed with them [Eq. (57)] is invariant,
we impose the normalization condition h�s (ν → ∞; q) = 1.
In formulas, we have

m�s (q) = 1

K(1)�s
p,�=0(q) − U

= 1

P�s∞,∞(q) − U
(66)

and

h�s (ν; q) = K(2)�s
p,�=0(ν; q) + K(1)�s

p,�=0(q) − U

K(1)�s
p,�=0(q) − U

= P�s
ν,∞(q) − U

P�s∞,∞(q) − U
. (67)

The limits are numerically performed by evaluating the pair-
ing channel at large values of the fermionic frequencies. The
extraction of the factorizable part from the pairing channel
minus the bare interaction defines the rest function

R�s
νν ′ (q) = P�s

νν ′ (q) − U − h�s (ν; q)h�s (ν ′; q)

m�s (q)
, (68)

and the residual two-fermion interaction Q:

Q�s
νν ′ (q) =[

V �s
νν ′ (q) − P�s

νν ′ (q) + U
] + R�s

νν ′ (q)

=V �s
νν ′ (q) − h�s (ν; q)h�s (ν ′; q)

m�s (q)
.

(69)

We are now in the position to extract the reduced couplings
Q̃�s , h̃�s , and m̃�s , defined in Eqs. (38), (40), and (42). This
is achieved by numerically inverting the matrix (we drop the
q dependence from now on, assuming always q = 0)

δνν ′ + Q�s
νν ′ χ

�s
ν ′ , (70)

with

χ�s
ν = T

∫
k

G�s
0 (k)G�s

0 (−k) (71)

FIG. 4. Couplings contributing to the total vertex at the stop-
ping scale. Upper left: pairing channel minus the bare interaction.
At the stopping scale this quantity acquires very large values due
to the vicinity to the pairing instability. Upper right: rest function
of the pairing channel minus the bare interaction. In the present
regime the pairing channel is very well factorizable, giving rise to
a small rest function. Lower left: residual two-fermion interaction.
The choice of factorizing P�s − U instead of P�s alone makes
the background of this quantity zero. Lower right: reduced residual
two-fermion interaction. As well as the full one, this coupling has
a zero background value, making calculations of couplings in the
SSB phase more precise by reducing finite-size effects in the matrix
inversions.

and

G�s
0 (k) = 1

iν − ξk + R�s (k)
= ν2

ν2 + �2
s

1

iν − ξk
. (72)

In Fig. 4 we show the results for the pairing channel minus the
bare interaction, the rest function, the residual two-fermion
interaction Q, and the reduced one Q̃ at the stopping scale.
One can see that in the present parameter region the pairing
channel (minus U ) is highly factorizable. Indeed, despite the
latter being very large because of the vicinity to the instability,
the rest function R remains very small, a sign that the pairing
channel is well described by the exchange of a single boson.
Furthermore, thanks to our choice of assigning the bare inter-
action to the factorized part, as we see in Fig. 4, both Q and Q̃
possess frequency structures that arise from a background that
is zero. Finally, the full bosonic mass at the stopping scale is
close to zero, m�s � 10−3, due to the vicinity to the instability,
while the reduced one is finite, m̃�s � 0.237.

B. SSB phase

In the SSB phase, instead of running the fRG flow, we em-
ploy the analytical integration of the flow equations described
in Sec. V. On a practical level, we implement a solution of
the loop described in Appendix C, that allows for the cal-
culation of the bosonic expectation value α, the transverse
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FIG. 5. Frequency dependence of the superfluid gap. It interpo-
lates between its value at the Fermi level �0 and its asymptotic one.
The dashed line marks the BCS value, while the dotted one −U times
the Cooper pair expectation value.

Yukawa coupling hπ , and subsequently the fermionic gap
� through the Ward identity � = αhπ . In this section we
drop the dependence on the scale since we have reached the
final scale �fin = 0. Note that, as exposed previously, in the
half-filled attractive Hubbard model the superfluid phase sets
in by breaking a SO(3) rather than a U(1) symmetry. This
means that one should expect the appearance of two massless
Goldstone modes. Indeed, aside from the Goldstone boson
present in the (transverse) particle-particle channel, another
one appears in the particle-hole channel and it is related to
the divergence of the charge channel at momentum (π, π ).
However, within our choice of considering only superfluid or-
der and within the MF approximation, this mode is decoupled
from our equations.

Within our previously discussed choice of bosonizing
P�s − U instead of P�s alone, the self-consistent loop intro-
duced in Appendix C converges extremely fast, 15 iterations,
for example, are sufficient to reach a precision of 10−7 in
α. Once convergence is reached and the gap �(ν) obtained,
we are in the position to evaluate the remaining couplings
introduced in Sec. V through their integrated flow equations.
In Fig. 5 we show the computed frequency dependence of
the gap. It interpolates between �0 = �(ν → 0), its value
at the Fermi level, and its asymptotic value, that equals the
(sign-reversed) bare interaction times the condensate frac-
tion 〈ψ↓ψ↑〉 = ∫

k〈ψ−k,↓ψk,↑〉. �0 also represents the gap
between the upper and lower Bogoliubov bands. Magnetic
and charge fluctuations above the critical scale significantly
renormalize the gap with respect to the Hartree-Fock calcula-
tion [Ṽ = −U in Eq. (21)], that in the present case coincides
with Bardeen-Cooper-Schrieffer (BCS) theory. This effect
is reminiscent of the Gor’kov-Melik-Barkhudarov correction
in weakly coupled superconductors [77]. The computed fre-
quency dependence of the gap compares qualitatively well
with Ref. [35], where a more sophisticated truncation of the
flow equations has been carried out.

FIG. 6. Effective interactions calculated in the SSB phase as
functions of Matsubara frequencies. Upper left: longitudinal residual
two-fermion interaction A. Upper right: transverse residual two-
fermion interaction . Lower left: longitudinal effective two-fermion
interaction VA. Lower right: longitudinal residual two-fermion in-
teraction A with its reduced counterpart Q̃ at the stopping scale
subtracted (left), and transverse longitudinal residual two-fermion
interaction  minus its equivalent Q at �s (right). Both quantities
exhibit very small values, showing that A and  do not deviate
significantly from Q̃ and Q, respectively.

Since � is a spin-singlet superfluid gap, and we have cho-
sen α to be real, it obeys

�(ν) = �(−ν) = �∗(−ν), (73)

where the first equality comes from the spin-singlet nature and
the second one from the time-reversal symmetry of the effec-
tive action. Therefore, the imaginary part of the gap is always
zero. By contrast, a magnetic gap would gain, in general, a fi-
nite (and antisymmetric in frequency) imaginary part. In Fig. 6
we show the results for the residual two-fermion interactions
in the longitudinal and transverse channels, together with the
total effective interaction in the longitudinal channel, defined
as

VA,νν ′ = hσ (ν)hσ (ν ′)
mσ

+ Aνν ′ . (74)

The analog of Eq. (74) for the transverse channel cannot be
computed because the transverse mass mπ is zero, in agree-
ment with the Goldstone theorem. The key result is that the
residual interactions Aνν ′ and νν ′ inherit the frequency struc-
tures of Q̃�s

νν ′ and Q�s
νν ′ , respectively, and they are also close to

them in values (compare with Fig. 4). The same occurs for the
Yukawa couplings, as shown in Fig. 7. Indeed, the calculated
transverse coupling hπ does not differ at all from the Yukawa
coupling at the stopping scale h�s . In other words, if instead
of solving the self-consistent equations, one runs a flow in the
SSB phase, the transverse Yukawa coupling will stay the same
from �s to �fin. Furthermore, the longitudinal coupling hσ

develops a dependence on the frequency which does not differ
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FIG. 7. Frequency dependence of Yukawa couplings both at the
stopping scale �s and in the SSB phase. While hπ coincides with
h�s , the longitudinal coupling hσ does not differ significantly from
the reduced one at the stopping scale h̃�s . The continuous lines for
h�s and h̃�s are an interpolation through the data calculated on the
Matsubara frequencies.

significantly from the one of h̃�s . This feature, at least for our
choice of parameters, can lead to some simplifications in the
flow equations of Sec. V. Indeed, when running a fRG flow in
the SSB phase, one might let flow only the bosonic inverse
propagators by keeping the Yukawa couplings and residual
interactions fixed at their values, reduced or not, depending
on the channel, at the stopping scale. This fact can be crucial
to make computational costs lighter when including bosonic
fluctuations of the order parameter, which, similarly, do not
significantly renormalize Yukawa couplings in the SSB phase
[25,26].

C. Gap and condensate fraction dependence on the coupling

In this section, we carry out an analysis of the dependence
of the zero-frequency gap �0 on the coupling U . In order
to obtain a zero-temperature estimate, we perform a finite-
temperature calculation and check that the condition �0 > T
is fulfilled. In fact, when this is the case, the superfluid gap is
not expected to change significantly by further lowering the
temperature, at least within a MF-like calculation.

In Fig. 8, we show the zero-frequency extrapolation of
the superfluid gap and the bosonic expectation value α to be
compared with the BCS (mean-field) result. The inclusion of
magnetic and charge correlations above the stopping scale �s

renormalizes �0 compared to the BCS result. In particular,
as proven by second-order perturbation theory in Ref. [77],
even in the U → 0 limit the ratio between the ground-state
gap and its BCS result is expected to be smaller than 1 due
to particle-hole fluctuations. Differently, α does not deviate
significantly from the mean-field result, as this quantity is not
particularly influenced by magnetic and charge fluctuations,
but rather by fluctuations of the order parameter, which, in
particular at strong coupling, can significantly reduce it [25].
In the present approach, we include the effect of particle-

FIG. 8. Low-temperature estimate of the ground-state superfluid
gap �0 and bosonic expectation value α as a function of the coupling
U . For |U | > 2t , the calculations have been performed at T = 0.1t ,
while for t � |U | � 2t we have chosen T = 0.01t . Results for |U | <

t are not shown because the temperature at which �0 > T is fulfilled
is hardly reachable by our numerics. The dashed line shows the BCS
(for which �0 = α) zero-temperature result.

hole fluctuations and we tackle the frequency dependence of
the gap, which are not treated in Refs. [22,25] (which focus
on the BEC-BCS crossover in the continuum in three di-
mensions) and [26] (two-dimensional lattice model). In these
works, however, fluctuations of the order parameter, which
are not included in our method, are taken into account. In
Ref. [35], both particle-hole and order-parameter fluctuations,
together with the gap frequency dependence, are treated in a
rather complicated fRG approach to the 2D attractive Hubbard
model, where, however, the Goldstone theorem and the Ward
identity turn out to be violated to some extent. We believe our
approach to represent a convenient starting point on top of
which one can include fluctuations in a systematic manner in
order to fulfill the above-mentioned fundamental constraints.

Furthermore, it is interesting to consider the coupling
dependence of the condensate fraction 〈ψ↓ψ↑〉. Within mean-
field theory, it evolves from an exponentially small value at
weak coupling to 1

2 at strong coupling, indicating that all the
fermions are bound in bosonic pairs which condense. This
is an aspect of the well-known paradigm of the BEC-BCS
crossover [1–3]. At half-filling, by including quantum fluc-
tuations in the strong coupling regime, it is known that the
condensate fraction will be reduced to a value of 0.3, as it has
been obtained from the spin-wave theory for the Heisenberg
model [78], on which the particle-hole symmetric attrac-
tive Hubbard model can be mapped at large U . Within our
approach, the condensate fraction is given by

〈ψ↓ψ↑〉 = − lim
ν→∞

�(ν)

U
= − α

U
, (75)

where in the last line we have used the Ward identity (51)
and the fact that hπ → 1 for ν → ∞. In Fig. 9 we show
the computed condensate fraction and we compare it with
the BCS result and with auxiliary field quantum Monte Carlo
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FIG. 9. Condensate fraction 〈ψ↓ψ↑〉 vs coupling U . We indicate
the present approach as fRG+MF, and we compare it with BCS
theory and AFQMC data, taken from Ref. [62].

(AFQMC) data, taken from Ref. [62]. At weak coupling (U =
−2t) we find a good agreement with AFQMC. This is due to
the fact that in this regime the order-parameter fluctuations,
which we do no treat, are weaker, and that the stopping scale
�s is small and therefore particle-hole fluctuations are better
included. At moderate couplings (U = −3t , −4t) the distance
from Monte Carlo data increases due to the increasing strength
of fluctuations, the larger stopping scales, and the reduction of
accuracy of the one-loop truncation performed in the symmet-
ric phase.

VIII. CONCLUSION

We have introduced a truncation of fRG flow equations
which, with the introduction of a Hubbard-Stratonovich bo-
son, has been proven to be equivalent to the MF equations
obtained in Refs. [39,40]. These flow equations satisfy funda-
mental requirements such as the Goldstone theorem and the
Ward identities associated with global symmetries, and can be
integrated analytically, reducing the calculation of correlation
functions in the SSB phase to a couple of self-consistent
equations for the bosonic expectation value α and the trans-
verse Yukawa coupling hπ . A necessary step to perform the
Hubbard-Stratonovich transformation, on which our method
relies, is to extract a factorizable dependence on fermionic
variables k and k′ from the vertex at the critical scale. A strat-
egy to accomplish this goal has been suggested for a vertex
whose dependence on spatial momenta k and k′ is treated by
a form-factor expansion, making use of the vertex asymptotics
introduced in Ref. [73]. Furthermore, we have tested the fea-
sibility and efficiency of our method on a prototypical model,
namely, the half-filled attractive Hubbard model in two dimen-
sions, focusing on frequency dependencies of the two-fermion
interactions, Yukawa couplings, and fermionic gap. We have
found a good convergence of the iterative scheme proposed.
The remaining couplings introduced in our method have been
computed after the loop convergence from their integrated
flow equations. Moreover, we have analyzed the dependence
of the gap and of the condensate fraction on the coupling U ,

by comparing our method with previous fRG works and with
quantum Monte Carlo data.

Our method leaves room for applications and extensions.
First, one can directly apply the MF method, as formulated
in this paper, to access the SSB phase in those calculations
for which the dependencies on fermionic momenta and/or
frequencies cannot be neglected. Some examples are the fRG
calculations with a full treatment of fermionic frequencies,
within a one-loop truncation [55], in the recent implementa-
tions of multiloop fRG [15,43] or in the DMF2RG scheme
[46]. These combinations can be applied to two- or three-
dimensional systems. In the former case, even though in 2D
order-parameter fluctuations are expected to play a decisive
role, our method can be useful to get a first, though approxi-
mate, picture of the phase diagram. Of particular relevance is
the 2D repulsive Hubbard model, used in the context of high-
Tc superconductors. An interesting system for the latter case,
where bosonic fluctuations are expected to be less relevant,
is the 3D attractive Hubbard model, which, thanks to mod-
ern techniques, can be experimentally realized in cold-atom
setups.

Second, our method constitutes a convenient starting point
for the inclusion of bosonic fluctuations of the order pa-
rameter, as done for example in Refs. [26,32], with the full
dependence of the gap, Yukawa couplings, and vertices on
the fermionic momenta and/or frequencies being kept. In
particular, by providing the Hubbard-Stratonovich boson with
its own regulator, our MF truncation of flow equations can
be extended to include order-parameter fluctuations, which
in two spatial dimensions and at finite temperature restore
the symmetric phase, in agreement with the Mermin-Wagner
theorem. One may also adapt the bosonic field at every fRG
step through the flowing bosonization [31,32]. This can be
done by keeping the full frequency dependence of the vertex
and Yukawa coupling, by applying the strategy discussed in
Sec. VI to the flow equation for the vertex.

Finally, our MF method does not necessarily require a
vertex coming from a fRG flow. In particular, one can employ
the DMFT vertex, extract the pairing channel [75] (or any
other channel in which symmetry breaking occurs) from it,
and apply the same strategy as described in this paper to
extract Yukawa and other couplings. This application can be
useful to compute those transport quantities [79] and response
functions in the SSB phase which, within the DMFT, require a
calculation of vertex corrections [44]. The anomalous vertices
can be computed also at finite q with a simple generalization
of our formulas.
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APPENDIX A: DERIVATION OF FLOW EQUATIONS IN
THE BOSONIC FORMALISM

In this Appendix we will derive the flow equations used in
Sec. V. We consider only those terms in which the dependence
on the center-of-mass momentum q is fixed to zero by the
topology of the relative diagram or that depend only paramet-

235160-13



PIETRO M. BONETTI PHYSICAL REVIEW B 102, 235160 (2020)

rically on it. These diagrams are the only ones necessary to
reproduce the MF approximation.

The flow equations will be derived directly from the Wet-
terich equation (2), with a slight modification, since we have
to keep in mind that the bosonic field φ acquires a scale
dependence due to the scale dependence of its expectation
value. The flow equation reads as (for real α�)

∂��� = 1

2
∂̃�Str ln[�(2)� + R�] + δ��

δσq=0
∂�α�, (A1)

where �(2)� is the matrix of the second derivatives of the
action with respect to the fields, the supertrace Str includes
a minus sign when tracing over fermionic variables. The first
equation we derive is the one for the flowing expectation value
α�. This is obtained by requiring that the one-point function
for σq vanishes. Taking the σq derivative in Eq. (A1) and
setting the fields to zero, we have

∂��(0,1,0)�(q = 0) ≡ ∂�

δ��

δσq=0

∣∣∣∣
�,�,σ,π=0

= −
∫

k
h�

σ (k; 0) ∂̃�F�(k) + m�
σ (0) ∂�α� = 0, (A2)

where we have defined

�(2n1,n2,n3 )� = δ(2n1+n2+n3 )��

(δ� )n1 (δ� )n1 (δσ )n2 (δπ )n3
. (A3)

From Eq. (A2) we get the flow equation for α�:

∂�α� = 1

m�
σ (0)

∫
k

h�
σ (k; 0) ∂̃�F�(k). (A4)

The MF flow equation for the fermionic gap reads as

∂���(k) =
∫

k′
A�(k, k′; 0) ∂̃�F�(k′)

+ ∂�α� h�
σ (k; 0), (A5)

with A� being the residual two-fermion interaction in the
longitudinal channel. The equation for the inverse propagator
of the σq boson is

∂�m�
σ (q) =

∫
p

h�
σ (p; q)

[̃
∂���

11(p; q)
]
h�

σ (p; q)

+
∫

p
�(2,2,0)�(p, 0, q) ∂̃�F�(p)

+ ∂�α� �(0,3,0)�(q, 0), (A6)

where we have defined the bubble at finite momentum q as

��
αβ (k; q) = −1

2
Tr[ταG�(k)τβG�(k − q)], (A7)

�(0,3,0)� is an interaction among three σ bosons and
�(2,2,0)� couples one fermion and two longitudinal bosonic
fluctuations. The equation for the longitudinal Yukawa cou-
pling is

∂�h�
σ (k; q) =

∫
p
A�(k, p; q)

[̃
∂���

11(p; q)
]
h�

σ (p, q)

+
∫

k′
�(4,1,0)�(k, p, q, 0) ∂̃�F�(p)

+ ∂�α� �(2,2,0)�(k, q, 0), (A8)

FIG. 10. Feynman diagrams describing the Katanin-type approx-
imation higher-order correlation functions. The conventions are the
same as in Figs. 1 and 2.

where �(4,1,0)� is a coupling among two fermions and one σ

boson. The flow equation for the coupling A� reads as instead

∂�A�(k, k′; q) =
∫

p
A�(k, p; q)

[̃
∂���

11(p; q)
]
A�(p, k′; q)

+
∫

p
�(6,0,0)�(k, k′, q, p, 0) ∂̃�F�(p)

+ ∂�α� �(4,1,0)�(k, k′, q, q),
(A9)

with �(6,0,0)� the three-fermion coupling. We recall that in all
the above flow equations, we have considered only the terms
in which the center-of-mass momentum q enters parametri-
cally in the equations. This means that we have assigned to
the flow equation for A� only contributions in the particle-
particle channel and we have neglected in all flow equations
all the terms that contain a loop with the normal single-scale
propagator ∂̃�G�(k). Within a reduced model, where the bare
interaction is nonzero only for q = 0 scattering processes, the
mean field is the exact solution and one can prove that, due to
the reduced phase space, only the diagrams that we have con-
sidered in our truncation of the flow equations survive [33].
In order to treat the higher-order couplings �(0,3,0)�, �(2,2,0)�,
�(4,1,0)�, and �(6,0,0)�, one can approximate their flow equa-
tions in order to make them integrable in way similar to
Katanin’s approximation for the three-fermion coupling. The
integrated results are the fermionic loop integrals schemati-
cally shown in Fig. 10. Skipping any calculation, we just state
that this approximation allows for absorbing the second and
third terms on the right-hand side of Eqs. (A6), (A8), and
(A9) into the first one just by replacing ∂̃���

11 with its full
derivative ∂���

11. In summary,

∂�m�
σ (q) =

∫
p

h�
σ (p; q)

[
∂���

11(p; q)
]
h�

σ (p; q), (A10)

∂�h�
σ (k; q) =

∫
p
A�(k, p; q)

[
∂���

11(p; q)
]
h�

σ (p; q),

(A11)
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∂�A�(k, k′; q) =
∫

p
A�(k, p; q)

[
∂���

11(p; q)
]
A�(p, k′; q).

(A12)

With a similar approach, one can derive the flow equations for
the transverse couplings:

∂�m�
π (q) =

∫
p

h�
π (p; q)

[
∂���

22(p; q)
]
h�

π (p; q), (A13)

∂�h�
π (k; q) =

∫
p
�(k, p; q)

[
∂���

22(p; q)
]
h�

π (p; q),

(A14)

∂��(k, k′; q) =
∫

p
�(k, p; q)

[
∂���

22(p; q)
]
�(p, k′; q).

(A15)

APPENDIX B: CALCULATION OF THE IRREDUCIBLE
VERTEX IN THE BOSONIC FORMALISM

In this Appendix we provide a proof of Eq. (47) by making
use of matrix notation. If the full vertex can be decomposed
as in Eq. (26)

V = Q + h[h]T

m
, (B1)

we can plug this relation into the definition of the irreducible
vertex, Eq. (18). With some algebra we obtain

Ṽ =[1 + V �]−1V

=
[

1 + h̃[h]T

m
�

]−1[
Q̃ + h̃[h]T

m

]
,

(B2)

where in the last line we have inserted a representation of the
identity

1 = [1 + Q�][1 + Q�]−1, (B3)

in-between the two matrices and we have made use of def-
initions (38) and (40). With a bit of simple algebra, we can
analytically invert the matrix on the left in the last line of
Eq. (B2), obtaining[

1 + h̃[h]T

m
�

]−1

= 1 − h̃[h]T

m̃
�, (B4)

where m̃ is defined in Eq. (42). By plugging this result into
Eq. (B2), we finally obtain

Ṽ = Q̃ + h̃[̃h]T

m̃
, (B5)

that is the result of Eq. (47).

APPENDIX C: ALGORITHM FOR THE CALCULATION OF
THE SUPERFLUID GAP

The formalism described in Sec. V allows us to formulate
a minimal set of closed equations required for the calculation
of the gap. We drop the � superscript, assuming that we have
reached the final scale. The gap can be computed using the

Ward identity, so we can reduce ourselves to a single self-
consistent equation for α, that is a single scalar quantity, and
another one for hπ , momentum dependent. The equation for
α is Eq. (50). The transverse Yukawa coupling is calculated
through Eq. (44). The equations are coupled since the super-
fluid gap � = αhπ appears in the right-hand side of both.

We propose an iterative loop to solve the above-mentioned
equations. By starting with the initial conditions α(0) = 0
and h(0)

π (k) = 0, we update the transverse Yukawa coupling
at every loop iteration i according to Eq. (44), that can be
reformulated in the following algorithmic form:

h(i+1)
π (k) =

∫
k′

[M (i)(k, k′)]−1 h̃�s (k′), (C1)

with the matrix M (i) defined as

M (i)(k, k′) = δk,k′ − Q̃�s (k, k′) �
(i)
22 (k′; α(i) ), (C2)

and the 22-bubble rewritten as

�
(i)
22 (k; α) = 1

G−1(k)G−1(−k) + α2
[
h(i)

π (k)
]2 , (C3)

with G(k) defined in Eq. (17). Equation (C1) is not solved
self-consistently at every loop iteration i because we have
chosen to evaluate the right-hand side with hπ at the previous
iteration. α(i+1) is calculated by self-consistently solving

1 = 1

m̃�s

∫
k

h̃�s (k) �
(i+1)
22 (k; α) h(i+1)

π (k) (C4)

for α. The equation above is nothing but Eq. (50) where the
solution α = 0 has been factorized away. The loop consisting
of Eqs. (C1) and (C4) must be repeated until convergence
is reached in α and, subsequently, in hπ . This formulation
of self-consistent equations is not computationally lighter
than the one in the fermionic formalism, but more easily
controllable, as one can split the frequency and momentum
dependence of the gap (through hπ ) from the strength of
the order (α). Moreover, thanks to the fact that hπ is up-
dated with an explicit expression, namely Eq. (C1), that is
in general a well-behaved function of k, the frequency and
momentum dependence of the gap are ensured to be under
control.

APPENDIX D: FLOW EQUATIONS IN THE SYMMETRIC
PHASE

The flow equations for the three channels C�, M�, and
P� in the symmetric phase are similar to those obtained in
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Ref. [55] for the repulsive Hubbard model. For the charge channel we have

∂�C�
νν ′ (q,�) = −

∑
ω

Lc,�
ν,ω+�(q,�)

[̃
∂�χ c,�

ω (q,�)
]
Lc,�

ων ′ (q,�), (D1)

where

Lc,�
νν ′ (q,�) = U − C�

νν ′ (q,�) +
∫

p

[
1

2
C�

νν ′ (p, ν ′ − ν − �) + 3

2
M�

νν ′ (p, ν ′ − ν − �) − P�
ν,ν+�(p, ν + ν ′)

]
(D2)

and

χ c,�
ν (q,�) = T

∫
k

G�
0 (k + q, ν + �)G�

0 (k, ν), (D3)

with G�
0 (k) = 1

Q�
0 (k) = ν2

ν2+�2
1

iν−ξk
, and

∫
k = ∫

d2k
(2π )2 . Similarly, the flow equation for the magnetic channel is given by

∂�M�
νν ′ (q,�) = −

∑
ω

Lm,�
ν,ω+�(q,�)

[̃
∂�χm,�

ω (q,�)
]
Lm,�

ων ′ (q,�), (D4)

with χm,�
ω (q,�) = χ c,�

ω (q,�), and

Lm,�
νν ′ (q,�) = −U − M�

νν ′ (q,�) +
∫

p

[
1

2
C�

νν ′ (p, ν ′ − ν − �) − 1

2
M�

νν ′ (p, ν ′ − ν − �) + P�
ν,ν+�(p, ν + ν ′)

]
. (D5)

Finally, the flow equation for the pairing channel reads as

∂�P�
νν ′ (q,�) =

∑
ω

Lp,�
νω (q,�)

[̃
∂�χ p,�

ω (q,�)
]
Lp,�

ων ′ (q,�), (D6)

where we have projected onto the singlet component of the pairing, that is

Lp,�
νν ′ (q,�) = L

p,�
νν ′ (q,�) + L

p,�
ν,�−ν ′ (q,�)

2
, (D7)

with

L
p,�
νν ′ (q,�) = −U + P�

νν ′ (q,�) +
∫

p

[
1

2
C�

ν,�−ν (p, ν ′ − ν) − 1

2
M�

ν,�−ν (p, ν ′ − ν) − M�
ν,�−ν (p,� − ν − ν ′)

]
(D8)

and

χ p,�
ν (q,�) = T

∫
k

G�
0 (k, ν)G�

0 (q − k,� − ν). (D9)
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