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Pulay forces in density-functional theory with extended Hubbard functionals: From
nonorthogonalized to orthogonalized manifolds
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We present a derivation of the exact expression for Pulay forces in density-functional theory calculations
augmented with extended Hubbard functionals and arising from the use of orthogonalized atomic orbitals as
projectors for the Hubbard manifold. The derivative of the inverse square root of the orbital overlap matrix
is obtained as a closed-form solution of the associated Lyapunov (Sylvester) equation. The expression for the
resulting contribution to the forces is presented in the framework of ultrasoft pseudopotentials and the projector-
augmented-wave method and using a plane-wave basis set. We have benchmarked the present implementation
with respect to finite differences of total energies for the case of NiO, finding excellent agreement. Owing to
the accuracy of Hubbard-corrected density-functional theory calculations—provided the Hubbard parameters
are computed for the manifold under consideration—the present work paves the way for systematic studies of
solid-state and molecular transition-metal and rare-earth compounds.
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I. INTRODUCTION

Density-functional theory (DFT) [1,2] with approximate
exchange-correlation functionals has been remarkably suc-
cessful in predicting ground-state properties of a large
variety of systems. However, most functionals [such as the
local-density approximation (LDA) and generalized-gradient
approximation (GGA)] fail in capturing both qualitatively
and quantitatively the ground state of systems with strongly
localized electrons (typically of d and/or f character), due
to large self-interaction errors (SIE) [3,4]. There are different
schemes that can be used in DFT to alleviate SIE; in particular,
we mention here self-interaction corrections (SIC) [3,5–7],
hybrid functionals [8–14], meta-GGA functionals [15–20],
and DFT+U [21–27] or its extension DFT+U+V [28–30].

DFT with (extended) Hubbard functionals—DFT+U
(DFT+U+V )—is popular due to its simplicity and much
improved accuracy in describing structural, electronic, and
magnetic ground-state properties of transition-metal and rare-
earth compounds [27,31] by removing self-interactions for
a subset of electronic states (i.e., states in the Hubbard
manifold) [24]. While DFT+U with an onsite Hubbard U
correction is effective for many systems with strongly lo-
calized electrons, the intersite Hubbard V contribution is
crucial in many systems having also a strong covalent hy-
bridization for the same orbitals; case studies have been
the evaluation of voltages in Li-ion batteries [32], the de-
termination of formation energies of oxygen vacancies in
perovskites [33], and geometries and energetics in molecu-
lar systems [26]. Key aspects of these methods are (i) the
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choice of the Hubbard parameters (onsite U and intersite
V ) and (ii) the choice of projector functions that are used
to construct the Hubbard manifold. These two fundamen-
tal points are not independent. Hubbard parameters that are
computed from first principles (e.g., using constrained DFT
(cDFT) [34–43], Hartree-Fock-based approaches [29,44–47],
constrained random-phase approximation (cRPA) [48–57],
or linear-response theory (LRT) [58,59]) vary substantially,
depending on the choice of the projector functions for the
Hubbard manifold, pseudopotentials and the oxidation state
[25,42], exchange-correlation functionals, and chemical envi-
ronment of the Hubbard atoms [60,61]. Therefore, it is crucial
to use the U and V parameters consistently with the Hubbard
manifold and other technicalities (pseudopotentials, oxidation
states, functionals, etc.) which were used to compute them.
In addition, it is important to stress that the final quanti-
ties of interest (energies, bond lengths, etc.) are insensitive
to large variations (2–3 eV) in interaction parameters com-
puted using pseudopotentials generated in different oxidation
states provided that these interaction parameters are com-
puted self-consistently (e.g., using LRT) (see the Appendix of
Ref. [25]).

Since the early days [21], DFT+U became widely used
and implemented in different electronic-structure codes. How-
ever, different projector functions for the Hubbard manifold
are used in the available implementations (see below), which
makes it difficult to compare results obtained with different
codes; in addition, it is still a common practice to choose
empirical values of U , disregarding the underlying definition
of the Hubbard manifold. In Ref. [62], an effort was made
to compare and analyze various types of projector functions
for a set of U values, and quite large variations in the results
(e.g., density of states, energy differences) were obtained,
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especially for systems with strong covalent interactions com-
pared to the ones with ionic interactions.

There are quite many possible projector functions to use
as a basis for the Hubbard manifold (see, e.g., Ref. [63]).
In particular, we highlight here nonorthogonalized atomic or-
bitals (NAO) [58,64], orthogonalized atomic orbitals (OAO)
[32,33,65], nonorthogonalized Wannier functions (NWF)
[66], orthogonalized Wannier functions (OWF) [67], lin-
earized augmented plane-wave (LAPW) approaches [68],
and projector-augmented-wave (PAW) projector functions
[69,70]. A common feature of all these projector functions
is that they are spatially localized and depend explicitly on
atomic positions; hence, an extra term appears when comput-
ing derivatives of the Hubbard corrective energy with respect
to atomic displacements (Pulay force) or strain (Pulay stress).
The expressions for Pulay forces in the context of Hubbard-
corrected DFT were derived for NAO [71,72], NWF [73],
OWF [74], and LAPW [75], but no derivation was made so
far for the case of OAO. The scope of the present work is to
extend the existing expression for Pulay forces using NAO
[71,72] to orthogonalized basis sets based on the Löwdin
scheme [76,77].

The importance of this development is that NAO and
OAO are of special interest due to the simplicity of their
implementation and transparency in their practical use. In
particular, DFT+U calculations with NAO have proven to
be accurate for simulations of various properties in many
materials [60,78–81]. However, NAO have also drawbacks
dictated by the fact that atomic orbitals can have long tails
that extend to a significant spatial range, and as a consequence
the formal occupation numbers for these orbitals can be sub-
stantially overestimated [62]. In some NAO-based works [64]
these tails are truncated (i.e., atomic orbitals are zero outside
of “atomic spheres”), and even in LAPW and PAW-based
approaches there is some ambiguity in the definition of the
cutoff radius at which the projector functions are truncated
[43]. Such ambiguity has implications on the final quantities
of interest that are computed [43,62]; in addition, in the case
of NAO with long tails, the Hubbard correction is essentially
applied twice in the overlap regions between atoms, which
can further enhance spurious unphysical effects in Hubbard-
corrected DFT calculations. These issues can be removed by
orthogonalizing the atomic orbitals among all atoms: This
insures that Hubbard corrections are applied only once to the
respective Hubbard manifolds. Moreover, DFT+U with OAO
captures some intersite corrections through orthogonalization
of the orbitals of one atom combined with those from neighbor
sites, thus making DFT+U closer to the full DFT+U+V .
Therefore, OAO is a very attractive alternative to NAO, and
in fact it was already observed that the former gives more
accurate energetics than the latter [32,33]. Until the present
work, though, atomic and cell relaxations with OAO were not
possible due to the difficulty in evaluating the derivative of
the inverse square root of the orbital overlap matrix, which
appears when using the Löwdin scheme [76,77].

In this work, we present a derivation that allows us to
calculate Pulay (Hubbard) forces for the case of OAO pro-
jector functions, by starting from the expressions for the
Hubbard force in the case of NAO [71,72] and using the Hub-
bard parameters U and V computed using density-functional

perturbation theory (DFPT) [59,82]. We present a detailed
mathematical formulation of the derivative of the inverse
square root of the orbital overlap matrix as a closed-form
solution of the Lyapunov (Sylvester) equation, which is the
main result of the present formalism, and we compare it with
other techniques that were used in literature to compute such
a derivative. The formalism is presented in the framework
of DFT+U+V , i.e., by taking into account not only Hub-
bard forces coming from the onsite U term but also from
the intersite V term. For the sake of generality, we present
the derivation in the case of ultrasoft (US) pseudopotentials
(PPs) and PAW. It is worth to note that we have also derived
and implemented the formalism for the Hubbard stress using
OAO, but this will not be discussed here because this is not
the focus of this paper.

The paper is organized as follows: Section II A presents
the basics of DFT+U and DFT+U+V in the framework of
US and PAW PPs; in Sec. II B we discuss NAO and OAO;
Sec. II C discusses the Hellmann-Feynman theorem and its
generalization to US and PAW PPs; in Sec. II D and Sec.
II E we present the derivation of Hubbard forces in the cases
of NAO and OAO, respectively; Sec. III contains technical
details of our calculations; in Sec. IV we benchmark the
implementation of Hubbard forces using OAO versus the fi-
nite difference method, and make comparisons of total and
Hubbard forces in the case of OAO and NAO; and finally, in
Sec. V we give our conclusions. In Appendix A we give an
alternative (approximate) expression for the derivative of the
inverse square root of the overlap matrix based on the Taylor
series expansion, in Appendix B we present a proof that the
solution of the Lyapunov equation can be written in a closed
form, and in Appendix C we present the discussion about
the computational scaling of forces. Hartree atomic units are
used throughout the paper. For the sake of simplicity, the for-
malism is presented for insulators. We will use notations and
definitions similar to those in Ref. [83]. Quantum-mechanical
operators will be indicated with a hat on top of capital letters
(“Â”), while for matrices we will use a special font (“A”).

II. THEORY

In this section we present the formalism for calculation of
Hubbard forces starting from the expression for the Hubbard
energy in the framework of DFT with extended Hubbard
functionals. The main results of this paper can be divided into
two parts: (i) generalization of the DFT+U formalism to the
framework of DFT+U+V and to the use of US or PAW PPs
in the context of NAO and (ii) generalization of “(i)” to OAO.
The former is discussed in Secs. II C and II D, while the latter
in Sec. II E.

A. DFT+U+V

In this section we briefly recall the basics of the
DFT+U+V formalism in the simplified rotationally invariant
form, which were presented in Refs. [23,28,58] for norm-
conserving (NC) PPs, and later were extended to US and
PAW PPs in Refs. [60,82]. This reminder is needed, because
it will be our starting point for the derivation of expressions
for forces.
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Similarly to DFT+U , DFT+U+V is also based on an
additive correction to the approximate DFT energy functional
[28]:

ETOT = EDFT + EHub, (1)

where ETOT is the total energy functional, EDFT is the standard
DFT energy functional based on LDA or GGA, and EHub is the
Hubbard energy functional which is the difference between
the Hubbard term and its mean-field approximation which is
subtracted to avoid the double counting of interactions already
included in EDFT. In the present work, this latter term is shaped
according to the popular fully localized limit [23,27,84]. The
generalized Hubbard corrective energy is defined as [28]:

EHub = 1

2

∑
I

∑
σm1m2

U I
(
δm1m2 − nIIσ

m1m2

)
nIIσ

m2m1

− 1

2

∑
I

∗∑
J (J �=I )

∑
σm1m2

V IJnIJσ
m1m2

nJIσ
m2m1

, (2)

where I and J are the atomic site indices, m1 and m2 are the
magnetic quantum numbers associated with a specific angular
momentum (i.e., orbitals of the Hubbard manifold) of atoms
I and J , respectively, U I and V IJ are the onsite and intersite
Hubbard parameters, respectively, and the star in the sum on
the second line denotes that for each atom I index J covers all
its nearest neighbors up to a given distance (or belonging to a
given shell). Typically, only nearest neighbors are considered
in the intersite term, but the formalism is general and hence
allows to include next-nearest neighbors and even further ones
when needed.

In Eq. (2), nIJσ
m1m2

are the generalized occupation matrices
that are based on a projection of Kohn-Sham (KS) states
ψiσ (r) on the Hubbard manifold specific for each atom
{ϕI

m(r)}:

nIJσ
m1m2

=
∑

i

〈ψiσ |Ŝ∣∣ϕJ
m2

〉〈
ϕI

m1

∣∣Ŝ|ψiσ 〉

=
∑

i

〈ψiσ |P̂JI
m2m1

|ψiσ 〉, (3)

where

P̂JI
m2m1

= Ŝ
∣∣ϕJ

m2

〉〈
ϕI

m1

∣∣Ŝ. (4)

Here index i labels KS states, P̂JI
m2m1

is the generalized pro-
jector on Hubbard manifolds of atoms J and I , and ϕI

m1
(r) ≡

ϕ
γ (I )
m1 (r − RI ) are the functions centered on the Ith atom of

type γ (I ) at the position RI . Depending on the atomic type,
functions ϕI

m1
(r) can be either localized functions (of d or f

character like for transition-metal and rare-earth elements) or
spread functions (of s or p character for other elements). In the
following sections we will discuss in more details these func-
tions and their role in Hubbard-corrected DFT calculations.

In Eq. (4), Ŝ is the operator of the US or PAW PPs schemes,
which reads

Ŝ = 1 +
∑
Iμν

qγ (I )
μν

∣∣βI
μ

〉〈
βI

ν

∣∣, (5)

where

qγ (I )
μν =

∫
Qγ (I )

μν (r) dr. (6)

Here μ and ν are the indices which label Q and β func-
tions, Qγ (I )

μν (r − RI ) are the localized augmentation functions
pertaining to the pseudopotential of the Ith atom, βI

μ(r) ≡
β

γ (I )
μ (r − RI ) are the so-called projector functions of the US

or PAW PPs schemes [not to be confused with the projector
functions on the Hubbard manifold, ϕI

m1
(r)] that are localized

on the Ith atom and vanish outside spheres centered on atoms
[85], and the integration in Eq. (6) is performed over a crystal
volume.

In DFT+U , only the first line in Eq. (2) is preserved,
while the term on the second line is zero because the intersite
interactions are neglected, i.e., V IJ = 0. In this case, which
corrects only the onsite interactions, it is useful to adopt the
following notation: nIσ

m1m2
≡ nIIσ

m1m2
and P̂I

m1m2
≡ P̂II

m1m2
. It is

easy to see from Eq. (2) that the two terms of the corrective
energy functional, proportional to the onsite (U I ) and intersite
(V IJ ) interactions, counteract each other. In fact, while the
onsite term favors localization on atomic sites (by suppressing
intersite hybridization of orbitals), the intersite terms restore
and stabilize hybridized states in the interstitial regions be-
tween neighboring atoms that are characteristic for covalent
interactions. Therefore, in systems with predominantly ionic
interactions DFT+U is expected to be sufficient and a good
level of approximation, while in systems with predominantly
covalent interactions DFT+U+V is needed.

For the purpose of this work it is important to discuss the
contribution to the KS potential stemming from the extended
Hubbard functional [see Eq. (2)]. The action of this term
on KS wave functions can be easily obtained by taking a
functional derivative of ETOT [see Eq. (1)] with respect to the
complex conjugate of KS wave functions [28,86]. The term
corresponding to the functional derivative of EHub [see Eq. (2)]
reads:

V̂Hub,σ =
∑

I

∑
m1m2

U I

(
δm1m2

2
− nIσ

m1m2

)
P̂I

m1m2

−
∑

I

∗∑
J (J �=I )

∑
m1m2

V IJnIJσ
m1m2

P̂IJ
m1m2

. (7)

Therefore, the generalized KS equations with the Hubbard
corrections can be written as

Ĥσ |ψiσ 〉 = εiσ Ŝ|ψiσ 〉, (8)

where εiσ are the KS energies, and

Ĥσ = ĤDFT,σ + V̂Hub,σ , (9)

with ĤDFT,σ being the standard DFT Hamiltonian (LDA or
GGA), and V̂Hub,σ is the Hubbard potential given by Eq. (7).
For generalized KS equations, the orthonormality condition
reads:

〈ψiσ |Ŝ|ψi′σ ′ 〉 = δii′δσσ ′ . (10)

The DFT Hamiltonian ĤDFT,σ contains usual terms [85,87]),
among which the Hartree and exchange-correlation potentials
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depend on the charge density, which in the US and PAW PPs
cases reads:

ρσ (r) =
∑

i

|ψiσ (r)|2

+
∑

i

∑
Iμν

Qγ (I )
μν (r − RI ) 〈ψiσ

∣∣βI
μ

〉〈
βI

ν

∣∣ψiσ 〉.

(11)

Finally, Hubbard parameters U I and V IJ , which are needed
for the formalism presented above, can be computed from
first principles using, e.g., linear response theory [58] with its
recent reformulation based on density-functional perturbation
theory [59,82]. As was mentioned in Sec. I, values of U I and
V IJ depend strongly on the choice of projector functions of the
Hubbard manifold, ϕI

m1
(r), as well as on the type of PPs [42],

oxidation state [25,61], functional, and chemical composition
of the system [60,61].

B. Choosing projector functions for the Hubbard manifold

One of the key aspects of the Hubbard-corrected DFT
formalism is the choice of the projector functions for the
Hubbard manifold. In other words, we need to choose the
basis {ϕI

m(r)} for the projector P̂JI
m2m1

that was introduced in
Sec. II A. In Sec. I we discussed what are the popular choices
in literature for {ϕI

m(r)}. In this work, we focus our discussion
only on two types of projector functions, NAO and OAO. Let
us comment briefly about each of them.

NAO is one of the most simple projector functions for
the Hubbard manifold, which is often a reasonable choice to
represent the Hubbard manifold, especially in systems with
mostly ionic character of interactions. NAO are provided with
pseudopotentials, and these orbitals are orthonormal within
each atom (i.e., Hubbard d orbitals are orthonormal to non-

Hubbard s and p orbitals of the same atom) but not between
different atoms. However, whenever covalent interactions be-
come important, this type of projector functions is not the best
choice (see the discussion in Sec. I), and intersite orthogonal-
ization becomes important.

OAO are obtained by taking atomic orbitals of each atom
and then orthogonalizing them to all orbitals of all atoms in
the system. In this work, we will use the Löwdin orthog-
onalization method [76,77]. By doing so, we obtain a new
set of orbitals, that are all orthogonalized, which now better
represent hybridizations of orbitals between neighboring sites.
This choice is particularly good for setting up the Hubbard
manifold, because it allows us to avoid counting Hubbard
corrections twice in the interstitial regions between atoms,
which is especially relevant in the case of DFT+U+V .

The Hubbard-corrected DFT formalism presented in
Sec. II A is general and hence it applies both to NAO and
OAO. However, the expressions for the Hubbard forces have
differences, which we will detail in the following. First, we
will briefly recall the formalism for Hubbard forces that are
computed using NAO (Sec. II D), and, second, we will present
the generalization to OAO and highlight what are the differ-
ence with the NAO case (Sec. II E).

C. Total forces in DFT+U+V

In this section we discuss how to evaluate Hubbard forces
starting from the expression for the total energy, Eq. (1). The
main idea is based on the Hellmann-Feynman theorem which
states that in the case of NC PPs the derivative of the total
energy with respect to some small perturbation (in this case
the perturbation is the atomic displacement) equals to the ex-
pectation value of the derivative of the Hamiltonian. However,
in the case of US and PAW PPs, there is a contribution coming
also from the derivatives of the Ŝ operator [60,83]. Therefore,
the total force acting on the K th atom upon its displacement
is

FTOT,K = −dETOT

dRK
= −

∑
iσ

∫
δETOT

δψ∗
iσ (r)

dψ∗
iσ (r)

dRK
dr −

∑
iσ

∫
δETOT

δψiσ (r)

dψiσ (r)

dRK
dr − ∂ETOT

∂RK

= −
∑

iσ

{〈
dψiσ

dRK

∣∣∣∣Ĥσ

∣∣∣∣ψiσ

〉
+

〈
ψiσ

∣∣∣Ĥσ

∣∣∣∣dψiσ

dRK

〉
+

〈
ψiσ

∣∣∣∣ ∂Ĥσ

∂RK

∣∣∣∣ψiσ

〉}

= −
∑

iσ

〈
ψiσ

∣∣∣∣
(

∂ĤDFT,σ

∂RK
− εiσ

∂ Ŝ

∂RK

)∣∣∣∣ψiσ

〉
−

∑
iσ

〈
ψiσ

∣∣∣∣∂V̂Hub,σ

∂RK

∣∣∣∣ψiσ

〉
, (12)

where the first two terms (in the last row) come from the
standard DFT in the US or PAW PPs formalism, and the last
term is the Hubbard force:

FHub,K = −∂EHub

∂RK
= −

∑
iσ

〈
ψiσ

∣∣∣∂V̂Hub,σ

∂RK

∣∣∣ψiσ

〉
. (13)

In the derivation of Eq. (12) we used Eqs. (8) and (9) and
the derivative of Eq. (10) [60,83]. Therefore, the Hubbard
contribution to the force can be separated from the standard
DFT force, and considered in more detail. It turns out that
in practice it is more convenient to work directly with the

derivative ∂EHub
∂RK

rather than with the matrix element of ∂V̂Hub,σ

∂RK

[27,71,72], and therefore we will follow this strategy.

D. Hubbard forces: The case of nonorthogonalized atomic
orbitals

Let us consider the Hubbard force in the basis of NAO.
This derivation was already presented in the case of DFT+U
with NC PPs [71,72], and generalized to the case of US PPs
in the context of the SIC method of Ref. [88] which has close
similarities with DFT+U . Here, we present a generalization
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to the case of DFT+U+V , in the general framework of US
and PAW PPs, which is the first main result of this paper.

As was mentioned in Sec. II C, we need to evaluate the
derivative ∂EHub

∂RK
. Using Eq. (2), we obtain:

∂EHub

∂RK
=

∑
IJ

∑
σm1m2

∂EHub

∂nIJσ
m1m2

∂nIJσ
m1m2

∂RK

=
∑

I

∑
σm1m2

U I

(
δm1m2

2
− nIIσ

m1m2

)
∂nIIσ

m2m1

∂RK

−
∑

I

∗∑
J (J �=I )

∑
σm1m2

V IJnIJσ
m1m2

∂nJIσ
m2m1

∂RK
. (14)

Before we proceed, it is important to remark that Eq. (14)
neglects derivatives of Hubbard parameters with respect to
atomic displacements, namely ∂U I

∂RK
= 0 and ∂V IJ

∂RK
= 0. This is

a standard approximation in literature, in part due to the fact
that very often empirical values of Hubbard parameters are
used and hence it is not possible to evaluate such derivatives
(in fact, the error made due to the ambiguity in choosing
empirical U I is likely much larger than the error made due
to neglecting changes in U I due to atomic displacements).
However, when Hubbard parameters are computed from first
principles, it is in fact possible to compute their derivatives
due to atomic displacements [89]. Here, for the sake of sim-
plicity, we neglect derivatives of U I and V IJ , but this point
deserves further considerations in future studies.

Therefore, the problem is reduced to the calculation of the
derivative of the generalized occupation matrix with respect to
atomic displacements, which can be written as [see Eq. (3)]:

∂nJIσ
m2m1

∂RK
=

∑
i

[
∂

∂RK
(〈ψiσ |Ŝ|ϕI

m1
〉)〈ϕJ

m2
|Ŝ|ψiσ 〉

+ 〈ψiσ |Ŝ|ϕI
m1

〉 ∂

∂RK
(〈ϕJ

m2
|Ŝ|ψiσ 〉)

]
. (15)

Now the problem is to calculate the object ∂
∂RK

(〈ψiσ |Ŝ|ϕI
m1

〉)
and a similar one appearing in the equation above. Since
KS wave functions do not depend explicitly on the atomic
positions, the derivative ∂ψiσ

∂RK
is zero [27,71,72]. Therefore, we

obtain

∂

∂RK
(〈ψiσ |Ŝ|ϕI

m1
〉)

=
〈
ψiσ

∣∣∣∣ ∂ Ŝ

∂RK

∣∣∣∣ϕI
m1

〉
+

〈
ψiσ

∣∣∣∣Ŝ
∣∣∣∣∂ϕI

m1

∂RK

〉
.

(16)

The derivatives in Eq. (16) were briefly discussed in the case
of the SIC method with US PPs in Ref. [88]. Here, we use
such a generalization to US (and PAW) PPs in the context
of DFT+U+V for the first time. The first term in Eq. (16)
is present due to the use of US or PAW PPs and it has no
counterpart in the NC PPs case [27,71,72]. By using Eq. (5)

we obtain:〈
ψiσ

∣∣∣∣ ∂ Ŝ

∂RK

∣∣∣∣ϕI
m1

〉
=

∑
Lμν

qγ (L)
μν

[〈
ψiσ

∣∣∣∣ ∂βL
μ

∂RK

〉
〈βL

ν |ϕI
m1

〉

+ 〈ψiσ |βL
μ〉

〈
∂βL

ν

∂RK

∣∣∣∣ϕI
m1

〉]
. (17)

Due to the locality of projector functions β (we recall that
these projector functions are different from zero only inside

spheres centered on atoms) we have
∂βL

μ

∂RK
= δLK

∂βK
μ

∂RK
, and,

therefore, Eq. (17) becomes〈
ψiσ

∣∣∣∣ ∂ Ŝ

∂RK

∣∣∣∣ϕI
m1

〉
=

∑
μν

qγ (K )
μν

[〈
ψiσ

∣∣∣∣ ∂βK
μ

∂RK

〉
〈βK

ν |ϕI
m1

〉

+ 〈ψiσ |βK
μ 〉

〈
∂βK

ν

∂RK

∣∣∣∣ϕI
m1

〉]
. (18)

It is important to stress that due to the presence of the US
or PAW term given by Eq. (18), there are nonzero Hubbard
forces even on non-Hubbard atoms (i.e., atoms on which we
do not apply the Hubbard correction). Instead, in the case of
NC PPs and NAO, Hubbard forces appear only on Hubbard
atoms [27,71,72].

Finally, the second term in Eq. (16) requires computing
the derivative of NAO with respect to atomic displacements,
∂ϕI

m1
∂RK

, which is similar to the derivative
∂βK

μ

∂RK
from the im-

plementation point of view. These objects can be efficiently
computed in the reciprocal space, as was discussed in detail
in Refs. [27,71,72,88], and hence it will not be detailed here.

E. Hubbard forces: The case of orthogonalized atomic orbitals

In this section we present a generalization of the formalism
discussed in Sec. II D to the case of OAO, which is the second
main result of this paper. All the equations of Sec. II D hold
also for OAO, by replacing nonorthogonalized atomic orbitals
ϕI

m(r) by orthogonalized ones ϕ̃I
m(r). The main difference

with the case discussed so far is how to compute ∂ϕ̃I
m

∂RK
. In the

following of this section we present the definition of OAO and
then discuss how to compute their derivatives.

1. Orthogonalized atomic orbitals

Using the Löwdin orthogonalization method [76,77], we
can define OAO as:

ϕ̃I
m1

(r) =
∑
Jm2

(
O− 1

2
)JI

m2m1
ϕJ

m2
(r), (19)

where O is the orbital overlap matrix which is defined as:

(O)IJ
m1m2

= 〈
ϕI

m1

∣∣Ŝ∣∣ϕJ
m2

〉
, (20)

where (O)IJ
m1m2

is a matrix element of O. Note, (O)IJ
m1m2

can
be represented as a N × N matrix by merging indices I with
m1, and J with m2, where N is the number of all states in the
system. Therefore, in the following we will refer to (O)IJ

m1m2

as a matrix. It is important to note that the following indices
must be understood as being in couples, (I, m1) and (J, m2),
because for different types of atoms the indices m1 and m2 run
over different number of states. As was already anticipated in
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Sec. II B, here we orthogonalize all states of all atoms in the
system. It is important to orthogonalize not only states that
belong to the chosen Hubbard manifolds of each atom (e.g., d
or f states), but also the remaining states, in order to preserve
the onsite orthogonality.

The orbital overlap matrix O is Hermitian and positive
definite, therefore we can represent it as

O = UZU†, (21)

where Z is the diagonal N × N matrix composed of eigen-
values {zI

m} that are all positive, and U is the unitary N × N
matrix (UU† = 1, where 1 is the unit matrix) which is formed
by the corresponding eigenvectors. Using Eq. (21), we can
easily compute O− 1

2 , which appears in Eq. (19), as:

O− 1
2 = UZ− 1

2 U†, (22)

where Z− 1
2 is the diagonal N × N matrix composed of inverse

square root of eigenvalues, namely {(zI
m)−

1
2 }.

2. Derivatives of orthogonalized atomic orbitals

When we replace ϕI
m(r) by ϕ̃I

m(r) in Eq. (16), we need to

compute
∂ϕ̃I

m1
∂RK

. According to the definition (19), we obtain:

∂ϕ̃I
m1

(r)

∂RK
=

∑
Jm2

∂

∂RK

[(
O− 1

2
)JI

m2m1

]
ϕJ

m2
(r)

+
∑
Jm2

(
O− 1

2
)JI

m2m1

∂ϕJ
m2

(r)

∂RK
. (23)

The second term in Eq. (23) is easy to compute; it is different
from zero only when J = K because ϕ functions are atom

centered and hence
∂ϕJ

m2
(r)

∂RK
= δJK

∂ϕK
m2

(r)

∂RK
[71,72]. It is worth

to note that this second term is nonzero even when K �= I
but K = J , while in the case of NAO instead of Eq. (23)

there is only
∂ϕI

m1
(r)

∂RK
and it equals to zero when K �= I . Such a

difference between OAO and NAO is important, because there
are nonzero contributions to Hubbard forces for the former
but not for the later when K �= I . Now let us consider the first
term in Eq. (23). This term is different from zero even when
K �= J �= I due to the derivative of O− 1

2 which has nonzero
off-diagonal terms. Therefore, in the case of OAO, both terms
in Eq. (23) are responsible for nonzero Hubbard forces on
non-Hubbard atoms (even in the case of NC PPs) in addition
to another nonzero contribution due to the use of US or PAW
PPs [see discussion after Eq. (18)].

The first term in Eq. (23) is the most challenging part and
is the main focus of this paper. Indeed, at the first glance it is
not trivial how to evaluate exactly the derivative of the inverse
square root of the orbital overlap matrix

∂

∂RK

[(
O− 1

2
)JI

m2m1

]
. (24)

In the following we discuss how this object was treated in
literature so far, and we present a detailed derivation of the
exact solution and its first application in the framework of
DFT with extended Hubbard functionals for the evaluation of
Hubbard forces (and other first-order derivatives).

3. Derivative of O− 1
2 as a solution of the Lyapunov equation

In this section we discuss how to compute the exact deriva-
tive of O− 1

2 . This problem was already addressed in literature,
and existing solutions will be briefly discussed in the follow-
ing.

In Ref. [74], the authors used a representation in which the
overlap matrix is close to diagonal, and hence in this case it
is straightforward to evaluate the derivative in Eq. (24) (see
Eq. (14) in Ref. [74]). Essentially, this approximation neglects
off-diagonal matrix elements by assuming that they are small,
which makes the calculation of the derivatives of its powers
straightforward. Such an approximation turns out to be quite
good in the context of Hubbard forces using Wannier func-
tions for systems considered in Ref. [74], however noticeable
deviations were observed with respect to forces computed
using finite differences. These deviations can become prob-
lematic when performing structural optimizations, where the
mismatch between forces and gradients of energy can lead to
instabilities of the minimization algorithms, such as, e.g., the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [90].
Therefore, more accurate ways of computing Hubbard forces
are desired. While systematic improvements of the accuracy
of approximate Hubbard forces is possible (see Appendix A),
the exact solution is obviously desired.

In Ref. [91], the exact analytical formula for computing
the derivative of O

1
2 is presented in the context of constrained

DFT to explore the diabatic potential energy curves in the
Marcus theory of electron transfer (see Eq. (11) in Ref. [91]).
Here, we are interested in the derivative of O− 1

2 , and hence
the method of Ref. [91] can be easily adapted to the current
problem (the difference is just the sign in the power). The
derivation presented in this paper was developed indepen-
dently from Ref. [91] and, at variance with what is done in that
work (that only gives the final formula) will be presented in
full detail [92]. Authors are also aware of another independent
exact derivation of the same solution [93] as us and Ref. [91].
This work is further motivated by the fact that it provides the
first use of the analytical expression of the derivative of O− 1

2

in the context of Hubbard-corrected DFT.
In the following, we discuss in detail the derivation of the

exact analytical formula for evaluating Eq. (24). Taking the
derivative of both members of the identity O− 1

2 O− 1
2 = O−1,

it is easy to find:

O− 1
2
∂O− 1

2

∂RK
+ ∂O− 1

2

∂RK
O− 1

2 = WK , (25)

where

WK ≡ ∂O−1

∂RK
= −O−1 ∂O

∂RK
O−1. (26)

Equation (26) was obtained by taking a derivative of the iden-
tity OO−1 = 1, and then by multiplying the resulting equation
by O−1 on the left-hand side.

Equation (25) can be identified as a type of Lyapunov
equation [94], or as a particular case of the Sylvester equation
[95]. Numerical solutions to Eq. (25) can be obtained with
the help of the various algorithms as variants of the classical
Bartels-Stewart algorithm [95] requiring a QR factorization of
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the matrix O− 1
2 . Importantly, these algorithms do not require

the diagonalization of O− 1
2 which can be computationally

very expensive for matrices of large size. Unfortunately, all
implementations available at the moment as part of standard
linear algebra libraries are very limited in terms of size of the
matrix O− 1

2 , and therefore of little (if any) use in applications
to electronic structure problems. However, for all cases in
which one can assume that the diagonalization of the matrices
does not introduce a major computational bottleneck, an exact
solution to Eq. (25) can be obtained through a closed-form
expression [91]. As shown in Appendix B, under conditions
fulfilled by the eigenvalues of the matrix O, we can write the
formal solution to Eq. (25) as follows:

∂O− 1
2

∂RK
=

∫ ∞

0
e−t O− 1

2 WK e−t O− 1
2 dt, (27)

where t is an auxiliary (scalar) integration variable. Using
Eq. (22), we can rewrite Eq. (27) as:

∂O− 1
2

∂RK
= U

(∫ ∞

0
e−t Z− 1

2 W̃K e−t Z− 1
2 dt

)
U†, (28)

where

W̃K = U†WKU. (29)

We can write even more useful result by actually computing
the integral in Eq. (28). The matrix element of the term in
brackets of Eq. (28) reads:(∫ ∞

0
e−t Z− 1

2 W̃K e−t Z− 1
2 dt

)IJ

m1m2

=
∫ ∞

0
e−t (zI

m1
)−

1
2 (W̃K )IJ

m1m2
e−t (zJ

m2
)−

1
2 dt

= (W̃K )IJ
m1m2(

zI
m1

)− 1
2 + (

zJ
m2

)− 1
2

. (30)

We note that a solution given by Eqs. (28)–(30) corresponds
to a similar result in Ref. [91]. Using Eqs. (28) and (30), we
obtain:(

∂O− 1
2

∂RK

)IJ

m1m2

=
∑

Lm3,Mm4

(
U

)IL

m1m3
(W̃K )LM

m3m4

(
U†

)MJ

m4m2(
zL

m3

)− 1
2 + (

zM
m4

)− 1
2

. (31)

Finally, using Eqs. (26) and (29), and the fact that O−1 =
UZ−1U†, Eq. (31) can be rewritten in the compact form:

(
∂O− 1

2

∂RK

)IJ

m1m2

= −
∑

Lm3,Mm4

(
U

)IL

m1m3

(
U† ∂O

∂RK
U

)LM

m3m4

(
U†

)MJ

m4m2

zL
m3

(
zM

m4

)− 1
2 + zM

m4

(
zL

m3

)− 1
2

.

(32)

Equation (32) is exact, and it constitutes a closed form of the
solution of the Lyapunov equation (25). It can be seen from
Eq. (32) that the only ingredients that are needed to compute
the derivative of O− 1

2 are the eigenvalues and eigenvectors of
the overlap matrix O, and the derivative of this matrix, ∂O

∂RK
.

The latter can be easily computed using the definition of the

overlap matrix (20):

∂O
∂RK

=
〈
∂ϕI

m1

∂RK

∣∣∣∣Ŝ
∣∣∣∣ϕJ

m2

〉
+

〈
ϕI

m1

∣∣∣∣Ŝ
∣∣∣∣∂ϕJ

m2

∂RK

〉
+

〈
ϕI

m1

∣∣∣∣ ∂ Ŝ

∂RK

∣∣∣∣ϕJ
m2

〉
.

(33)

The first two terms in Eq. (33) are computed using the local-
ized character of atomic orbitals:〈

∂ϕI
m1

∂RK

∣∣∣∣Ŝ
∣∣∣∣ϕJ

m2

〉
+

〈
ϕI

m1

∣∣∣∣Ŝ
∣∣∣∣∂ϕJ

m2

∂RK

〉

= δIK

〈
∂ϕK

m1

∂RK

∣∣∣∣Ŝ
∣∣∣∣ϕJ

m2

〉
+ δJK

〈
ϕI

m1

∣∣∣∣Ŝ
∣∣∣∣∂ϕK

m2

∂RK

〉
, (34)

and the last term in Eq. (33) is computed in a way similar to
Eq. (18).

It is worth to point out that the method presented here for
the calculation of the first derivative of O− 1

2 can be gener-
alized to higher-order derivatives. In particular, the second
derivative of O− 1

2 can be computed by differentiating Eq. (25)
and by writing a solution of the resulting equation in a closed
form similarly to Eq. (27). As an example, such a computation
will be useful for the generalization of the density-functional
perturbation theory with the Hubbard U correction (the so-
called DFPT+U approach) for calculation of phonons, which
requires second-order derivatives of the occupation matrix for
the calculation of the matrix of interatomic force constants
[60].

Finally, the computational scaling of Hubbard forces using
OAO is compared to that using NAO and is presented in
Appendix C.

III. TECHNICAL DETAILS

The formalism for computing Hubbard forces presented in
Sec. II has been implemented in the QUANTUM ESPRESSO
distribution [96–98], and it is publicly available to the com-
munity [99]. In order to benchmark this implementation, we
consider the case of NiO. In this section we review the techni-
cal settings of these calculations.

We have used the experimental lattice parameter a =
4.17 Å for the rock-salt crystal structure of antifer-
romagnetic NiO [100]. We have used the GGA for
the exchange-correlation functional constructed with the
PBEsol prescription [101]. Pseudopotentials were taken
from the SSSP library 1.1 efficiency [102,103]: for Ni
we have used the US PP from the GBRV library 1.4
[104] (ni_pbesol_v1.4.uspp.F.UPF), and for O we have
used the PAW PP from the Pslibrary library 0.3.1 [105]
(O.pbesol-n-kjpaw_psl.0.1.UPF). KS wave functions
and potentials were expanded in plane waves using the
kinetic-energy cutoffs of 80 and 640 Ry, respectively. The
Brillouin zone has been sampled with a uniform 8 × 8 × 8 k
point mesh centered at the � point. The accuracy on the
computed forces is better than 10−5 Ry/bohr.

The Hubbard parameters were computed using the HP code
which is based on DFPT [59,82]. We have used the k and q
point meshes of size 8 × 8 × 8 and 5 × 5 × 5, respectively,
which give an accuracy of 0.01 eV for the computed val-
ues of U and V . Hubbard parameters were computed using
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the self-consistent procedure, which is described in detail in
Refs. [32,79,82]. In the framework of DFT+U+V , we ob-
tained the following values: using OAO, UOAO = 7.43 eV for
Ni(3d) states, and VOAO = 0.37 eV between Ni(3d) and O(2p)
states; using NAO, UNAO = 6.76 eV and VNAO = 1.25 eV.

For the benchmarking purposes, we evaluated the total
force using numerical differentiation (finite differences) of the
total energy. We used the symmetric difference quotient, with
the atomic displacement parameter of 5 × 10−3 bohr along
each Cartesian direction.

The data used to produce the results of this work are avail-
able at the Materials Cloud Archive [106].

IV. RESULTS

We now proceed to validate the correctness of implemen-
tation of Hubbard forces with OAO by considering NiO as a
test case, as it is one of the most studied materials using the
DFT + Hubbard scheme, and several theoretical and exper-
imental studies are available in literature. Here we focus on
the DFT+U+V case, which is the most general one; similar
trends and results were obtained also for the DFT+U case,
but they will not be discussed in the following.

Below a Neél temperature of 523 K, NiO has an antifer-
romagnetic ordering of type II (AFII), where ferromagnetic
(111) Ni planes alternate with opposite magnetization along
the [111] direction [28]. This magnetic ordering is compatible
with rhombohedral symmetry, and hence the crystal structure
can be modelled using a primitive cell with four atoms, which
we label as Ni1, Ni2, O1, and O2. To impose the AFII magnetic
ordering, we assign to Ni1 a spin up polarization and for
Ni2 a spin down one, while O1 and O2 have zero net spin
polarization. The atomic positions are as follows: Ni1 is at
(0, 0, 0), Ni2 is at (1/2, 1/2, 0), O1 is at (1/2, 0, 0), and O2

is at (1/2, 1/2, 1/2) in the Cartesian framework in units of
the lattice parameter a (see Ref. [58] for more details). Since
all atoms sit in high-symmetry positions, at equilibrium the
forces are zero on all atoms and in all directions. This is an
ideal test case for the current study, because now we can dis-
place atoms and compute nonzero forces acting on them, and
thus we can benchmark the accuracy of our implementation
of total and Hubbard forces with OAO.

Before we proceed with the calculation of forces, for the
sake of completeness we summarize here basic quantities
obtained in our study with DFT+U+V and OAO. Using the
self-consistent Hubbard parameters reported in Sec. III, we
obtain a band gap of 3.14 eV, and the magnetic moments
of Ni of 1.72 μB—these values are in good agreement with
previous theoretical and experimental studies [28]. We will
not elaborate more on this, since this is not the focus of the
current study.

A. Benchmark of the total force using OAO

In this section we validate the implementation of the Hub-
bard forces [Eq. (13)] using OAO by comparing the total force
[Eq. (12)] computed using our analytical formulas and by
using finite differences of the total energy. Our benchmark
procedure is along the same lines as in Refs. [74,75,88].

Figure 1 shows the total energy and total force acting on
the Ni1 atom as a function of the magnitude of its displace-

FIG. 1. (a) Total energy ETOT [see Eq. (1)] as a function of
the displacement on Ni1 atom along the [111] direction. E 0

TOT is
the total energy computed at zero displacement of the Ni1 atom.
(b) Total force FTOT,Ni1 acting on the Ni1 atom when it is displaced
along the [111] direction from its high-symmetry position (0,0,0).
Blue line represents the total force computed using the analytical
expression given by Eq. (12), and red empty circles represent the total
force computed using finite differences of the total energy shown in
panel (a). Data on panels (a) and (b) were obtained using OAO and
using Hubbard parameters UOAO and VOAO.

ment along the [111] direction from its equilibrium position
(0,0,0), obtained using OAO. The components of the force
are equal along three Cartesian directions due to symmetry.
The total force is computed as a square root of squared Carte-
sian components, and we also preserve the sign of the total
force in order to highlight its direction. The “analytical” total
force (blue solid line) was computed using Eq. (12), i.e., the
standard DFT force plus the Hubbard force using OAO as
defined in Eq. (13), which is based on the exact calculation
of various derivatives and in particular that of the O− 1

2 matrix
as discussed in Sec. II E 3. We also computed the total force
using numerical differentiation (finite differences) of the total
energy [see Fig. 1(a)] and the result is shown in Fig. 1(b)
(red empty circles). It is easy to see from Fig. 1(b) that the
analytical and numerical differentiation give exactly the same
total force for various magnitudes of the displacement of Ni1

atom, which validates the correctness of formulas and of their
implementation.

From Fig. 1(b) it is difficult to extract information about the
precision of agreement between the analytical and numerical
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TABLE I. Comparison of the total force (in Ry/bohr) acting on
atoms upon a displacement of the Ni1 atom by +0.15 bohr along
the [111] direction. The results are presented for the case of finite
differences of the total energy and analytical implementation of
forces using OAO and using Hubbard parameters UOAO and VOAO.

Atom F OAO
finite diff. F OAO

analytical

Ni1 −0.048891 −0.048891
Ni2 0.026303 0.026303
O1 0.012951 0.012950
O2 0.009639 0.009638

solutions (we just visually see that the results are on top of
each other). In fact, in Ref. [74] the authors also considered
NiO as a test case to benchmark the implementation of Hub-
bard forces, and they used an approximate expression for the
derivative of O− 1

2 in the framework of Wannier functions;
although the results were very good, the agreement between
analytical and numerical forces was not perfect. Here, in or-
der to elaborate more on the accuracy of our formalism, we
present a comparison of the analytical and numerical results
for the total force for the largest displacement considered here
(+0.15 bohr). From Table I we can see that the total forces
agree with the accuracy of 10−6 Ry/bohr, which is remarkable
and further validates the correctness and high accuracy of
our implementation of analytical formulas for the total and
Hubbard forces. As a side note, we see from Table I that the
total force acting on Ni1 is negative, while total forces acting
on all other atoms are all positive; this means that all atoms
(except Ni1) counteract to the displaced Ni1 atom, and the sum
of all forces is zero.

B. Hubbard contribution to the total force and the importance
of the derivative of O− 1

2

In this section we discuss the contribution of the Hubbard
force to the total force computed using analytical expressions
given by Eqs. (12) and (13), using OAO as a localized basis
set. Moreover, we investigate the importance of taking into
account the derivative of O− 1

2 in Eq. (23).
Table II presents forces computed using the exact (full)

expression for the derivative of OAO given by Eq. (23), and
using an approximate expression which neglects entirely the
derivative of O− 1

2 in Eq. (23) (i.e., the first term). In both cases

Hubbard parameters UOAO and VOAO were used. We discuss
first the exact forces and then the approximate ones.

As can be seen from Table II (second and third columns),
there are nonzero Hubbard forces acting on all atoms when
we displace Ni1. As was already discussed in Sec. II, the
nonzero Hubbard forces on non-Hubbard atoms O1 and O2

is a consequence of two factors: (i) the use of US and PAW
PPs [see Eq. (18)], and (ii) the use of OAO [see Eq. (23) and
the discussion after this equation]. Interestingly, the Hubbard
force acting on Ni2 is one order of magnitude larger than the
Hubbard force acting on the displaced atom Ni1. Moreover,
the signs of Hubbard forces acting on different atoms are
different and it is not trivial to guess them. These two latter
observations are a consequence of a complex interplay be-
tween different contributions entering in the definition of the
Hubbard force [see in particular Eqs. (18) and (23)]. Now let
us compare the magnitude of the Hubbard forces with respect
to the total forces. For Ni1 the Hubbard force constitutes 3.4%
of the total force, for Ni2 it is 38.0%, for O1 it is 1.6%,
and for O2 it is 0.5%. Therefore, while Hubbard forces are
quite negligible for some atoms (e.g., O2), for other atoms
the Hubbard contribution to the total force is very large (e.g.,
Ni2), and hence Hubbard forces must always be computed and
added to the total force.

In this work, large effort was dedicated to the derivation of
the exact expression for the derivative of O− 1

2 , and therefore it
would be interesting and instructive to investigate the impor-
tance of this contribution in Eq. (23), and thus its significance
for the Hubbard and total forces. In Table II (fourth and fifth
columns) we show the Hubbard and total forces acting on
atoms computed by entirely neglecting the derivative of O− 1

2 .
We can see that the total force is changed with respect to the
exact total force (second column in Table II) by 2.9% for Ni1,
1.3% for Ni2, 3.7% for O1, and 6.1% for O2. These are rather
significant deviations. Moreover, such errors of several per-
centages on total forces may lead to instabilities of structural
optimization algorithms (such as BFGS [90]) which are based
on the comparison of the total forces and gradients of total
energy. Hence, the contribution from the derivative of O− 1

2

is relevant and must be always included. The Hubbard forces
are affected markedly if we neglect the contribution from the
derivative of O− 1

2 : The largest deviation is for O2 and there is
a factor of ∼12 difference with respect to the exact Hubbard
force, while the smallest change is for Ni2 and it is 3.5%. This
finding underlines once more time the importance of including

TABLE II. Total and Hubbard forces (in Ry/bohr) computed using analytical formulas Eqs. (12) and (13) for the Ni1 atom displacement
of +0.15 bohr along the [111] direction. The second and third columns correspond to exact forces computed using Eq. (23), while the fourth
and fifth columns correspond to approximate forces computed by neglecting the first term in Eq. (23). In all cases OAO were used for the
calculation of forces together with the Hubbard parameters UOAO and VOAO.

Atom F OAO
analytical (exact) F OAO

analytical (approximate)

Total force Hubbard force Total force Hubbard force

Ni1 −0.048891 0.001652 −0.050309 0.000234
Ni2 0.026303 −0.010003 0.026656 −0.009650
O1 0.012950 0.000204 0.013427 0.000680
O2 0.009638 0.000050 0.010226 0.000638
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TABLE III. Total and Hubbard forces (in Ry/bohr) computed using analytical formulas Eqs. (12) and (13) for the Ni1 atom displacement
of +0.15 bohr along the [111] direction. The second and third columns correspond to forces computed using OAO with UOAO and VOAO, the
fourth and fifth columns correspond to forces computed using NAO with UNAO and VNAO, and the sixth and seventh columns correspond to
forces computed using NAO with UOAO and VOAO.

Atom F OAO
analytical (UOAO &VOAO) F NAO

analytical (UNAO &VNAO) F NAO
analytical (UOAO &VOAO)

Total force Hubbard force Total force Hubbard force Total force Hubbard force

Ni1 −0.048891 0.001652 −0.043358 0.004127 −0.046051 0.004006
Ni2 0.026303 −0.010003 0.023360 −0.009405 0.024727 −0.010772
O1 0.012950 0.000204 0.011567 −0.000117 0.012207 −0.000056
O2 0.009638 0.000050 0.008431 −0.000101 0.009117 −0.000032

the derivative of O− 1
2 in the formalism. For some applications

(e.g., linear scaling algorithms) it might be of interest to use
some approximate ways in computing the derivative of O− 1

2

(such as the one described in Ref. [74] or in Appendix A),
but the application of the current formulation for the exact
evaluation of O− 1

2 as a solution of the Lyapunov equation is
feasible and convenient for quite large systems (from several
tens to a few hundreds of atoms).

C. OAO versus NAO forces

In this section we present a comparison of the total and
Hubbard forces computed using OAO and NAO. As was men-
tioned in the introduction (Sec. I), it is important to keep the
consistency of the Hubbard manifolds which are used for the
calculation of Hubbard parameters, total energy, forces, and
various other properties. Table III presents a comparison for
the fully consistent cases of OAO and NAO (i.e., when forces
and Hubbard parameters are computed by using consistently
the same Hubbard manifold), and for the mixed case when
NAO are used to compute forces while Hubbard parameters
were obtained using OAO. We stress that this latter case is
presented only for demonstrative purposes, while in practice
full consistency of Hubbard manifolds should be used.

As can be seen from Table III the differences between
fully consistent total forces obtained using OAO and NAO
(second and fourth columns) vary in the range from 11% to
14%. This is a rather significant difference, which might be
very relevant when optimizing atomic positions for complex
transition-metal oxides. As expected, the Hubbard forces in
these two cases are very different (see columns three and five
in Table III): Not only the absolute values of Hubbard forces
differ in OAO and NAO, but even the sign of Hubbard forces
for some atoms (O1 and O2 in this case) are opposite to each
other [108]. This latter finding is obviously related to the extra
contributions coming from the O− 1

2 matrix in Eq. (23) when
using OAO.

The origin of the difference between fully consistent to-
tal forces is twofold: (i) different Hubbard parameters are
used in two calculations, (ii) different Hubbard manifolds are
used when computing total energies and forces. In order to
disentangle these two effects, we performed an additional cal-
culation: total energies and forces are computed using NAO,
while Hubbard parameters are obtained using OAO (see last
two columns in Table III). We can see that in this case the dif-
ference between OAO and NAO total forces (second and sixth

columns) is reduced down to 5–6%. Therefore, such a residual
difference is due to the use of different Hubbard manifolds for
computing total energies and forces. Furthermore, we can see
that in this mixed case also the Hubbard forces are changed
in such a way that they become closer to the fully consistent
OAO Hubbard forces (compare columns three, five, and seven
in Table III).

Therefore, such a comparative analysis highlights that it is
important to keep the full consistency when computing Hub-
bard parameters, total energies, forces, and other properties of
materials. Most importantly, such a consistency must be used
from the conceptual point of view: Mixing different Hubbard
manifolds is not justified, and ultimately it can lead to unpre-
dictable behavior of DFT+U and DFT+U+V simulations.

Finally, it would be very useful and important to compare
various materials’ properties using NAO and OAO, and in
particular compare atomic positions after structural optimiza-
tion with available x-ray diffraction data. This task requires
systematic study for various types of materials which have
different types of interactions (ionic, covalent, or mixed) to
see trends, but this is not the objective of this paper and it
is beyond its scope. However, we want to stress that such a
comparison of NAO and OAO is possible now thanks to the
current work, and in fact there are already ongoing efforts the
results of which will be presented elsewhere.

V. CONCLUSIONS

We have presented a detailed derivation for the exact
expression of the contribution to Pulay forces in the frame-
work of extended Hubbard functionals (DFT+U+V [28]) that
originate from the use of orthogonalized atomic orbitals. At
variance with the use of nonorthogonalized orbitals, a major
difficulty arises in this case due to the need to compute the
derivative of the inverse square root of the orbital overlap
matrix O− 1

2 . Similarly to Ref. [91], we have developed and
presented in full detail the derivation of a closed form expres-
sion for the derivative of O− 1

2 via an integral representation
of the solution of the associated Lyapunov equation, where,
for the sake of generality, all equations are written for the case
of ultrasoft pseudopotentials and projector-augmented-wave
method.

The implementation of Hubbard forces using orthogonal-
ized atomic orbitals is benchmarked versus finite differences
of total energies for NiO, and excellent agreement between
forces is obtained, which validates the correctness of the an-
alytical formulas and of the implementation. In addition, we
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show that the contribution from the derivative of O− 1
2 to the

total force is quite significant (from 1% to 6% in the case of
NiO), and hence should always be included for the sake of
consistency and high accuracy.

Furthermore, we have compared total and Hubbard
forces computed using orthogonalized and nonorthogonalized
atomic orbitals using Hubbard parameters computed with the
respective set of orbitals (i.e., using respective Hubbard man-
ifolds). We have found that the differences in total forces is
as large as 11–14% in NiO, which is in part related to the
use of different Hubbard parameters and in part due to the
use of different Hubbard manifolds when computing Hubbard
and total forces. This finding highlights the importance of
maintaining the consistency of the Hubbard manifold and of
the Hubbard parameters when computing various materials’
properties such as total energy, forces, stress, and phonons, to
name a few.

Finally, the current formalism for computing Hubbard
forces using orthogonalized atomic orbitals has been imple-
mented in the open-source QUANTUM ESPRESSO distribution
[96–98] and is freely available to the community at large.
The computational scaling of this formalism is higher than
that when using nonorthogonalized atomic orbitals, however
through the use of standardized mathematical libraries (BLAS
and LAPACK [109]) and effective parallelization strategies
(across plane waves, k points, and bands) large speedups are
achieved that make the overhead of no concern. Last, we
believe that this work opens up avenues for very accurate
geometry optimizations for transition-metal and rare-earth
compounds by taking into account complex hybridization ef-
fects between neighboring sites via the orbital overlap matrix
and subsequently using it in the framework of DFT+U+V
which has proven to be very effective in complex materials
[26,32,33].
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APPENDIX A: DERIVATIVE OF O− 1
2 VIA TAYLOR SERIES

In this Appendix we present an alternative method for the
calculation of the derivative of O− 1

2 , which is based on the
expansion of O in Taylor series and then computing its deriva-
tive. At variance with the exact solution presented in Sec. II
E 3, the use of a Taylor series is by its nature approximate
and, thus, it requires convergence checks with respect to the

number of terms to be included in the series. However, this
approach is still attractive in cases where the matrix O is very
large, as means to avoid the otherwise expensive diagonal-
ization. This is a typical situation for linear-scaling quantum
chemistry algorithms [110], as well as DFT codes that exploit
extensively sparse linear algebra for calculations on large sys-
tems [111]. In this case, the use of localized basis functions
leads to diagonally dominant overlap matrices, and therefore
the Taylor series can be designed with optimal convergence
properties, as explained in what follows. We start by writing
the overlap matrix [defined in Eq. (20)] as:

O = μ

(
O
μ

)
= μ(1 + A), (A1)

where

A = O
μ

− 1. (A2)

Here μ = max[zI
m] is the maximum eigenvalue of O [see

Eq. (21)], 1 is the unit matrix, and A is an auxiliary matrix
with a spectral radius (i.e., the magnitude of its largest eigen-
value) strictly smaller than 1. The representation of O given by
Eqs. (A1) and (A2) is particularly useful for situations when
the orbitals are not normalized to 1.

The Taylor series for O− 1
2 in terms of A can then be

obtained using Eq. (A1), namely

O− 1
2 = μ− 1

2 (1 + A)−
1
2

= μ− 1
2

(
1 +

∞∑
n=1

n∏
k=1

− 1
2 − k + 1

k
An

)

= μ− 1
2

(
1 − 1

2
A + 3

8
AA + ...

)
. (A3)

The desired derivative of O− 1
2 thus reads:

∂O− 1
2

∂RK
= μ− 1

2

(
−1

2

∂A
∂RK

+ 3

8

[
∂A
∂RK

A + A
∂A
∂RK

]
+ ...

)
.

(A4)

It is important to note that in Eq. (A4) matrices A and ∂A
∂RK

may not in general commute (as well as matrices in higher
order terms), and therefore it is necessary to keep the correct
order of matrices when taking a derivative of Eq. (A3). To do
so, Eq. (A4) can be effectively implemented via a loop over
Taylor terms and using a recursive formula:

∂ (An)

∂RK
= ∂ (AAn−1)

∂RK
= ∂A

∂RK
An−1 + A

∂ (An−1)

∂RK
. (A5)

Finally, the only starting inputs that are needed for the recur-
sive formula (A5) are the matrix A [see Eq. (A2)] and its first
derivative

∂A
∂RK

= 1

μ

∂O
∂RK

, (A6)

where ∂O
∂RK

is defined in Eq. (33).
In the case of periodic solids, i.e., when Bloch sums of

OAO or NAO are used, it turns out that this approximate
approach based on the Taylor series is not effective. The
main issue is that the Taylor series appearing in Eq. (A4)
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converges very slowly, and thus in practice it requires several
hundreds of terms for achieving accuracy of Hubbard forces
comparable to that obtained when using the exact solution
described in Sec. II E 3. This is so because many off-diagonal
elements of the overlap matrix O are nonzero in the basis of
Bloch-summed OAO or NAO. Possibly, faster convergence of
series can be achieved by inverting the order of Taylor series
expansion and evaluating Bloch sums. But the correctness of
these assumptions requires more detailed investigations; this
is beyond the scope of the present work and is left for future
studies. However, in the case of finite systems with localized
basis sets, or for periodic solids with optimally chosen func-
tions for the Hubbard manifold [74], the overlap matrix O
might be diagonally dominant, and therefore the Taylor series
can be designed with fast convergence properties.

APPENDIX B: FORMAL SOLUTION OF LYAPUNOV
EQUATION

In this Appendix we demonstrate that Eq. (27) represents
an exact solution of Eq. (25). This can be verified via a direct
substitution of Eq. (27) in Eq. (25), which gives:∫ ∞

0
dt

(
O− 1

2 e−t O− 1
2 WK e−t O− 1

2 +e−t O− 1
2 t WK e−t O− 1

2 O− 1
2
)

=
∫ ∞

0
dt

d

dt

[ − e−t O− 1
2 WK e−t O− 1

2
]

= U
[ − e−tZ− 1

2 W̃K e−t Z− 1
2
]∞

0 U†

= UW̃KU† = WK , (B1)

where we have used the property that each exponential in
Eq. (B1) decays to zero in the limit t → ∞, provided that all
eigenvalues of the matrix O− 1

2 are positive [107]. From this
result, we derive the closed form presented in Eq. (30).

APPENDIX C: COMPUTATIONAL SCALING

In this Appendix we compare the scaling (to a leading
order) of the calculation of Hubbard forces using NAO and
OAO, in the framework of DFT+U+V . Essentially, the goal
is to compare the computational cost in evaluating the deriva-
tive of occupation matrices given by Eq. (15). Below we
present the estimates based on our current implementation of
Hubbard forces.

In the case of NAO, the scaling is

TNAO ∝ 3NatNk
[
TUS/PAW + T proj

NAO

]
, (C1)

where the factor of 3 is due to the displacements of all atoms
in three Cartesian directions, Nat is the number of all atoms
in the simulation cell, and Nk is the number of k point in
the irreducible wedge of the Brillouin zone. TUS/PAW is the
computational cost of evaluating the US or PAW PP related
term given by Eq. (18). This latter term is the same for NAO
and OAO, and thus will not be analyzed further. The quan-
tity T proj

NAO represents the computational cost of evaluating the
second term in Eq. (16). The leading scaling of T proj

NAO can be
estimated as:

T proj
NAO ∝ NPWNU

ϕ Nbands, (C2)

where NPW is the number of plane waves in the basis set
(determined by the kinetic energy cutoff), Nbands is the number
of electronic bands (KS states), and NU

ϕ is the number of states
in the Hubbard manifold of each Hubbard atom (for different
types of Hubbard atoms the number of states varies depending
on which atomic shell is considered as a Hubbard manifold).
Generally, T proj

NAO � TUS/PAW, and the total computational cost
of evaluating Hubbard forces using NAO is negligible with
respect to the cost of a self-consistent iterative solution of KS
equations.

In the case of OAO, the scaling is

TOAO ∝ 3NatNk
[
TUS/PAW + T proj

ortho + T proj
OAO

]
, (C3)

where TUS/PAW is the same as in Eq. (C1). In Eq. (C3) there
is a new term (T proj

ortho) that is not present in Eq. (C1), and it is
related to the evaluation of the derivative of O− 1

2 (see Sec. II
E 3). The scaling of this latter term is

T proj
ortho ∝ 2NPWNall

ϕ Nall
tot + T ortho

US/PAW + 4
(
Nall

tot

)3
, (C4)

where Nall
ϕ is the number of all orthogonalized atomic states

per each Hubbard atom (obviously, for different atomic types
Nall

ϕ is different, but here we use an average value for sim-
plicity), Nall

tot is the total number of all orthogonalized atomic
states of all atoms in the system (if all atoms are of the same
type then Nall

tot = Nall
ϕ Nat). The first term in Eq. (C4) describes

the computational cost of computing the first and second
terms in Eq. (33). The second term in Eq. (C4), T ortho

US/PAW,
is the analog of TUS/PAW, and it describes the computational
cost of evaluating the last term in Eq. (33). The last term in
Eq. (C4) describes the scaling of evaluating Eq. (32), which
requires four sequential matrix-matrix multiplications of size
Nall

tot × Nall
tot and one inexpensive linear algebra operation [di-

vision by the term in the denominator in Eq. (32)] which
we neglected in the estimate of the cost. The general trend
is the following: 4(Nall

tot )3
< T ortho

US/PAW < 2NPWNall
ϕ Nall

tot . Finally,

the last term in Eq. (C3), T proj
OAO, describes the computational

cost of evaluating Eq. (23) and the second term in Eq. (16)

(after replacing
∂ϕI

m1
∂RK

by
∂ϕ̃I

m1
∂RK

), and it can be written as:

T proj
OAO = NU

at

(
1 + NV

neigh

)
NPWNU

ϕ

(
Nbands + Nall

tot + Nall
ϕ

)
,

(C5)

where NU
at is the number of Hubbard atoms in the system, and

NV
neigh is the number of neighbors for each Hubbard atom for

which the intersite Hubbard V �= 0. Note that in the DFT+U
case, NV

neigh = 0 and hence the scaling in Eq. (C5) is largely
reduced. By comparing Eqs. (C2) and (C5) it is easy to see that
in the latter the scaling is largely increased in particular due to
the prefactor NU

at (1 + NV
neigh ). This prefactor is present due to

the fact that for OAO the derivative
∂ϕ̃I

m1
∂RK

is different from zero
even when K �= I [see the discussion after Eq. (23)], while

for NAO the derivative
∂ϕI

m1
∂RK

is different from zero only when
K = I . Overall, the general trend in Eq. (C3) is the following:
TUS/PAW < T proj

ortho � T proj
OAO.

Therefore, from the discussions above it becomes obvi-
ous that the computational cost of Hubbard forces using
OAO is much more expensive than that using NAO, i.e.,
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TNAO � TOAO. This is not surprising, because the former re-
quires extra computations related to the evaluation of the
derivative of O− 1

2 , and due to the fact that there are nonzero
contributions to the Hubbard force even for non-Hubbard
atoms due to the presence of the overlap matrix O. Despite

such an increase in the computational cost when using OAO,
still this method can be efficiently implemented using stan-
dardized mathematical libraries (BLAS and LAPACK [109]),
and effectively parallelized over plane waves, k points, and
bands.
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