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Symmetry-protected topological phases (SPTs) have universal degeneracies in the entanglement spectrum
in one dimension. Here we formulate this phenomenon in the framework of symmetry-resolved entanglement
(SRE) using cohomology theory. We develop a general approach to compute entanglement measures of SPTs in
any dimension and specifically SRE via a discrete path integral on multisheet Riemann surfaces with generalized
defects. The resulting path integral is expressed in terms of group cocycles describing the topological actions
of SPTs. Their cohomology classification allows us to identify universal entanglement properties. Specifically,
we demonstrate an equiblock decomposition of the reduced density matrix into symmetry sectors, for all one-
dimensional topological phases protected by finite Abelian unitary symmetries.
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I. INTRODUCTION

Symmetry-protected topological phases (SPTs) are quan-
tum mechanical states of matter respecting a symmetry and
having a finite energy gap. Nontrivial SPTs have fractional-
ized edge states [1] and a peculiar form of short-range entan-
glement, making them resource states for measurement-based
quantum computation [2,3]. Specifically, the appearance of
topologically protected degeneracies in the entanglement
spectrum in one dimension [4] is a key property which is
invariant under adiabatic deformations of the wave function
[5–7].

In this work we study SPTs in the framework of symmetry-
resolved entanglement (SRE) [8–19]. Consider a ground state
|�〉 of a Hamiltonian respecting a conservation law leading to
conserved charge, denoted Q, e.g., the total number of parti-
cles in the system. The full system has a fixed total charge, but
for a bipartition of the system into two regions A and B, the
charge of each region may fluctuate. Yet the reduced density
matrix ρA = TrB|�〉〈�|, and hence its spectrum λi, i.e., the
entanglement spectrum, can be block-decomposed into sym-
metry sectors associated with the conserved charge Q in the
subregion A. This allows one to symmetry-resolve the entan-
glement entropy S = −∑

i λi log λi or its various moments
sn = ∑

i λ
n
i (“Rényi entropy”). The entanglement spectrum

stemming from symmetry sector Q is obtained by applying
a projector operator PQ to a given charge Q of subsystem
A, {λi}Q = specρAPQ. SRE was addressed in a number of
topological systems hosting non-Abelian anyons [20] and in
SPTs [21], and it can also be measured experimentally [22,23]
as demonstrated recently on an IBM quantum computer
[24].

Here we are interested in the decomposition of entangle-
ment of general SPTs according to the underlying protecting
symmetry. SPT ground states are invariant under the action of

a symmetry

u(g) ⊗ · · · ⊗ u(g)|�〉 = |�〉, (1)

where the product is over sites on a lattice, g ∈ G is an element
of the symmetry group G protecting the SPT, and u(g) is an
on-site representation of the symmetry. For unitary symme-
tries Eq. (1) is associated with a conserved charge. One can
project into the generalized charge sectors, which, for Abelian
finite groups, can be written in terms of the group characters
χQ(g) [21,25],

PQ = 1

|G|
∑
g∈G

χQ(g)UA(g). (2)

Here UA(g) = ⊗i∈Au(g)i acts only on subsystem A. For the
finite Abelian groups we shall consider, charge sectors Q are
group elements Q ∈ G.

As a tool to extract universal information about the en-
tanglement SPTs, in this paper we develop a discrete path
integral approach to compute the SRE of SPTs. We build
on topological actions which are believed to provide a full
description of SPTs in terms of group cocycles and their co-
homological classification [7]. While the method allows one
to extract entanglement properties of SPTs in any dimension
and symmetry, here we concentrate on Abelian finite groups
in one dimension.

Focusing on one-dimensional (1D) SPTs, we find that
nontrivial SPTs generically display equiblock decomposition,
meaning that entanglement spectra of different symmetry
blocks {λi}Q are degenerate. We note that a weaker notion of
entanglement equipartition was put forward by Xavier et al.
[10] (see also Refs. [15,16,19]) in the context of conformal
as well as gapped field theories. There, symmetry blocks of
the reduced density matrix are first normalized to be legiti-
mate density matrices ρAPQ

trρAPQ
, which then turn out to have an
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FIG. 1. (a) The wave function of a d = 1 SPT on a circle (M = Sd ) as an action amplitude on an extended manifold Mext (a d + 1−ball)
with M = ∂Mext . (b) The normalization condition Tr|�〉〈�| = 1 is expressed as a trivial action amplitude on a closed manifold of a d + 1-
sphere obtained by gluing a pair of Mext manifolds at their boundary. (c) The reduced density matrix corresponds to an action amplitude on
an open manifold, whose boundary is the union of the A subsystems from each Mext . (d) The nth Rényi entropy as an action amplitude on an
n-sheet Riemann surface.

identical low energy structure. Our stronger notion of equide-
composition is reflected by the decomposition into identical
blocks, i.e., in SPTs the probability to be found in various
symmetry sectors are identical.

For certain SPT phases, the equidecomposition is com-
plete, i.e., the spectra {λi}Q is independent of Q. We also
identify topological phases with a partial degeneracy between
symmetry sectors. For example, this occurs for symmetry
groups G = ZN × ZN where N is not prime. The entan-
glement equidecomposition provides a relationship between
SRE and the degeneracies in the entanglement spectrum
[4]. The method allows one to study nonuniversal features
that vary within topological phases, by studying cobound-
ary transformations. While the entanglement entropy itself
in nonuniversal, it has minimal value, which is a property
of each SPT [21] and is intimately connected with SRE
equidecomposition.

II. SRE OF SPTs FROM TOPOLOGICAL PATH INTEGRAL

Entanglement measures can be represented using quantum
field theory as a path integral on multisheet Riemann surfaces
[26,27]. SRE can be incorporated by introducing generalized
Aharonov-Bohm fluxes into this space [8,10]. For theories like
1D conformal field theories the resulting partition functions
can be computed exactly [8,10]. Progress was also made using
gapped theories [17,18]. Here we deal with gapped theo-
ries comprising topological Wess-Zumino-Witten-like terms
[28,29], which were argued to give a general description of
SPT phases [7].

The key feature of the employed field theories repre-
senting SPTs, that will be specified in a discrete form in
Sec. II A, is property (i), that they always give a trivial action
amplitude

e− ∫
closed dd+1xL[g(x)] = 1 (3)

for a closed manifold [30]. Chen et al. [7] formulated general
fixed point wave functions of a d-dimensional SPT living on
a closed manifold M, by arbitrarily extending M to be the
boundary of a d + 1-dimensional manifold, M = ∂Mext,

ψ (g(x))|x∈M =
∫

Mext

Dge− ∫
dd+1xL[g(x)], (4)

with the boundary condition that the field coincides with g(x)
on M. Assuming periodic boundary conditions (PBCs), we
take M and Mext to be a d-sphere and a d + 1-ball, respec-
tively, as depicted in Fig. 1(a) for d = 1. Since the extension
of M into Mext is arbitrary, the theory also satisfies property
(ii): the action amplitude depends only on the field on the
boundary. Together with the symmetry condition

e− ∫
dd+1xL[g(x)] = e− ∫

dd+1xL[gg(x)], g ∈ G, (5)

Chen et al. [7] argued that the classification of these field
theories is equivalent to that of SPTs.

The normalization condition 〈�|�〉 = 1 or Tr|�〉〈�| = 1
is then trivially represented from Eq. (3) by the path inte-
gral over the closed surface obtained by gluing a pair of
d + 1-balls on their boundaries, resulting in a closed manifold
equivalent to a d + 1-sphere; see Fig. 1(b). If we divide M
into regions A and B, which we take to be equivalent to
the two halves of the d-sphere, the reduced density matrix
TrB|�〉〈�| is represented as path integral on a manifold with
a boundary, as depicted in Fig. 1(c). The nth Rényi entropy is
then represented as a path integral over the n-sheet Riemann
surface; see Fig. 1(d).

To obtain the SRE we apply the projector onto a given
symmetry sector. To do so we assume that projectors can
be written as in Eq. (2) in terms of the symmetry operators
UA(g) = ⊗i∈Au(g)i. This requires us to apply the transforma-
tion UA(g) on the wave function. In the |g〉 basis this amounts
to taking g(x) → gg(x) for x ∈ A. This can be readily imple-
mented in the action amplitude expression (4) in the extended
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FIG. 2. (a) A defect line D is attached at a pair of points
∂A = ∂D to M and extends arbitrarily through Mext . We implement
the transformation g(x) → g′(x) = gg(x) for x ∈ Mext located on
one side (marked g) of the defect. The resulting action amplitude
e− ∫

dd+1xL[g′ (x)] represents U (g)|�〉. (b) Corresponding manifold and
added defect for UA(g)ρA.

manifold. Note that the action amplitude is invariant under
a global symmetry transformation Eq. (5), and also, due to
property (ii), it is also invariant under any local transformation
of the field configuration g(x) → g′(x) = gg(x) acting only
inside Mext, i.e., not on the boundary, M. On the contrary,
consider a d-dimensional defect D, living in Mext, whose
boundary ∂D is in M and which coincides with the boundary
of A, ∂D = ∂A. This is illustrated in Fig. 2(a) for d = 1, in
which case D is a line defect extending through Mext from
the pair of end points of A. Applying the transformation on
a submanifold of Mext bounded by D and A gives the wave
function

[U (g)ψ][g(x)] =
∫

Mext

Dge− ∫
dd+1xL[g′(x)], (6)

where g′(x) = g−1g(x)|x bounded by D,A. Similarly, we can con-
struct a path integral expression for the symmetry-reduced
density matrix, Fig. 2(b), where symmetry resolution requires
us to use characters as in Eq. (2).

A. Discrete space: Complexes and cocycles

Chen et al. [7] proposed a field theory due to Dijkgraaf
and Witten [31] satisfying Eqs. (3) and (5) and the associated
properties (i) and (ii), written in a discrete d-dimensional tri-
angulated space—a complex. See also Ref. [32] for clarifying
discussions; properties (i) and (ii) are encoded there [32] as
theorems 1 and 2.

Consider a triangulation of the manifold M into elementary
d + 1-dimensional simplexes; see Figs. 1 and 2. Attaching a
“spin” variable gi ∈ G to each vertex, our action amplitude
is a product over all the elementary d + 1-simplexes over the
U (1)-valued function

e− ∫
dd+1xL[g(x)] →

∏
i j...k

ν
si j...k

1+d (gi, g j, . . . , gk ). (7)

The key object here is the group cocycle
ν1+d (g0, g1, . . . , gd+1) being a U (1)-valued function of
d + 2 variables that satisfy (a) the symmetry condition

ν1+d (g0, g1, . . . , gd+1) = ν1+d (gg0, gg1, . . . , ggd+1), (8)

and (b) that a product of cocycles over any closed d + 1
manifold is trivial [30],

∏
i j...k

ν
si j...k

1+d (gi, g j, . . . , gk )|closed manifold = 1. (9)

The latter is called the cocycle condition, equivalent to
Eq. (3). The complex has a branching structure that deter-
mines the values of si j...k = ±1 [7]. Having found a cocycle
in d + 1 dimensions satisfying Eqs. (8) and (9), one can
perform a coboundary transformation, simply by attaching
to each d-dimensional simplex at the boundary of each d +
1-dimensional simplex an arbitrary function μd (g0, . . . , gd )
that satisfies the symmetry condition Eq. (8). This results
in an equivalent cocycle. So coboundary transformations de-
fine equivalence classes of cocycles. The cohomology group
H1+d (G,U (1)) classifies cocycles up to coboundary transfor-
mations. The fundamental conjecture of Chen et al. [7] is that
this classifies SPTs into phases, also yielding an explicit form
for their wave functions [7].

III. ENTANGLEMENT SPECTRUM IN ONE DIMENSION
FROM COHOMOLOGY

The field theory satisfying property (ii) on complexes leads
to triangulation invariance: the action amplitude does not
depend on the internal triangulation of the complex [7]. This
allows us to express universal (and nonuniversal) entangle-
ment measures in terms of a minimal number of cocycles
involving the edge of the n-sheet Riemann surfaces intro-
duced above. Nonuniversal properties are those that depend
on coboundary transformations. To demonstrate these ideas
we now turn to 1D SPTs.

Focusing on systems with PBCs, the reduced density ma-
trix in Fig. 1(c) for a chain with LA sites is equivalent to a
2-ball (a disk),

We use {g} to denote sites in A (2LA sites in total for ρA)
and {h} for the rest. The latter include two sites h, h′ on the
boundary of the manifold originating from subsystem B, as
well as internal vertices.

The nth Rényi entropy in Fig. 1(c) is obtained by identify-
ing the upper edge of the ith disk with the lower edge of the
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i + 1-th disk periodically,

(10)

In the passage to the last complex we used the freedom to
remove internal sites, allowing us to leave only two sites in
region A in each “copy,” and we also chose a specific branch-
ing structure [33]. Using triangulation invariance we see that
it is sufficient to retain two sites in region A (red dots) and
two sites in region B (white dots). The resulting |G|2 × |G|2
effective density matrix is

ρeff
A (g1, g2; g3, g4) = 1

|G|4
∑
h,h′

ν2(g1, g2, h′)
ν2(g1, h, h′)

ν2(g3, h, h′)
ν2(g3, g4, h′)

.

(11)
It trivially satisfies trρeff

A = ∑
g1,g2

ρeff
A (g1, g2; g1, g2) = 1.

The SRE can be obtained from

(12)

A. Evaluation of SRE

Consider the symmetry group G = ZN × ZN stabi-
lizing nontrivial SPTs in one dimension classified by
H1+d [G,U (1)] = ZN [7]. The case N = 2 is topologically
equivalent to the famous Haldane (or AKLT) topolog-
ical phase, including also the 1D cluster state. Label-
ing group elements by a pair of mod-N integers, g =

(n1, n2) (n1, n2 = 0, 1, . . . , N − 1), as well as charge sectors
Q = (q1, q2) (q1, q2 = 0, 1, . . . , N − 1), the characters are
χQ(g) = e

2π i
N (n1q1+n2q2 ). Nontrivial cocycles representing the

mth phase (m = 0, 1, . . . , N − 1) are [34]

ν2(g1, g2, g3) = e
2π im

N [(n2
2−n2

1 )(n1
3−n1

2 )], (13)

where gi = (n1
i , n2

i ).
We can see that m = 0 is always the trivial phase, with a

product state wave function |�〉m=0 = ⊗i
1√|G|

∑
g |g〉. The en-

tanglement spectrum consists then of a single unit eigenvalue
in the trivial Q = (0, 0) charge sector. m 	= 0 correspond to
topologically nontrivial SPTs. For Z2 × Z2 the wave func-
tion is equivalent to that of the cluster state [24], and the
eigenvalues of the effective density matrix (11) are {λi}ideal =
{1/4, 1/4, 1/4, 1/4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}. Symme-
try resolving those using Eqs. (12) and (2), we find that
indeed the eigenvalues are equidecomposed between the four
symmetry sectors. We note that these ground states exactly
correspond to cluster states including higher symmetry gener-
alizations [35–37]; see Appendix A for the case of the cluster
state.

The cohomology theory of SPTs allows one to explore
phases obtained by equivalence classes of the cocycles. We
consider cocycles given by Eq. (13) with an extra random
coboundary,

ν2(g1, g2, g3) → ν2(g1, g2, g3)
ν1(g1, g2)ν1(g2, g3)

ν1(g1, g3)
, (14)

where ν1(g1, g2) = eiθ (g2g−1
1 ) and θ (g) is an arbitrary g-

dependent angle. Those consist of |G| random variables used
to explore each SPT phase. In Fig. 3(a) we plot the SRE
spectrum, obtained by diagonalizing the symmetry-resolved
density matrix obtained from Eqs. (12) and (2), for a specific
random coboundary, see Appendix C for details. We can see
an equidecomposition of the ES into |G| symmetry sectors.
This generalizes the case of the pure cocycle (13) with spec-
trum {λi}ideal showing that the content of the ES in each sector
is nonuniversal. However, the degeneracy always persists in
the topological sector. This implies a minimal value of the
entanglement entropy: Since there are at least |G| eigenvalues
� 1/|G|, the entropy of nontrivial SPTs has a lower bound at

Snontrivial SPT � log |G|, (equidecomposition) (15)

as illustrated by the dashed lines in the histogram plots in
Fig. 3(b). On the other hand, trivial SPTs can be arbitrarily
close to product states (although statistically they are typi-
cally not) and have no topologically protected entanglement
minimum.

IV. PROOF OF EQUIDECOMPOSITION

As our numerical results exemplify, the SRE spectrum and
the entanglement entropy are not universal quantities of SPT
phases, i.e., these quantities vary within phases. However, the
equidecomposition is a universal property of nontrivial SPTs.
In this section we prove this analytically for finite Abelian
groups.

Consider the quantity

Zn(g) ≡ TrUA(g)
(
ρeff

A

)n
. (16)

235157-4



SYMMETRY-RESOLVED ENTANGLEMENT IN … PHYSICAL REVIEW B 102, 235157 (2020)

FIG. 3. (a) Entanglement spectrum for fixed point wave functions given in terms of Eq. (13) for symmetry group G = ZN × ZN with
random coboundaries. The topological sectors [m 	= 0 in Eq. (13)] display degeneracies between the sectors with conserved charge Q =
(q1, q2) marked in the x axis. (b) entanglement entropy distribution over a family of wave functions related by coboundary transformations
confirming the entanglement minimum in topological phases (15).

It has the graphical representation of a partition function on
an n-sheet Riemann surface as in Fig. 1(d), with an additional
defect line. We will show that

Zn(g) = 0 for g 	= e (17)

holds in nontrivial SPTs, independent of coboundary trans-
formations. Here e ∈ G is the identity element. Namely, the
topological path integral vanishes in the topological phase
when inserting a nontrivial defect line. Combined with Eq. (2),
we have

sn(Q) = 1

|G|
∑
g∈G

χQ(g)Zn(g) = 1

|G|χQ(e)Zn(e) = 1

|G| sn,

(18)

which is independent of Q, so that equidecomposition fol-
lows. In the rest of this section we turn to a proof of Eq. (17).

First we will prove it algebraically for n = 1. Then we
will provide a geometric interpretation to this proof in terms
of topological path integrals and using their triangulation in-
variance properties, allowing us to generalize the proof for
any n.

A. n = 1: Symmetry-resolved probabilities

We begin with the effective density matrix of the sector
g, [UA(g)ρeff

A ](g1, g2; g3, g4) given in Eq. (12). We consider
Zg ≡ Tr[UA(g)ρeff

A ]. The trace is given by (after applying a
coboundary ν1)

Zg = 1

|G|4
∑

g1,g2,h,h′

ν2(gg1, gg2, h′)
ν2(gg1, h, h′)

ν2(g1, h, h′)
ν2(g1, g2, h′)

ν1(gg2, h′)ν1(g1, h)

ν1(g2, h′)ν1(gg1, h)
. (19)

We write the 3-variable ν2’s in terms of 2-variable ω’s, ν2(g1, g2, g3) = ω2(g−1
1 g2, g−1

2 g3), so that ν automatically satisfies Eq. (8)
[7]. This yields [we denote ω1(g) = β(g)]

Zg = 1

|G|4
∑

g1,g2,h,h′

ω2[(gg1)−1gg2, (gg2)−1h′]
ω2[(gg1)−1h, h−1h′]

ω2
(
g−1

1 h, h−1h′)
ω2

(
g−1

1 g2, g−1
2 h′) β[(gg2)−1h′]β

(
g−1

1 h
)

β
(
g−1

2 h′)β[(gg1)−1h]
.

Recalling that the group is Abelian, let us define s1 = g−1g−1
1 h, s2 = g−1g−1

2 h′, and s3 = g−1
1 g2. These variables live on the links

of the complex; see Fig. 4(a). Since the ν cocycles satisfy the symmetry condition, after the change of variables the “center of
mass” sum simply yields a factor |G|, ∑

g1,g2,h,h′ = |G| ∑s1,s2,s3
, and we obtain

Zg = 1

|G|3
∑

s1,s2,s3

ω2(s3, s2)

ω2(s3, gs2)

ω2
(
gs1, s2s−1

1 s3
)

ω2
(
s1, s2s−1

1 s3
) β(s2)β(gs1)

β(s1)β(gs2)
.

One can see in Fig. 4(a) that indeed the arguments of the coboundaries β appear on the boundary of the complex. Separating
s1, s2, s3 is done by using the cocycle conditions

ω2(s3, s2)

ω2(s3, s2g)
= ω2(s2, g)

ω2(s3s2, g)
,

ω2
[
gs1,

(
s2s−1

1 s3
)]

ω2
[
s1,

(
s2s−1

1 s3
)] = ω2

[
g, s1

(
s2s−1

1 s3
)]

ω2(g, s1)
= ω2(g, s2s3)

ω2(g, s1)
, (20)

and then changing the sum variables defining s′
3 = s3s2 → s3 obtaining

Zg = 1

|G|3
[∑

s1

β(s1g)

ω2(g, s1)β1(s1)

][∑
s2

ω2(s2, g)β(s2)

β(s2g)

][∑
s3

ω2(g, s3)

ω2(s3, g)

]
. (21)
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FIG. 4. Graphical representation of the calculation of the symmetry-resolved first Rényi entropy [UA(g)ρeff
A ](g1, g2; g3, g4) in Sec. IV A.

This is the required form. We managed to separate the sum
of products into three products of sums. Only the sum over s3

is coboundary-independent, and so in general only when this
sum vanishes for g 	= e will we have equidecomposition. We
demonstrate that∑

s3

ω2(g, s3)

ω2(s3, g)
= 0, (g 	= e) (22)

in Appendix B using group theory methods. We note that
this does not follow from cocycle conditions, but rather, by
properties of Abelian cocycles. Essentially, this sum has the
structure of a geometric series of phases and hence is finite
only in the trivial cocycle.

B. Graphical generalization

The steps involved in the algebraic calculation of the
preceding subsection can be graphically represented as in
Figs. 4(a)–4(d). The crucial step is the use of the cocycle
condition Eq. (20), represented by the transition Fig. 4(b) →
4(c). We see that through this algebraically allowed step, we
have connected a vertex to itself, via the g-link. In Fig. 4(d)
we observe that the summations over products of cocycles
factorizes, as in Eq. (21).

Now consider TrUA(g)(ρeff
A )n. As in Eq. (10) it is written

in terms of the sum 1
|G|4n

∑
g,h of a large complex. According

to the main Dijkgraaf-Witten theorem (theorem 2 in Ref. [32])

this depends only on the triangulation and the values of {gi, hi}
on the boundary. In Fig. 5(a) we start from a different tri-
angulation than in Eq. (10) that connects sites far apart in
replica space (n), This is convenient since it allows us to
repeat the same calculation we did for n = 1. Following the
same steps, shown in Figs. 5(a)–5(d) for general n we obtain
a similar factorization of the complex, where one of the fac-
tors is coboundary-independent as well as n-independent and
vanishes for the topological-nontrivial cocycles,

TrUA(g)
(
ρeff

A

)n ∝
∑

s3

ω2(g, s3)

ω2(s3, g)
= 0, g 	= e. (23)

This, together with the demonstration of Eq. (22) given in
Appendix B, completes our proof. In the next section we work
out more examples.

V. ENTANGLEMENT EQUIDECOMPOSITION IN FINITE
ABELIAN GROUPS

We defined the resolution of the entanglement spectrum
into symmetry sectors {λi}Q and found equidecomposition for
certain examples. Here we provide a general condition for
equidecomposition in finite Abelian groups using a general
form of the cocycles [38]. For a finite Abelian group G, there
is always a decomposition such that G = Ze1 × Ze2 × · · · ×
Zek , where ei divides ei+1. Group elements are {g1, . . . , gk}
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Cocycle Condition

3

FIG. 5. Generalization of Fig. 4 for arbitrary n.

where gi ∈ Zei . It is possible to enumerate all the cocycles,
and hence all the SPTs, using a set of integers pi j , (1 � i, j �
k) where 0 � pi< j < gcd (ei, ek ) and pi� j = 0. We find that if
for all group elements g 	= e, there exists r (1 � r � k) such
that

k∑
i=1

(pri − pir )gi

min(ei, er )
/∈ Z, (24)

then there is equidecomposition. In Appendix B we show that
this condition guarantees Eq. (22). As we proved in Sec. IV B,
Eq. (22) Â guarantees equidecomposition of the symmetry-
resolved n-Rényi entropy for any n. This implies a degeneracy
in the entanglement spectrum. Furthermore, in Appendix D
we show that this condition is equivalent to the concept of
maximally noncommutative (MNC) cocycles, establishing a
connection between equidecomposition in the entanglement
spectrum and these MNC phases that are known to allow
measurement-based quantum computation [2,3,21].

As will be discussed in the examples below, for some
groups condition (24) holds for almost but not for all g 	= e,
and then we find that most, but not all, of the symmetry sectors
are degenerate.

1. ZN × ZN

Let us focus on the group ZN × ZN . The aforementioned
decomposition of this group is given by e1 = e2 = N with k =
2. Denoting m = p12, condition (24) then reads: For all g 	= e,
mg1

N /∈ Z or mg2

N /∈ Z.

For the trivial phase m = 0, the condition never holds as
0 ∈ Z, and so equidecomposition does not occur. On the con-
trary, for nontrivial phase p12 	= 0, for g 	= e either g1 or g2

is nonzero. Therefore, for this component gi we have that N
does not divide mgi for all gi in the case of equidecomposition.
This is possible if and only if gcd(m, N ) = 1. Specifically, for
prime N equidecomposition always occurs.

Using numerical simulations we now check our condition
and also test further implications. Specifically we test cases
with special symmetry groups where Eq. (24) holds for almost
but not all group elements, leading to a degeneracy between a
subset of symmetry sectors. We compute {Zg} for all g ∈ G,
as defined in Eq. (19) using the ZN × ZN cocycles, with
random coboundaries, and then use the ZN × ZN characters
in order to obtain the symmetry-resolved probabilities {ZQ}
using Eq. (2); for further details see Appendix C. In Table I we
plot the different sectors’ “partitions,” i.e., the number of dif-
ferent values among the N2 probabilities {ZQ}. We made sure
that nonuniversal degeneracies are removed using random
coboundaries. We indeed see that for prime N and for non-
trivial phases there is always full equidecomposition, i.e., one
partition. Moreover, when m, indexing the topological sector,
divides N , we see that although equidecomposition does not
occur, we have various sectors with degenerate eigenvalues,
and so we see “almost” equidecomposition. These patterns, as
well the complicated ones, are well understood by employing
condition (24).

While both full equidecomposition for N prime or par-
tial degeneracy occurring when m divides N , are signatures
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TABLE I. Numerical results for the sectors’ partition (see text
for definition) of the group ZN × ZN . The index m labels topologi-
cal phases. Partitions are the number of different sectors. Signature
shows the different sectors (there are N2 sectors) partitioned by their
equality [e.g., (1,1,1,1) means that all the sectors are different while
(4) means they are all equal and (2,2) means that there are two pairs
of two equal sectors].

N m Partitions Signature

2 0 4 (1,1,1,1)
2 1 1 (4)
3 0 5 (2,2,2,2,1)
3 1 1 (9)
3 2 1 (9)
4 0 10 (2,2,2,2,2,2,1,1,1,1)
4 1 1 (16)
4 2 4 (4,4,4,4)
4 3 1 (16)
5 0 13 (2,2,...,2,2,1)
5 1 1 (25)
5 2 1 (25)
5 3 1 (25)
5 4 1 (25)
6 0 20 (2,2,...,2,2,1,1,1,1)
6 1 1 (36)
6 2 4 (9,9,9,9)
6 3 5 (8,8,8,8,4)
6 4 4 (9,9,9,9)
6 5 1 (36)

of topological nontrivial phases, Table I also displays de-
generacies in the trivial phases for N > 2 in the form of
(2, 2, . . . , 2, 1, 1, . . . , 1). Generally, and including in the triv-
ial phase, there is a degeneracy in the entanglement spectrum
between charge sectors Q and Q−1. This fact can be also
seen in Fig. 3(a) for G = Z3 × Z3 specifically in the trivial
phase. This follows from the relation Zg = (Zg−1 )∗, which can
be proven by gluing together two disks of Fig. 2(a) with
opposite orientations, obtaining a closed surface (S2) with a
closed defect. From here, it is clear that the symmetry sectors
will have a (2, 2, . . . , 2, 1, 1, . . . , 1) pattern as the characters
for ZN × ZN obey similar relations [χq(g) = χq(g−1)∗]. The
double degeneracies (twos) come from group elements g such
that g 	= g−1, and the (ones) come from elements g = g−1.

2. Zn
2

In the case of G = Zn
2, we have Z

n(n−1)
2

2 phases (from the
cohomology group) [32]. The phases can be represented by
strictly upper triangular n × n matrix A with entries in Z2.
For the usual cocycles with no coboundary, we can calculate
the sectors from the common kernel of A, AT . This common
kernel is hard to calculate generally but unveils the degeneracy
patterns when using general principles in group theory.

Let us use the general formula (24) to calculate the cases in
which equidecomposition occurs. The condition reads: For all
g 	= e there exists r such that

∑
i(Ari − Air )gi = 1, or equiva-

lently, A |g〉 	= AT |g〉 when using addition and multiplication
in Z2, where |g〉 is a vector with n components in Z2 repre-
senting an element in G.

For the trivial phase A = 0, it is clear that equidecompo-
sition never occurs as A = AT . For the nontrivial phases in
the case that k is even, specifically, where A is a matrix with
ones on the antidiagonal (ai, j with i + j = n + 1) above the
main diagonal, we have that indeed this condition for equide-
composition holds as one can check (A − AT is invertible, as
the determinant is trivially nonzero, and hence the only vector
obeying A − AT |v〉 = 0 is the zero vector, which is e). For n
odd that is not the case, as B = A − AT is a skew-symmetric
matrix obeying B = −BT , which implies that the determinant
vanishes for odd-sized matrices, and there is no equidecom-
position for any phase.

VI. PROSPECT FOR HIGHER DIMENSIONAL
GENERALIZATIONS

SPT phases in spatial dimensions d > 1 are much less un-
derstood compared to their one-dimensional counterparts. In
two dimensions it is believed that the cohomological picture
still provides a complete classification. The fate of the edge
states is more involved: For a model with on-site discrete
symmetry Chen et al. [39] and Levin and Gu [40] showed
that the 1D system on the boundary must be gapless if the
symmetry is not broken. Also long-range entangled gapless
states may show nontrivial boundary states protected by sym-
metry [41]. A useful direction to higher dimensions relies on
observing the structure of domain walls [42], which can carry
topological order of lower dimension. While cohomology the-
ory is complete in one dimension, in which it is equivalent
to the classification of projective representations of the sym-
metry, and agrees with other classification approaches in two
dimensions [43], beyond-cohomology approaches have been
proposed in higher dimensions implying that the cohomol-
ogy classification is incomplete in general. The entanglement
spectrum of the Levin and Gu model in two dimensions was
studied [44] revealing unique signatures of the topological
phase. The gapless edge states result in a more involved and
gapless entanglement spectrum, which nevertheless admits a
symmetry decomposition. A more general study of entangle-
ment and specifically SRE of higher dimensional SPTs can
shed light on these phases of matter.

In this section we outline how our geometric approach
can be used to compute the SRE of higher dimensional wave
functions constructed using cohomology. Consider a general-
ization of Fig. 1 to a two-dimensional (2D) phase. In this case,
the wave function of a d = 2 SPT on a 2-sphere M = S2 is
obtained as the action amplitude (4) on the extended manifold
Mext being a 3-ball, M = ∂Mext. A minimal triangulation of
this three-dimensional (3D) object using tetrahedras involves
a 2D triangulation of the surface S2 and a single point inside
Mext. In Fig. 6(a) we display a triangulated SPT on S2 which
is bipartitioned into two half-spheres yielding a 1D boundary
carrying the entanglement between A and B. We now construct
the reduced density matrix ρA = TrB|�〉〈�|. We glue together
two such spheres with opposite orientations (corresponding to
|�〉 and 〈�|). As can be seen in Fig. 6(c), the resulting object
has a pair of boundaries on the left and right corresponding to
|�A〉 and 〈�A|, as well as a 1D boundary denoted hi which is a
reminiscent of B. While in the 1D case discussed throughout
the paper we had only a pair of points h, h′, now we have
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= Ψ 〈Ψ|Identify BΨ

Ψ 〈Ψ|
ℎ1

ℎ2

ℎ3

FIG. 6. (a) A 2D SPT wave function on a triangulated 2-sphere, which is partitioned into regions A and B. The wave function is obtained
from the action amplitude in Eq. (4) on the extended manifold Mext corresponding to the 3-ball. Gluing the B regions together of two such
spheres of opposite orientation (b) yields the reduced density matrix ρA (c). ρA contains L boundary points (hi ) (i = 1, . . . , L) which cannot
be removed by triangulation. (d) The nth Rényi entropy of a 2D SPT state corresponds to a solid torus having L × 2n points ((hi )k ) (i =
1, . . . , L, k = 1, . . . , n) from B and corresponding points from A on its boundary (not shown).

L such points where L is the length of the entanglement cut.
Now the nth Rényi entropy is obtained by periodically gluing
n such objects, Fig. 6(d). The resulting manifold has L × 2n
points [(hi )k=1,...,n from B, and similarly for A] that cannot
be removed by retriangulation. As a result, the computation
of sn = Tr[ρn

A] for the cohomological wave function involves
a sum of order of L × n terms, each of which consists of a
product of an order of L × n 3-cocycles. The SRE can be
computed by an insertion of a 2-membrane defect into the
interior of the object in Fig. 6(d). The boundary of this defect
coincides with the boundary of A, ∂D = ∂A, which on the
triangulated space consists of a circle separating the points
originating from one side of A from those of B at an arbitrary
k.

Probing the gapless entanglement spectrum requires one
to capture the thermodynamic limit L → ∞. This can be
achieved using a transfer matrix approach, where the Rényi
entropy takes the form sn ∼ Tr[AL] [45]. The size of the
transfer matrix is ∼|G|2n. As an example, one can compute
the first few Rényi entropies for the Levin-Gu model [45].

VII. CONCLUSIONS

We employed the Dijkgraaf-Witten [31] discrete gauge
theories and the associated cohomological classification of
symmetry-protected topological order in order to describe
the entanglement structure of SPTs. These gauge theories
are based on terms which are topological invariants of
closed manifolds. We showed in general dimensions that
entanglement measures are represented by generalized n-
sheet Riemann surfaces which have a boundary; as a result
entanglement itself is not a topological invariant. How-
ever, one expects to find topologically invariant features in
the entanglement of SPTs. For this purpose we employed
symmetry-resolved entanglement. Focusing on one dimen-
sion, we found generally that in topological phases, the
reduced density matrix decomposes into identical blocks. The
probabilities to be in various symmetry sectors are then identi-

cal. Our equidecomposition of the reduced density matrix into
identical blocks is directly connected to the known degenera-
cies in the entanglement spectrum.

We provided a proof of the absolute entanglement equide-
composition using the underlying cohomological description
for general SPTs stabilized by Abelian finite symmetry
groups. This leads to a minimum entanglement of a given
phase. Also, some symmetry groups contain phases in
which equidecomposition is replaced by a partial degeneracy
between symmetry sectors, like G = ZN × ZN with N non-
prime. Yet we did not find a formulation of these degeneracies
in terms of a Dijkgraaf-Witten path integral over a closed man-
ifold. Rather, it appears to be a special property of cocycles of
Abelian groups which we considered.

In one dimension, similar results can be obtained some-
what more easily from matrix product state (MPS) consid-
erations [4,21]. Our approach, however, offers some hope of
generalization to higher dimensions. On the other hand, MPS
arguments seem at first sight to be more general since any
gapped ground state in one dimension can be accurately rep-
resented by an MPS with some finite bond dimension, so that
the entanglement spectrum mirrors a real edge spectrum with
edge modes giving rise to degeneracies [4,21]. In contrast,
our results apply for the wave functions constructed by Chen
et al. [46] describing fixed point states with zero correlation
length, and thus to parent Hamiltonians of a particular form.
Nevertheless, the simplicity of these states together with the
mathematical toolbox of cohomology can then open the way
to explore using our methods the entanglement structure of
other systems including higher dimensional generalizations
[39–42,44], which is left for future work.
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APPENDIX A: GEOMETRICAL INTERPRETATION
OF GROUP COHOMOLOGY

In this Appendix we review the definitions of Ref. [7] for
group cocycles, their graphical representation on simplexes
and complexes, and their use application to write ideal SPT
wave functions. We also define partition functions with de-
fects used to compute symmetry-resolved entanglement. In
Appendix B we use known forms of cocycles of general finite
Abelian groups to prove Eqs. (22) and (24) which guaran-
tee equidecomposition of entanglement. In Appendix C we
provide details on our numerical simulations. In Appendix
D we prove a general relation between the degeneracies in
the entanglement spectrum and the noncommutativity of the
cocycles; specifically, we show that equidecomposition and
maximally noncommutative cocycles are equivalent.

1. Cochains, cocycles, coboundaries, and the cohomology group

A d-cochain of a group G is an arbitrary complex func-
tion μd (g0, g1, . . . , gd ) of d + 1 G-valued variables satisfying
|μd (g0, g1, . . . , gd )| = 1 and

μd (g0, g1, . . . , gd ) = μd (gg0, gg1, . . . , ggd ), g ∈ G. (A1)

A d-cocycle is a special d-cochain that satisfies∏
i ν

(−1)i

d (g0, . . . gi−1, gi+1, . . . , gd ) = 1. As specific
examples see Eqs. (A4) or (A5) below.

A d-coboundary λd is a special d-cocycle con-
structed from (d − 1)-cochains μd−1, λd (g0, . . . , gd ) =∏d

i=0 μ
(−1)i

d−1 (g0, . . . , gi−1, gi+1, . . . , gd ). As specific examples
see Eqs. (A6) or (A7) below.

Two cocycles are equivalent if they differ by a cobound-
ary. Equivalence classes of cocycles are given by the
d-cohomology group Hd [G,U (1)] of the group G.

2. Example: d = 1, G = ZN × ZN

The d-cochain μd (g0, g1, . . . , g f ) = 1 for all g′s is a trivial
cocycle. As a specific but central example for nontrivial cocy-
cles, consider the symmetry group G = ZN × ZN for which
H2[G,U (1)] = ZN . Thus there are N equivalence classes.
The mth cocycle is

ν2(g1, g2, g3) = e
2π im

N

[(
n2

2−n2
1

)(
n1

3−n1
2

)]
, (A2)

where n j
i = 0, 1, . . . , N − 1 is the jth component of gi.

a. Relation to cluster states for G = Z2 × Z2

The states with m = 0 and m = 1 exactly map to the
ground states of the Hamiltonians

Hm=0 = −
∑

i

Xi,

Hm=1 = −
∑

i

Zi−1XiZi+1, (A3)

where Xi, Zi are Pauli matrices acting on site i. To see the rela-
tion to the basis used in the cohomology description one pairs
up neighboring sites (2i, 2i + 1) and works in the Z basis and
defines for this effective site gi = {n1

i , n2
i } = { 1−Z2i

2 ,
1−Z2i+1

2 }
[2]. For example, the ground state of Hm=0 is the product state
⊗i(|+〉2i|+〉2i+1), which the same as 1√|G|

∑
g |g〉, consistent

with Eq. (A3) for m = 0.

3. Graphical representation

The above definitions admit a useful graphical representa-
tion. For d = 1, ν1(g1, g2) is a 1-cocycle if

ν1(g1, g2)ν1(g0, g1)
ν1(g0, g2)

= 1 = , (A4)

for any g0, g1, g2 ∈ G. The diagram represents a 1D complex,
composed of three 1D simplexes (lines), each of which cor-
responds to a 1-cochain; for example, the line from g0 to g1

represents the 1-cochain ν1(g0, g1). The brunching structure
is such that we label vertices by numbers and draw arrows
on links along increasing direction. The graphical representa-
tion of the cocycle condition follows from the fact that this
1D complex is the edge of a 2D complex, i.e., the triangle
(g0, g1, g2), hence it is closed. Equation (A4) then states that
the (oriented) product of 1-cocycles along a closed 1D mani-
fold is always trivial.

Similarly in d = 2, a 2-cocycle ν2(g1, g2, g3) satisfies

ν2(g1, g2, g3)ν2(g0, g1, g3)
ν2(g0, g2, g3)ν2(g0, g1, g2)

= 1 = .

(A5)
The surface of the 3D tetrahedron (g0, g1, g2, g3) is a closed
2D manifold, and Eq. (A5) sates that the oriented product of
2-cocycles on a closed 2D manifold is trivial. In general, the
(oriented) product of d-cocycles on a closed d-dimensional
manifold is trivial.

For d = 1, 1-coboundaries are λ1(g0, g1) =
μ0(g1)/μ0(g0). A 2-coboundary is

λ2(g0, g1, g2) = μ1(g1, g2)μ1(g0, g1)/μ1(g0, g2). (A6)

The triangle (g0, g1, g2) in Eq. (A4) can be viewed as a
2D membrane associated with a 2-cochain ν2(g0, g1, g2).
When this 2-cochain is constructed from the 1-chains on
the lines on its boundary, then it is a coboundary. If these
1-chains are cocycles, then Eq. (A4) states that this cobound-
ary is trivial, namely, the coboundary of a cocycle is trivial,
(d1ν1)(g0, g1, g2) = 1. A 3-cobondary is

λ3(g0, g1, g2, g3) = (d2μ2)(g0, g1, g2, g3)

= μ2(g1, g2, g3)μ2(g0, g1, g3)

μ2(g0, g2, g3)μ2(g0, g1, g2)
. (A7)

Graphically, the 3D body of the tetrahedron (g0, g1, g2, g3)
in Eq. (A5) can be associated with a 3-cochain. When
constructed from 2-cochains on its four faces, we
obtain a coboundary. Equation (A10) says that the
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3-coboundary is trivial if it is constructed out of 2-cocycles,
(d2ν2)(g0, g1, g2, g3) = 1.

4. Partition functions and ideal SPT wave function

Let us consider a d + 1-dimensional complex Mext, con-
taining Nv sites, as a statistical mechanical model. At each site
we have a g-valued “spin.” Using d + 1-cocycles we write a
“partition function”

Z = |G|−Nv

∑
{gi}

e−S({gi}), e−S({gi})

=
∏
ik...l

ν
si j...k

1+d (gi, g j, . . . , gk ). (A8)

Here si j...k = ±1 depends on the orientation of the simplex
[7]. Due to the cocycle condition this partition function is

trivial (=1) if Mext is a closed d + 1 dimensional manifold.
Otherwise, it yields a nontrivial theory on the d-dimensional
edge of Mext, denoted ∂Mext. The ideal SPT wave function is

�({gi}∂Mext ) = N
∑

gi∈Mext\∂Mext

∏
ik...l

ν
si j...k

1+d (gi, g j, . . . , gk )|{gi}〉.

(A9)
Here one sums over the Nint

v internal vertices, in Mext not
including the boundary ∂Mext where the SPT lives. The nor-
malization factor is N = |G|−Nint

v −Nedge/2. We emphasize that
this wave function does not depend on the triangulation and
internal structure of Mext. (In fact, it even does not depend on
the values of the internal g′s). For a 1D SPT with Next = N
sites, taking the simplest triangulation of Mext such that it
contain one internal vertex g∗, the SPT wave function can be
written as

Ψ({gi}) = N
∏N−1

i=1 ν2(gi, gi+1, g
∗)

ν2(g1, gN , g∗)
|{gi}〉 =

∗

.. (A10)

The symmetry has an onsite decomposition U (g) =∏
i∈∂Mext

ui(g), with on-site action u(g)|gi〉 = |ggi〉. One
can change variables and replace the sum over g∗ by gg∗,
and using the cochain condition (A1) one can check that
U (g)|�〉 = |�〉.

5. Partition functions with defects

Let D be a d-dimensional defect in the d + 1-dimensional
manifold Mext. The defect has a specific orientation, such
that it gives a direction to any 1D trajectory crossing it. This
line goes from the “inside” to the “outside” of the defect. It
acts on the state by applying a symmetry transformation g on
sites on one side of the defect. For the identity element g = e
the defect is trivial. We define the partition function or wave
function in the presence of a defect Z (g) exactly as in Eq. (A8)
except that d + 1-cocycles corresponding to d + 1 simplexes
that are cut by the defect are modified to ν1+d (g′

i ) where in
the inside g′

i = gi while in the outside g′
i = ggi. For example,

for a 2-cocycle corresponding to a triangle being cut by a line
defect we denote

ν2(g0, gg1, gg2) = (A11)

or for a 3-cocycle corresponding to a tetrahedron being cut by
a membrane defect,

ν3(g0, g1, gg2, g3) = (A12)

A closed defect ∂D = 0 is trivial. It transforms sites in-
ternal to the manifold by multiplication by g. It has no effect
since the action amplitude does not depend on the internal g′s.

APPENDIX B: EQUIDECOMPOSITION FORMULA FOR
FINITE ABELIAN GROUPS

Let us write a general finite Abelian group G using the
group decomposition G = Ze1 × · · · × Zel , where ei divides
ei+1. As shown in Ref. [38], the cohomology group has size
|H2[G,U (1)]| = ∏

i< j di j , where di j = gcd (ei, e j ). The cocy-
cles are [47]

ω(a, b) = exp

(
2π i

∑
i< j

pi jaib j

di j

)
,

where pi j enumerates the
∏

i< j di j different cocycles (it is
easy to see that apart from the trivial cocycles all the other
are nontrivial and form a group, and the cocycles conditions
can also be verified) and for convenience we set pi� j = 0.

Using the cocycles, we show that f (g) =∑
s ω(s, g)ω∗(g, s) = 0 for g 	= e. This is Eq. (22), the

expression that implies equidecomposition. Substituting the
cocycles and writing the sum in an easily calculable form

f (g) =
∏

k

∑
sk∈Zek

[
exp

(
2π i

∑
i

pkigi − pikgi

dik

)]sk

=
∏

k

g(k)ek − 1

g(k) − 1
,

where g(k) = exp (2π i
∑

i
pkigi−pikgi

dik
). If g(k) 	= 1, it is clear

that f (g) = 0 [as ek
dik

∈ Z implies g(k)ek = 1]. In the other
case, it is clear that the sum does not vanish (and is given by
ek). The only case that f (g) = 0 is that if g(k) 	= 1 for some k.
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Alternatively, there exists a k such that
∑

i
(pki−pik )gi

dik
/∈ Z. For

example, if all ei = N , then N does not divide
∑

i(pki − pik )gi

for some k is the condition for coboundary invariant Zg = 0.

APPENDIX C: NUMERICAL SIMULATIONS

Here we explain the numerical simulations we have per-
formed in this paper. We describe the numerical procedures
used to obtain Table. I and Fig. 3.

The procedure to obtain Table I is by direct calculations.
As we have seen in the text it is possible to write the first
Rényi entropy using the cocycles. For each topological phase,
we calculate each Zg using Eq. (21), and then using Eq. (2)
we obtain the degeneracies of the first moment. We check
numerically that these degeneracies are universal by redoing
the calculation for several random coboundaries.

Plotting Fig. 3 was done by numerically calculating the
different types of the effective density matrix. Using Eq. (12),
we calculate the effective density matrix with defect g, and by
applying Eq. (2) we obtain the effective density matrix for the
sector g. By diagonalizing this effective density matrix, we get
the eigenvalues and are able to plot Fig. 3(a). For example, the
random coboundaries used are

[0.4114968519411542 − 0.9114111809949008i,

−0.39896211626442607 − 0.9169674093367826i,

0.5136056414112213 − 0.8580263662094353i,

0.7505921670806218 − 0.6607657669077718i]

for Z2 × Z2, where β(g1, g2) is the line number 1 + g2 N +
g1 with N = 2. For Fig. 3(b), we need only Eq. (11) as we sum
all the sectors’ entanglement. We calculate the entanglement
by diagonalizing the effective density matrix, obtaining the
eigenvalues, and calculating the entanglement entropy. We do
so for many samples, 6100 for Z2 × Z2 and 2000 for Z3 ×
Z3, each with different random coboundary β(gi ) = e(2π iXi ),
where Xi is a random variable drawn from a truncated normal
distribution (between 0 and 1) with zero average and 0.2
standard deviation. Plotting all the samples for the different
symmetry groups, we obtain Fig. 3(b).

APPENDIX D: EQUIDECOMPOSITION AND MAXIMALLY
NONCOMMUTATIVE COCYCLES EQUIVALENCE

Let us now calculate the size of the group of g’s such
that Zg 	= 0, which we notate by GZ . GZ is composed of
�g’s that satisfy B�g = 0 (mod el ) where Bi j = el

gcd (ei,e j )
(pi j −

p ji ) is a l × l skew-symmetric matrix. The origin of B is
from the negation of Eq. (24), and we multiplied by el to
have integer coefficients as it will turn out to be very use-
ful. First, we prove that an r × r invertible integer matrix
S with integer matrix inverse induces isomorphism between
Zr

m to itself by the natural transformation �h = S�g (mod m).
Let �g1 	= �g2 be different vectors with entries in Zm, then
�d ≡ S( �g1 − �g2) 	= 0 (mod m) as S is invertible, and clearly
if �d is a multiplication of m we have immediately by using
S inverse (which is integer matrix by definition) that �g1 − �g2

is also a multiplication of m and therefore 0, contradict-
ing the fact that these are different vectors; therefore, this
map is an isomorphism. We continue by using the useful
decomposition (over Z), known as Smith normal form, that
allows us to decompose B = T DS with matrices over Z and
T, S are invertible with integer matrix inverse, while D is
diagonal with entries Dii = λi, which are known as invari-
ant factors, that satisfy λi divides λi+1 with possible trailing
zeros at the end. We extend gi to be from Zel by noting
that adding ei will not change that B�g = 0 (mod el ), but we
need to compensate the counting with division by el

ei
as in

Ref. [47]. As a result, using our aforementioned isomorphism
and counting, we calculate |GZ | = 1

el
e1

...
el

el−1

#{�g ∈ Zl
el
|D�g =

0 (mod el )} = 1
el
e1

...
el

el−1

∏
i,λi 	=0 gcd(λi, el )el−t

l where t is the

number of nonzero invariant factors of D, and the gcd comes
from the well-known number of solutions to the linear congru-
ence ax = 0 (mod m) which is gcd(a, m). Combining these
results with Ref. [47], we establish a useful relation |G0| =
|GZ | (|G0| as defined in Ref. [47], see pp. 24–25), and we con-
clude that equidecomposition, which occurs when |GZ | = 1,
is equivalent to maximally noncommutative cocycles, which
occurs when |G0| = 1.
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