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Dynamical transition for a class of integrable models coupled to a bath
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We study the dynamics of correlation functions of a class of d-dimensional integrable models coupled linearly
to a fermionic or bosonic bath in the presence of a periodic drive with a square pulse protocol. It is well known
that in the absence of the bath, these models exhibit a dynamical phase transition; all correlators decay to their
steady-state values as n−(d+2)/2

0 [n−d/2
0 ] above [below] a critical frequency ωc, where n0 is the number of drive

cycles. We find that the presence of a linearly coupled fermionic bath which maintains integrability of the system
preserves this transition and leads to additional ones that have no analogs in closed quantum systems. We provide
a semianalytic expression for the evolution operator for this system and use it to provide a phase diagram showing
the different dynamical regimes as a function of the system-bath coupling strength and the bath parameters. In
contrast, when such models are coupled to a bosonic bath which breaks integrability of the model, we find
exponential decay of the correlators to their steady state. Our numerical analysis shows that this exponential
decay sets in above a critical number of drive cycles nc which depends on the system-bath coupling strength
and the amplitude of perturbation. Below nc, the system retains the power-law behavior identical to that for the
closed integrable models and the dynamical transition survives. We discuss the applicability of our results for
interacting fermion systems and discuss experiments which can test our theory.
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I. INTRODUCTION

The physics of driven quantum systems has been actively
studied in recent years [1]. Out of these, periodically driven
systems host several phenomena that do not have any analog
in their aperiodic driven counterparts [2]. For example, pe-
riodic drives may lead to generation of quantum states with
nontrivial topology even when the corresponding ground state
of the system is topologically trivial [3]. In addition, such
driven systems may lead to novel steady states which are
otherwise inaccessible [4]. Moreover, driven quantum systems
can lead to stable phases of quantum matter which have no
counterparts in the absence of a drive; such phases may be
classified based on their symmetries [5]. These systems also
exhibit the phenomenon of dynamic freezing where the start-
ing state of the driven system displays a perfect overlap with
itself at the end of one or multiple drive periods [6]. More
recently, it was found that periodic drives may lead to weak
ergodicity breaking behavior; the drive frequency may be
tuned to switch between regimes displaying relatively quick
thermalization consistent with eigenstate thermalization hy-
pothesis (ETH) and long-time coherent oscillatory dynamics
which constitutes example of violation of ETH in noninte-
grable systems without disorder [7].

Such driven systems also display the phenomenon of
dynamical transitions which can be thought of as the nonequi-
librium counterparts of quantum phase transitions [8,9]. A
class of such transitions manifests itself through cusplike
singularities in its Lochsmidt echo; the origin of such singular-
ities has been shown to be due to crossing of nonanalyticities
(or Fisher zeros) of the dynamic free energy of the driven

system [8]. Such transitions do not lead to perceptible changes
in properties of local correlation functions. In contrast, the
second class of transitions which is known to occur in driven
closed integrable quantum systems, manifests itself through
the approach of the local correlation functions to its steady-
state values [9]. For a d-dimensional closed integrable model
after n0 � 1 cycles of the drive, the correlation functions are
shown to decay to their steady-state values as n−(d+2)/2

0 for
high drive frequencies and as n−d/2

0 for low drive frequencies.
These two dynamical regimes are separated by a critical drive
frequency ωc at which the transition occurs; indeed, for d = 1
models, it was shown that there could be several reentrant
transition between these two regimes. The reason for this
transition was analyzed in terms of the Floquet Hamiltonian of
such driven systems. It was shown that such transitions occur
due to appearance of additional extrema in the Floquet spec-
trum as the drive frequency is lowered [9,10]; in this sense,
this phenomenon is analogous to first-order phase transitions
in equilibrium statistical mechanics where transitions occur
due to appearance of additional minima in the system’s free
energy. However, such transitions have been shown to exist for
closed integrable models only; the fate of such transitions in
either open or interacting quantum systems where the system
can be nonintegrable has not been studied so far.

In this work, we study a class of d-dimensional
periodically driven integrable quantum systems coupled
to a fermionic or bosonic bath focusing on the fate of such
dynamical transitions in the presence of these baths. These
models describe a large class of spin and fermion models
such as the Ising model in d = 1, the Kitaev model in d = 2,
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superconductors and charge/spin density waves
(CDW/SDW) systems, and Dirac or Weyl-like quasiparticles
in graphene, topological insulators (TI), and Weyl semimetals
(WSM). All these systems are described by the fermionic
Hamiltonian given by

H0(t ) =
∑

�k
ψ

†
�k [(g(t ) − z�k )τ3 + ��kτ+ + H.c.]ψ�k, (1)

where ψ�k = (c�k, c†
−�k )T is a two-component fermionic field,

c�k denotes the fermion annihilation operator, the sum over
momenta extends over half of the Brillouin zone, τ1,2,3 de-
notes Pauli matrices in the particle-hole space, and the specific
forms of g(t ), z�k , and ��k depend on the context of the model
studied. For example, for the 1D Ising model, g(t ) denotes
the transverse magnetic field in units of the nearest neighbor
interaction J between Ising spins, zk = cos k and �k = i sin k
(where the lattice spacing a is set to unity) [11]. For the 2D
Kitaev model on a square lattice, depicting p-wave super-
conductors, with parameters J1,2,3 (where J3 is the chemical
potential for the fermions and J1 and J2 are their hopping
strength and pairing amplitude, respectively) and unit lat-
tice spacing, z�k = (cos(kx ) + cos(ky)), g(t ) = J3(t )/J1, and
��k = iJ2[sin(kx ) + sin(ky)]/J1 [12]. This model is topologi-
cally equivalent to the Kitaev spin model on the honeycomb
or brick wall lattices for J1 = J2 [13]. We note that for Dirac
quasiparticles the two-component wave function is given by
ψ ′

�k = (c�k↑, c�k↓)T where σ = (↑,↓) denote spin (for TIs and
WSMs) or pseudospin (for graphene) indices; such a wave
function can be easily mapped to ψ�k using a particle-hole
transformation. A similar consideration holds for wave func-
tions of CDW and SDW systems. In what follows we shall
study the dynamics of such a model driven periodically by
varying g(t ) and coupled to a fermionic/bosonic bath. We
consider two classes of baths in this work. The first kind,
modeled by a set of noninteracting fermions does not lead
to scattering between the momentum modes of the system
and thus preserves its integrability. The second class of bath,
modeled by noninteracting bosons, destroys the integrability
of the system by inducing scattering between its momentum
modes. We find that the dynamical transitions of the sys-
tem are retained only for the former class. Our numerical
results would use examples of 1D Ising and 2D square lattice
Kitaev models for p-wave superconductors; however, qualita-
tively similar features are expected to hold for TI, WSM, and
graphene quasiparticles, Kitaev spin models on honeycomb
and brick-wall lattices, and CDW/SDW systems mentioned
above.

The main results that we find from such a study are as
follows. First, for H0 coupled linearly to a noninteracting
bath which retains the integrability of the system, we obtain
an exact semianalytic expression for the evolution operator
U and hence the Floquet eigenspectrum. Using the proper-
ties of the Floquet spectrum and also via explicit calculation
of dynamic behavior of system correlation functions, we
show that the system displays dynamical transitions. Sec-
ond, our analysis finds that the system-bath coupling strength
can be tuned to induce additional dynamical transitions for
high drive frequencies where the closed system always re-
mains in the high frequency phase; such transitions have

no analog in closed driven systems studied earlier. We provide
a comprehensive phase diagram charting out the positions
of different dynamical phases as a function of the drive fre-
quency and the bath parameters. Third, for H0 coupled to a
bosonic bath which destroys integrability of the system, we
find that all correlators, at long drive times, always decay
exponentially to their steady-state values. Such an exponential
decay of the correlators is characterized by decay constants.
We analyze these driven systems by using an equation of
motion approach [14] and chart out the behavior of these
decay constants as a function of drive frequency. Fourth, we
find that such exponential decay of correlators sets in after a
critical number of drive cycles nc; for n0 � nc, the correlation
functions display power-law behavior similar to their closed
counterpart. We chart out the dependence of nc on the drive
amplitude and the system-bath coupling strength. Our anal-
ysis demonstrates that the dynamical transition of the closed
system survives until a large number of drive cycles at weak
system-bath coupling and low drive amplitude. Finally, we
discuss the applicability of our analysis to weakly interacting
fermionic systems and chart out experiments which can test
our theory.

The plan for the rest of the paper is as follows. In Sec. II,
we discuss the dynamical transitions in the presence of a
fermionic bath. This is followed by Sec. III where we chart out
the fate of such transitions in the presence of a bosonic bath.
Finally, we discuss our main results, chart out experiments
which can test our theory, and conclude in Sec. IV.

II. FERMIONIC BATH

In this section, we shall discuss the dynamics of the in-
tegrable models described by H0 [Eq. (1)] coupled to the
fermionic bath. The properties of the Floquet spectrum of the
system is described in Sec. II A while a phase diagram indi-
cating different dynamical regimes is presented in Sec. II B.

A. Floquet Hamiltonian

The total Hamiltonian for the integrable model H0 [Eq. (1)]
linearly coupled to the fermionic bath can be written as

H = H0(t ) + Hint + Hb, (2)

where Hb is the bath Hamiltonian, and the interaction between
the system and bath is modeled by Hint. The periodic drive is
implemented via a square pulse drive protocol,

g(t ) = gi, 0 � t < T/2

= g f , T/2 � t < T, (3)

where T = 2π/ωD is the time period of the drive and ωD is
the drive frequency. For the 1D Ising model g(t ) indicates
the time varying magnetic field while for the Kitaev p-wave
model g(t ) = J3(t ). The bath Hamiltonian is given by

Hb =
∑

�k
εb(�k) f †

�k f�k, (4)

where f †
�k is the creation operator for bath fermions εb(�k) =

η
∑

i=1,d cos ki where η is a constant. Such a bath Hamilto-
nian constitutes the simplest possible choice of tight-binding
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noninteracting fermion model; in this work, we shall re-
strict ourselves to this model for concreteness. We choose
the spatial dimension of the bath to be the same as that of
the system; thus for the Ising chain we choose a 1D bath
with εb(k) = η cos(k) while for the Kitaev model εb(�k) =
η(cos(kx ) + cos(ky)). The interaction between the system and
the bath is described by

Hint =
∑

�k
(λ�kc�k f †

�k + H.c.), (5)

where λ�k is the coupling function. For numerical studies on
the transverse field Ising chain or Kitaev model, we shall take
λ�k = λ to be a constant.

For the closed system, it is well known that all correlators
exhibit one or multiple dynamical transition(s) as a function
of the drive frequency; the critical frequency of this transi-
tion can be inferred from the eigenspectrum of its Floquet
Hamiltonian [9,10]. Thus we compute the Floquet spectrum
of the system described by H [Eq. (2)] and subjected to a
periodic drive given by Eq. (3). In what follows, we shall
use the path-integral technique developed in Ref. [15] for
computation of the Floquet Hamiltonian. In this method, one
expresses the matrix elements of the evolution operator Û of
a quantum many-body system between two coherent states
in imaginary time at a temperature T0. This is followed by
a Wick rotation to real time β = 1/(kBT0) → iT/h̄, where kB

is the Boltzmann constant; such a rotation can be analytically
done for the driven Gaussian system for the protocol given in
Eq. (3). This allows one to obtain Û analytically in real time;
the form of the Floquet Hamiltonian can then be read off from
the expression of Û . It was shown in Ref. [9] that this method
reproduces the exact Floquet Hamiltonian for closed inte-
grable Dirac systems whose Hamiltonians are given by H0(t ).

We begin by computing the evolution operator for the
system for the square pulse protocol [Eq. (3)] which is
given by

Û (T, 0) = Û (T, T/2)Û (T/2, 0) = Ûf Ûi

= e−iH [g f ]T/(2h̄)e−iH [gi]T/(2h̄). (6)

To obtain the Floquet Hamiltonian we first compute the matrix
elements of Ûf and Ûi between two arbitrary coherent states.
For this we note that the two-component system fields are
either given by ψ�k = (c�k, d�k )T (for CDW/SDW systems) or
as ψk = (ck, c†

−k )T (for Ising and Kitaev models and super-
conductors); for the latter class, we shall follow Ref. [15] and
perform a particle-hole transformation c†

−k → dk so that one
can have a uniform formalism for both the cases. No such

transformations were carried out for the bath fields. Using this,
and performing the Wick’s rotation mentioned above, we get〈

�1
�k
∣∣Û�ka

∣∣�2
�k
〉 = exp

[−�1∗
�k L�ka �2

�k
]

(7)
�b∗

�k = (ψ∗
�k , ψ∗

−�k, ψ
′∗
�k , ψ ′∗

−�k ),

where b = 1, 2, a = i, f , ψ±�k and ψ ′
�k denotes fermionic co-

herent states for the system and bath, respectively, and Ûa =∏
�k>0 Û�ka. Here L can be written as

L�ka = I − G−1
a (�k, 0+),

(8)

Ga(�k, 0+) = 1

β

∑
ωn

Ga(�k, iωn)e−iωnη,

where β = 1/(kBT ) is the inverse temperature, I denotes the
4 × 4 identity matrix, ωn denotes the Matsubara frequency,
the index a takes value a = i, f , the limit η → 0+ is to be
taken at the end of the calculation, and Gi( f ) denotes the Green
function of the system corresponding to g = gi(g f ) whose
calculation shall be charted out later in this section. Thus we
obtain the matrix element of Û = Ûf Ûi as

〈�|Û |�′ 〉 = 〈�|Ûf Ûi|�′ 〉

=
∫

D�′D�′∗e− ∑
�k |�′

�k |2+�∗
�kL�k f �

′
�k+�′∗

�k L�ki�′ �k

= exp

⎡
⎣−

∑
�k

�∗
�kL�k f L�ki�′ �k

⎤
⎦. (9)

Since �∗
�k and �

′ �k are arbitrary coherent states, one can
identify the evolution operator as

U�k (T, 0) = M�k = L�k f L�ki. (10)

In particular, the eigenvalues of M�k , λ�kn, are related to those
of the Floquet Hamiltonian, εF

�kn
as [15]

λ�kn = exp
[ − iεF

�kn
T/h̄

]
. (11)

Next, we chart out the computation of Gi( f )(0+). To this
end, we write the action corresponding to H (after the particle-
hole transformation discussed earlier in the section) as [16]

S[�∗,�] =
∫ β

0
dτ (�∗I∂τ� + Ha[�∗,�]), (12)

where � is the four-component field and Ha denotes the
full Hamiltonian [Eq. (2)] with g = ga and a = i, f . Using
Eq. (12), one obtains

G−1
a (�k, ωn) = −

⎛
⎜⎜⎜⎜⎜⎝

iω − ε[�k; ga] −��k −λ�k 0

−��k ε[�k; ga] + iω 0 −λ�k
−λ∗

�k 0 iω − εb(�k) 0

0 −λ∗
�k 0 εb(�k) + iω

⎞
⎟⎟⎟⎟⎟⎠

, (13)

where ε[�k; ga] = ga − z�k . Using Eq. (13), it is easy to find Ga(�k, ωn). In particular we find that poles of these equations, assuming
λ�k to be real, are given by the solution of the equation,

ω4
n + ω2

n

(
�2

�k + ε[�k; ga]2 + ε2
b (�k) + 2λ2

�k
) + �2

�kε
2
b (�k) + ε2[�k; ga]ε2

b (�k) + λ4
�k − 2ε[�k; ga]εb(�k)λ2

�k = 0, (14)
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FIG. 1. Plot of Floquet eigenvalues εF
k,nT/h̄ for the 1D Ising

model as a function of k for n = 1..4. (a) [(b)] shows their dispersion
at high [low] frequency ωD = 10[0.2]π . For all plots, gf = 2, gi = 0,
and both the lattice spacing a, and the Ising interaction strength J is
set to unity.

and are given by ω1..4 = ±
√

α�k ± √
β�k , where

α�k = [
�2

�k + 2λ2
�k + ε2[�k; ga] + ε2

b (�k)
]/

2,

β�k = [
�2

�k + 2λ2
�k + ε2[�k, ga] + ε2

b (�k)
]2/

4

−[
�2

�kε
2
b (�k) + λ4

�k + ε2[�k; ga]ε2
b (�k) − 2λ2

�kε[�k; ga]εb(�k)
]
.

(15)

Using Eq. (14) one obtains

Ga(�k, ωn) =
∏

i=1,4

(iωn − ωi )
−1Ca(�k, ωn), (16)

FIG. 2. Plot of Floquet eigenvalues εF
�k T/h̄ for the 2D Kitaev

model as a function of �k = (kx, ky ). Each panel corresponds to one of
the eigenvalues (four in total). For all plots, h̄ωD/J1 = 10π , g = J3

with gf = 5J1 and gi = 4J1, λ = 0.8J1, η = 0.1J1, J2 = J1 = 1, and
the lattice spacing a is set to unity. The white (black) regions denote
high (low) values. See text for details.

FIG. 3. Plot of Floquet eigenvalues εF
�k T/h̄ for the 2D Kitaev

model as a function of �k = (kx, ky ). Each panel corresponds to one
of the eigenvalues (four in total). For all plots, h̄ωD/J1 = 3.3π . All
other parameters are same as in Fig. 2. See text for details.

where Ca denotes the adjoint of the cofactor matrix of G−1
a .

From Eq. (16), one can compute

Ga(�k, 0+) =
∑
i=1,4

[1 − nF (ωi )]Ca(�k, ωi )∏
j �=i, j=1,4(ωi − ω j )

, (17)

where ωi are the poles of the Greens’s function [Eq. (16)] and
nF (ωi ) = (1 + exp[βωi])−1 is the Fermi-Dirac distribution
function. This allows us to obtain expression for L�ka = I −
[Ga(�k, 0+)]−1 and subsequently M�k using Eq. (17) and (8).
This leads to the Floquet eigenvalues εF

�kn
[Eq. (11)].

A plot of the Floquet eigenvalues for the Ising model in
a transverse field is shown in Fig. 1. Here we have chosen
zk = cos(k), and �k = i sin(k). Figure 1(a) shows εF

k,nT/h̄ as
a function of k for ωD = 10π while Fig. 1(b) shows the cor-
responding plot at ωD = 0.2π . We find that at low-frequency
Floquet eigenvalues display multiple extrema as shown in the
Fig. 1(b); this is in sharp contrast to their behavior at high
frequency shown in Fig. 1(a) where the extrema are only
found at k = 0, π . This behavior indicates the possibility of
a dynamical transition at finite λ and η; this will be discussed
in details in Sec. II B.

Similar plots for the Floquet eigenvalues for the 2D Ki-
taev model in the gapped phase is shown in Figs. 2 and 3.
For the Kitaev model, ��k = J2i(sin(kxa) + sin(kya)), z�k =
J1(cos(kxa) + cos(kya)), J3(t )/J1 = g(t ), and a is the lattice
spacing. Figures 2 and 3 display four Floquet eigenvalues at
h̄ωD/J1 = 10π and h̄ωD/J1 = 3.3π , respectively. We find that
at high frequency (h̄ωD/J1 = 10π ), all the Floquet eigenval-
ues show extrema at the band edges or center (Fig. 2); in
contrast, one finds an arc of maxima for three of the four
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eigenvalues at low frequency (h̄ωD/J1 = 0.2π ). As we shall
see in the next section, this behavior also indicates the ex-
istence of an intermediate dynamical transition between the
high and the low-frequency phases.

B. Phase diagram

In this section, we chart out the different dynamical
regimes of the system. It is well known that for the closed
system (λ = 0), both the Ising and the Kitaev model exhibits
two different dynamical regimes depending on the drive
frequency [9,10]. For high drive frequencies, all the nontrivial
correlators C1(�k, n0, T ) = 〈ψk (n0T )|c†

�kc�k|ψ�k (n0T )〉, C2(�k,

n0, T ) = 〈ψk (n0T )|c−�kc†
−�k|ψ�k (n0T )〉, and C3(�k, n0, T ) =

〈ψk (n0T )|c†
�kc†

−�k|ψ�k (n0T )〉 decay to their steady-state values

(reached as n0 → ∞) as n−(d+2)/2
0 . In contrast, for low drive

frequencies, they decay as n−d/2
0 . These two regimes are

separated by several reentrant phase transitions at specific
critical frequencies for the Ising model in d = 1; for the
Kitaev model, there is a single phase transition occurring as
the drive frequency is lowered. The aim of the present section
is to study the fate of these dynamical regime when λ �= 0.

To understand why such a transition occurs and to deci-
pher its relation with the structure of the Floquet eigenvalues,
we first rewrite the correlators in terms of the eigenvec-
tors |ψF

m 〉 = ∏
�k |ψF

�km
〉 and eigenvalues exp[−iεF

�km
T/h̄] of

U�k (T, 0) using Eq. (10). In terms of these, the wave function
after n0 drive cycles and for an initial starting state |ψ�k (0)〉,
can be written as

|ψ�k (n0)〉 =
∑

m=1..4

e−in0ε
F
m T/h̄αm

∣∣ψF
m�k

〉
, (18)

where αm(�k) = 〈ψF
m�k|ψ�k (0)〉 and we have used the representa-

tion of U in terms of its eigenvalues and eigenvectors. Using
this one can obtain

δCi(�k, n0, T ) =
∑

m1 �=m2

α∗
m1

(�k)αm2 (�k)χm1m2
i (�k)ein0(εF

m1
(�k)−εF

m2
(�k))T/h̄ =

∑
m1,m2

f m1m2
i (�k, n0, T )ein0(εF

m1
(�k)−εF

m2
(�k))T/h̄

,

(19)
χ

m1m2
i (�k) = 〈

ψF
m1�k

∣∣Oi(�k)
∣∣ψF

m2 �k
〉
,

where δCi = Ci − Csteady state
i and i = 1, 2, 3. Here O1 = c†

�kc�k ,

O2 = c �−kc†
−�k , and O3 = c†

�kc†
−�k . This indicates that in real

space, these correlation functions can be written as

δCi(�r, n0, T ) = 1

2

∫
dd k

(2π )d
ei�k·�rδCi(�k, n0, T ). (20)

To see the behavior of δCi at large n0, we note that for any
function fi(k) and for large integer n0, one has the identity,∫

fi(�k)ein0φ(�k)dd k ≈ ein0φ(�k0 )(n0φ
′′(�k0))

−d
2 e

π iμ
4

×
(

fi(�k0) + i
f ′′(�k0)

2φ′′(�k0)n0

+ O
(
1
/

n2
0

)))
,

(21)

where �k0 is the saddle point such that φ′(�k0) = 0. We find
that the leading behavior of this integral will be ∼n−d/2

0 if
fi(�k0) �= 0 and ∼n−(d+2)/2

0 otherwise. Using this identity, we
find that the behavior of the correlators δCi comes from the
saddle points of the difference of Floquet eigenvalues which
we denote by εF

�k . For saddle points at high frequencies, it

may be possible that f m1,m2
i (�kF

0 , n0, T ) = 0 for all m1 and
m2. This typically happens when these saddles occur at the
center or edge of the Floquet Brillouin zone and leads to a
1/n(d+2)/2

0 decay of the correlators. At lower frequencies, the
contribution of the correlators comes from the saddles which
are not necessarily at the zone edge or center and these lead to
1/nd/2

0 decay of the correlators. The transition between these
two phases occur at the critical frequency where an extrema
first occurs in the Floquet spectrum away from the zone edge
or center. This transition was shown to exist for the closed

system for both Ising and Kitaev model in Ref. [9]. Here we
are going to numerically investigate its fate in the presence of
a fermionic bath.

To this end, we first consider the 1D Ising model, where
we show the evolution of δC1(�r = 0, n0, T ) as a function of
n0 in Fig. 4 for (a) h̄ωD/J = 10π and (b) h̄ωD/J = 0.2π .
Figure 4 clearly demonstrates two dynamical regimes; in the
high frequency regime, the correlators decay to their steady-
state value as n−3/2

0 while for the low-frequency phase, they
have a n−1/2

0 behavior. This shows that the different dynamical
regimes persist in the presence of the fermionic bath for the
1D Ising system. We have checked that similar behavior is
seen for both δC2 and δC3.

The corresponding phase diagram displaying the two dif-
ferent dynamical regimes is shown in Fig. 5. Figure 5(a)
shows these regimes as a function of g f and ωD. The plot
demonstrates the presence of a dynamical transition for finite
λ. We note that in the presence of finite λ and η, one needs a

FIG. 4. Plot of the correlator δC1(�r = 0, n0, T ) as a function of
n0 for (a) ωD = 10π and (b) ωD = 0.2π for the 1D Ising model.
For both plots, gf = 2, gi = 0, λ = 0.8, and η = 0.1. All ener-
gies(frequencies) are in units of J (J/h̄). See text for details.
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FIG. 5. (a) Plot of different dynamical regimes as a function of
gf /J and h̄ωD/(πJ ) for λ = 0.8J and η = 0.1J . The green (yel-
low) region corresponds to n−3/2

0 (n−1/2
0 ) behavior of the correlators.

(b) Plot of the dynamical regimes as a function of λ/J and h̄ωD/(πJ )
for η = 0.1J and gf = 2J . (c) Plot of the dynamical regimes as a
function of η/J and h̄ωD/(πJ ) for λ = 0.8J and gf = 2J . (d) Plot of
the dynamical regimes as a function of η/J and λ/J for h̄ωD/(πJ ) =
10 and gf = 2J . For all plots gi = 0 and J = 1. See text for details.

finite critical drive amplitude g f = g f c � 0.9J for the tran-
sition to occur; for g f < g f c only the low-frequency regime
with δCi ∼ n−1/2

0 survives. Furthermore, for a small window
of 1.1 � g f � 1.2, we find the presence of reentrant transi-
tions as a function of ωD with the second transition taking
place around h̄ωD ∼ 0.9J . Figure 5(b) shows the position
of these dynamical regimes in the λ − ωD plane for a fixed
η = 0.1J , g f = 2J , and gi = 0. We note that the presence of
a small λ leads to n−1/2

0 decay of the correlators even when
the closed system at λ = 0 exhibits n−3/2

0 behavior. This can
be further understood by noting the behavior of the Floquet
eigenvalues for the Ising model; the extrema of these eigen-
values shifts from π for infinitesimal λ as shown in Fig. 6.
Up on increasing λ, the extrema returns to π for λ/J � 0.45

FIG. 6. The position of extrema of two of the Floquet eigen-
values as a function of λ/J for η = 0.1J , gf = 2J , gi = 0, and
h̄ωD/J = 10π . The other two eigenvalues always show extrema at
k = π/a. In the plot, in case of multiple extrema, the one with the
highest momenta other than π/a is shown. For all plots, J = a = 1.

FIG. 7. Plot of δC1 as a function of n0 for η = 0.1J1, J3 f = 5J1,
J3i = 4J1 λ = 0.8J1, and h̄ωD/(πJ1) = 10 [3.3] for (a) [(b)]. For all
plots, J1 = J2 = 1. See text for details.

for h̄ωD/J � 1.8π as can be seen from Fig. 6; this leads to
the presence of a dynamical transition at large enough λ even
when the small λ regime has no such transition. Moreover, one
finds that at high frequencies h̄ωD/J � 1.8π , it is possible to
have multiple transitions between the two dynamical regimes
by tuning the coupling to the bath at a fixed frequency; this
phenomenon has no analog in closed system studied earlier.

Figure 5(c) demonstrates the dependence of these regimes
on η and ωD. We find that there is a wide range of η for which
the transition is stable.

Finally we chart out the position of these dynamical
regimes in the η − λ plane for a fixed drive frequency h̄ωD =
10πJ in Fig. 5(d). We find the presence of both dynamical
regimes as a function of η and λ and multiple transition curves
separating them. We note that only the regime with n−1/2

0
behavior persists for small λ which is consistent with the
behavior of the Floquet eigenvalues in Fig. 6.

Next, we chart out the phase diagram for the Kitaev model.
To this end, in Fig. 7, we plot δC1(n0, T ) as a function of n0 for
h̄ωD/J1 = 10π [Fig. 7(a)] and h̄ωD/J1 = 3.3π [Fig. 7(b)]. We
find that Fig. 7(a) shows a 1/n2

0 decay while Fig. 7(b) exhibits
1/n0 behavior; this constitutes a clear signature of dynamical
transition for finite λ and η. We have checked that the behavior
of δC2 and δC3 are similar to δC1.

The phase diagram displaying different dynamical regimes
is exhibited in Fig. 8. Figure 8(a) shows the dynamical
regimes as a function of J3 f /J1 ≡ g f and h̄ωD/(πJ1). We
find that for a distinct range of J3 f , the system displays both
1/n2

0 (green regions) and 1/n0 (yellow regions) behavior. This
constitutes examples of the dynamical transition. In Fig. 8(b),
we chart out these dynamical regimes as a function of λ/J1

and h̄ωD/(πJ1). We find that the 1/n2
0 behavior can only be

seen within a finite range 0.75 � λ/J1 � 0.92. The extent of
this region depends on η/J1; it becomes wider with larger η.
In Fig. 8(c), we plot the dynamical regimes as a function of
η/J1 and h̄ωD/(πJ1). We find that for λ/J1 = 0.8 there is a
narrow region in η where 1/n2

0 behavior survives. Finally in
Fig. 8(d), we plot the position of these dynamical regimes in
the η − λ plane for h̄ωD/(πJ1) = 10 and J3 f /J1 = 5. We find
that increasing η shifts the presence of the dynamical regime
with 1/n2

0 behavior to higher values of λ; it also makes it
extend wider. Furthermore, for small η/J1, a larger λ/J1 > 0.8
allows the presence of 1/n2

0 decay of the correlators. Also,
we find that increasing η with λ/J1 > 0.8 leads to a reentrant
transition between the two dynamical regimes; these transi-
tions do not have any analog in closed systems studied earlier
in Refs. [9,10].
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FIG. 8. (a) Plot of different dynamical regimes as a function of
J3 f /J1 ≡ gf and h̄ωD/(πJ1) for λ = 0.8J1 and η = 0.1J1. The green
(yellow) region corresponds to n−2

0 (n−1
0 ) behavior of the correla-

tors. (b) Plot of the dynamical regimes as a function of η/J1 and
h̄ωD/(πJ1) for λ = 0.8J1 and J3 f = 5J1. (c) Plot of the dynamical
regimes as a function of λ/J1 and h̄ωD/(πJ1) for η = 0.1J1 and
J3 f = 5J1. (d) Plot of the dynamical regimes as a function of η/J1

and λ/J1 for h̄ωD/(πJ1) = 10 and J3 f = 5J1. For all plots J3i = 4J1

and J2 = J1. See text for details.

Before closing this section, we note that in this work, we
have mainly considered the cases where the bath and the
system are of the same dimensionality. However, we would
like to point out that coupling the system to a higher dimen-
sional bath may lead to exhibition of dimensional crossover
effect in the exponent characterizing the dynamic transition.
This is most easily considering an 1D Ising chain with H0

given by Eq. (1) coupled to a 2D bath [Eq. (4)] with ε�k =
η(cos kxa + cos kya) (a is bath lattice spacing) via a coupling
Hamiltonian Hc given by Eq. (5) with the coupling function
λ�k = λ0 exp[−k2

y /σ
2]. Here ky is the transverse momenta of

the bath and the system couples all/single(ky = 0) bath trans-
verse modes for σ = ∞(0). It is then easy to see, following
the analysis charted out in Sec. II B [Eq. (21)], that for σ =
∞, the power-law decays of the correlation functions δCi will
hold with d = 2 since the Floquet spectrum of the system now
sees a line of extrema labeled by ky. In contrast, for σ = 0,
the system only couples to the ky = 0 modes and hence this
situation is similar to that of coupling between a system and
a 1D bath. Thus we find power-law decays with d = 1. In
between, there has to be an dimensional crossover at some
critical value of σ . Numerically we find that for η/J = 0.1
and λ0/J = 0.8, such a crossover occurs at σ = σc � 6.4/a,
as shown in Fig. 9. In contrast, if the system is coupled to
a lower dimensional bath, the dimensionality of the system
always determines the d which enters the exponent of the
power-law decay of the correlation function.

FIG. 9. Plot of δC1 as a function of n for a 2D bath coupled to the
1D Ising model with λ0/J = 0.8, a = 1, ω = 10J , and η/J = 0.1
for (a) σ = 6.35, (b) 6.4, (c) 6.45, and (d) 6.5. The plots exhibit a
dimensional crossover from d = 1 to d = 2 in the power-law expo-
nent (which is given in this frequency regime by (d + 2)/2 so that
δC1 ∼ n−3/2(2) for d = 1(2)) around σ = 6.4.

III. BOSONIC BATH

In this section we couple H0 to a bosonic bath. The tech-
nique used for obtaining our result is detailed in Sec. III A
while the numerical results are presented in Sec. III B.

A. Equation of motion

In the presence of a bosonic bath, the total Hamiltionian of
the system reads

Htotal = H0(t ) + H ′
b + H ′

int, (22)

where the bath Hamiltonian, modeled by a bunch of harmonic
oscillators, is given by

H ′
b =

∑
�q

h̄ω�qb†
�qb�q. (23)

Here b†
�q is the creation operator for bosons and ω�q is the cor-

responding frequency. The interaction between the Fermions
and the bath is given by

H ′
int =

∑
�k �q

λ�kc†
�kc�k+�q(b†

�q + b−�q ) + H.c., (24)

where λ�k is the coupling function which determines the
strength of interaction between the system fermions and the
bath bosons. Here, and in the rest of this section, we shall
extend definitions of c�k and c−�k over the entire Brillouin
zone for convenience; the double counting which arises due
to such an extension can be simply offset by a factor of 1/2
while evaluating the sum over momentum for computing any
correlation functions.

We note that the interaction between the bosonic bath
and the fermions [Eq. (24)] necessarily destroys integra-
bility of the fermion system upon integrating the bath
degrees of freedom. This is in contrast to the case of the
fermionic bath studied earlier and, as we shall see, leads to a
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qualitative difference in the dynamics of correlators of the
driven model. In what follows, we shall study the dynamics
of Htotal ignoring back-reaction of the system to the bath [17].
This approximation has been widely used in treating such
open quantum systems; it produces accurate results for system
dynamics when the bath is either very large compared to
the system size or if the bath frequencies are much larger
compared to the system energy scales. In what follows we
shall restrict ourselves to the latter case (h̄ω�q being the largest
energy scale) and assume a thermal distribution for the bath
bosons with a fixed temperature Tb at all times: nb[ω�q] =
(exp[h̄ω�q/(kBTb)] − 1)−1. We also note that in this limit it is
possible to integrate out the bath degrees of freedom and ob-
tain an effective static interaction between the fermions with
strength ∼λ2/(h̄ω�q); thus our analysis also yields information
about dynamics of interacting driven fermions.

To study the dynamics, we note that since the fermionic
system, in the presence of the bath does not reduce to Gaus-
sian action, the path integral procedure of the previous section
cannot be applied here in a straightforward manner and we

need to resort to some approximation scheme. To this end,
we use the equation of motion approach where one writes
down the equation of motion for the correlation functions
of the fermions. This, of course, leads to an infinite hierar-
chy of equations which needs to be truncated. Several such
truncation schemes are discussed in the literature in various
contexts [18–21]. Here we truncate these equations by writing
all four-point correlations (for both fermion and mixed corre-
lators) as a product of two-point correlations by using Wick’s
theorem.

The Heisenberg equations for expectation of any operator
O�k can then be written as

i∂t 〈O�k〉 = 〈[Htotal,O�k]〉, (25)

where the expectation is taken with respect to the initial state
at t = 0. Here we shall choose this state to be a direct product
state of fermions and the bath bosons |ψ〉init = |ψ〉fermion ⊗
|ψ〉bath. This procedure yields

i∂t n(�k) = −��kF ∗(�k) + �∗
�kF (�k) + λ�k (A1(�k, �q) + A2(�k, �q)) − λ�k−�q(A1(�k − �q, �q) + A2(�k − �q, �q))

−λ�k (A∗
1(�k, �q) + A∗

2(�k, �q)) + λ�k−�q(A∗
1(�k − �q, �q) + A∗

2(�k − �q, �q)),

i∂t F (�k) = 2(g(t ) − z�k )F (�k) + ��k ((n(�k) + n(−�k)) − 1) + λ�k (G1(�k, �q) + G2(�k, �q)) + λ−�k (G1(�k − �q, �q)

+G2(�k − �q, �q)) + λ�k−�q(G1(�k,−�q) + G2(�k,−�q)) + λ�k−�q(G1(�k + �q,−�q) + G2(�k + �q,−�q)),

i∂t A1[2](�k, �q) = (z�k −z�k+�q)A1[2](�k, �q)+��k+�qG∗
2[1](−�k,−�q)+�∗

�kG1[2](�k, �q) − [+]h̄ω�qA1[2](�k, �q) + λ�k (0[1] + nb[+[−]ω�q])(n(�k)

−n(�k + �q)) − [+]λ�kn(�k + �q) + [−]λ�kn(�k)n(�k + �q) − [+]λ−�k−�qF ∗(�k)F (�k + �q) − iγ0A1[2](�k, �q),

i∂t G1[2](�k, �q) = (2g(t ) − z�k+�q − z�k )G1[2](�k, �q) + ��kA1[2](�k, �q) + ��k+�qA1[2](−�k − �q, �q) − [+]ω�qG1[2](�k, �q) + (0[1]

+nb[+[−]ω�q])(λ�kF (�k) + λ−�k−�qF (�k + �q)) + [−]λ−�k−�qn(−�k)F (�k + �q) + [−]λ�kF (�k)n(�k + �q) − iγ0G1[2](�k, �q),

(26)

where the terms ∼γ0 has been added to the equations of
the correlators to counter numerical instability arising from
truncation of the hierarchy as discussed earlier [18,20]. The
correlators in Eq. (26) are given by

n(�k) = 〈c†
�kc�k〉, F (�k) = 〈c−�kc�k〉,

A1(�k, �q) = 〈c†
�kc�k+�qb†

�q〉, A2(�k, �q) = 〈c†
�k−�qc�kb−�q〉,

G1(�k, �q) = 〈c−�kc�k+�qb†
�q〉, G2(�k, �q) = 〈c−�kc�k+�qb−�q〉. (27)

We note from Eq. (26) that the equations for the two-point
correlators such as n�k and F�k gives rise to higher order
mixed correlators A1,2(�k, �q) and G1,2(�k, �q) which quantify
correlations between electrons and phonons. These mixed
correlators, in turn, give rise to four fermion terms which have
been decomposed into lower order two-point correlators using
Wick’s theorem as mentioned earlier. This leads to the closed
set of equations [Eq. (26)] which are solved numerically to
study the dynamics.

B. Numerical results

The numerical solution of Eq. (26) allows us to obtain
information about dynamics of both Ising and Kitaev models
coupled to the bosonic bath. For all numerical solutions used
for results presented in this section, we have set λ�k = λ for
all �k and, unless otherwise mentioned, kept the phenomeno-
logical damping constant γ0 = 0.2λ, where λ/J is considered
to be the smallest scale in the problem. We have checked,
by varying γ0 around this value, that the nature of the cor-
relator remains independent of the γ0 value in this regime.
Also, for all plots, we have used a single bosonic mode at
�q = �q0 = (4π/L, 4π/L) (where L is the linear dimension of
the system) for the Kitaev model, q = q0 = 4π/L for the Ising
model, and have set h̄ωq0/J = 20 to be the largest scale in
the problem. We have chosen a finite nonzero �q0 to ensure
nontrivial coupling to the bath (for �q = 0, [n�k, H1] = 0) while
h̄ω�q/J � 1 is chosen to ensure that neglecting back-reaction
of the system on the bath remains a valid assumption.

The result for this numerical study is shown in
Fig. 10 for the Ising model in a transverse field. Fig-
ures 10(a) and 10(b) shows the time variation the correlators
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FIG. 10. (a) Evolution of δn as a function of time t (in units of
h̄/J) for gi/J = 2.5, gf = 0, λ/J = 0.8, and h̄ωD = 10πJ . (b) Sim-
ilar plot for δF . (c) Plot of ln δn as a function of t over longer time
scale showing the exponential decay of δn with time. The black line
is the fit from which one obtains h̄μn = 0.0038J . (d) Similar plot for
ln δF with h̄μF = 0.0044J . See text for details.

δn = ∑
k (nk − nsteady state

k ) and δF = ∑
k (Fk − F steady state

k ) as
a function of time t (in units of h̄/J). We find that the cor-
relators shows a decaying behavior which sets in after brief
oscillations for the first few cycles of the drive. The nature
of this decay is shown in Figs. 10(c) and 10(d). We find that,
in contrast to the fermionic bath, the presence of the bosonic
bath leads to an exponential decay of the correlators to their
steady-state value. The corresponding decay coefficients μn

(of δn) and μF (of δF ) are plotted as a function of the drive
frequency ωD in Fig. 11. This plot indicates that μn and μF

increases linearly with ωD. This in turn implies that the decay
of the correlators as a function of number of drive cycles
n0 is independent of ωD. Indeed, it is easy to see that if
δn(δF ) ∼ exp[−μ′

n(F )n0], then μ′
n(F ) = μn(F )T and μ′

n(F ) is
thus independent of ωD for μn(F ) ∼ ωD.

Next, we investigate the role of the coupling parameter λ

behind such exponential decay of correlation functions. To
this end, we note that the exponential decay of the correlation
functions sets in at shorter time scales for larger λ; indeed it
is possible to define a critical number of drive cycles nc at any
drive frequency around which a crossover from power-law to
exponential decay takes place. This can be seen from the plot
of δn as a function of n0 in Fig. 12 where the crossover from
power-law to exponential behavior occurs around n0 ∼ 800.

FIG. 11. (a) Plot of μn as a function of ωD (in units of J/h̄) for
gi/J = 2.5, gf = 0, λ/J = 0.8. (b) Similar plot for μF . See text for
details.

FIG. 12. Plot of δn as a function of n0 for gi/J = 2.5, gf =
0, λ/J = 0.04, and h̄ωD/J = 10π . The plot shows the change for
power-law to exponential decay around nc � 800. See text for
details.

For n0 � nc, the behavior of the system is analogous to
a closed Ising chain and the correlators display dynamical
transition as a function of frequency. For n0 � nc, the system
shows the exponential decay shown in Fig. 12. A plot of nc

as a function of λ/J is shown in Fig. 13(a); we find that
δnc ∼ 1/λ2. This behavior can be understood as follows. We
note that the integrability of the Ising chain is destroyed by
scattering between different modes due to H1 ∼ λ; thus a
simple Fermi golden rule argument allows us to deduce that
the time scale for such scattering to become relevant would
be ∼1/λ2. This behavior is qualitatively similar to that of
the Fermi-Pasta-Ulam chain [22] where it was shown that a
finite strength of the integrability-breaking term is necessary
to destroy the integrable nature of the correlation functions.
A plot of nc as a function of g f /J for a fixed λ/J is shown
in Fig. 13(b). The plot indicates that integrability breaking
behavior sets in more quickly for larger amplitude quenches.
This can be understood by considering the fact that larger
amplitude quenches amount to larger energy transfer to the
system which can lead to quicker access to the bath degrees
of freedom.

Next we address the dynamics of the Kitaev model. For all
numerics, J3 is varied using a square pulse protocol between
J3i = 2.5J1 and J3 f = 0 with a frequency ωD. In Fig. 14, we
show the dynamics of ln δn and ln δF for the Kitaev model
as a function of time t (in units of h̄/J1). The decay is again
found to be exponential as can be inferred from Fig. 14.

The decay coefficients of the correlation functions μK
n and

μK
F for the Kitaev model is shown in Fig. 15. These plots

FIG. 13. (a) Plot of nc as a function of λ (in units of J) for gi/J =
2.5, gf = 0, h̄ωD/J = 10π . The lines shows a 1/λ2 fit to the data
points indicated by circles. (b) Plot of nc as a function of gf for λ =
0.02J . All other parameters are the same as in (a). See text for details.

235154-9



MADHUMITA SARKAR AND K. SENGUPTA PHYSICAL REVIEW B 102, 235154 (2020)

FIG. 14. (a) Plot of ln δn as a function of t (in units of h̄/J1) for
J3 f /J1 = 4, J3i/J1 = 5, λ/J1 = 0.02, γ0/λ = 0.2, and h̄ωD = 10πJ1.
The black line denotes the fit which yields h̄μK

n = 0.0062J1. (b) Sim-
ilar plot for ln δF with h̄μK

F = 0.0072J1. See text for details.

indicate that both μn and μF for the Kitaev model show an
almost linear variation with drive frequency similar to those
for the Ising model. This in turn indicates that μ′K

n,F would be
almost independent of ωD. The variation of nc as a function
of λ shown in Fig. 16 is also qualitatively similar to that for
the 1D Ising model. This seems to suggest that such behav-
ior of nc is quite general and one may expect to observe a
dynamic transition for open systems at sufficiently small λ;
similar behavior is also expected to be observed for CDW and
superconducting systems.

IV. DISCUSSION

In this work, we have studied the dynamics of a class of
driven integrable models coupled to an external bath. These
models exhibit drive frequency induced dynamical transitions
in the absence of the bath [9,10]; our focus in this work
has been to study the fate of this dynamical transition in the
presence of external baths. Our study, which constitutes a
generalization of such a transition to open quantum systems,
reveals that the fate of such transitions crucially depends on
whether the bath breaks integrability of the closed system.

For fermionic baths with linear coupling, where the in-
tegrability of the closed system remains intact, we find that
the transition survives. For such baths, we provide a semian-
alytic expression for the Floquet eigenvalues corresponding
to a square pulse drive protocol. Using this, we chart out
the different dynamical phases of the system coupled to a
fermionic bath. We demonstrate that the coupling parameter
between the system and the bath λ can induce a new class
of dynamical transitions which occur at large λ. We note
that such transitions occur at high drive frequencies where
the closed system exhibits n−(d+2)/2

0 decay; thus they do not
have any analog for closed integrable systems studied earlier.

FIG. 15. (a) Plot of μn as a function of ωD (in units of J1/h̄) for
J3 f /J1 = 4, J3i/J1 = 5, and λ/J1 = 0.8. (b) Similar plot for μF . All
other parameters are the same as in Fig. 14. See text for details.

FIG. 16. Plot of nc as a function of λ (in units of J1) for J3 f /J1 =
4, J3i/J1 = 5, and h̄ωD/J1 = 10π . The dots represent data points
where the black line shows 1/λ2 fit to the data. All other parameters
are the same as in Fig. 14. See text for details.

In particular, we find transition lines in the η − λ plane for
a fixed drive frequency; this demonstrates the possibility of
tuning these transitions by varying fermionic bath parameters.

In contrast, for bosonic baths which destroy the integrabil-
ity of the model, we use an equation of motion technique to
study the dynamics. We restrict ourselves to the limit where
the back-reaction of the system on the bath can be ignored.
In this regime, we find that all correlators decay to their
steady-state value exponentially; these decays are character-
ized by decay coefficients which vary linearly with the drive
frequency for the 1D Ising model and 2D Kitaev model. We
note that such a decay sets in after a critical number of drive
cycles nc; for n0 � nc, the power-law decay of the closed
system survives. We chart out nc as a function of the coupling
strength λ and show that nc ∼ 1/λ2. This result indicates that
for weak enough system-bath coupling strength, one expects
a large time window where the dynamical transition would
survive. We note that this result also holds for weakly inter-
acting closed fermion systems whose kinetic term is given by
H0. This is seen by noting that our analysis for the bosonic
bath is carried out for h̄ω�q/J � 1; in this regime integrating
out the bath degrees of freedom leads to a density-density
interaction term for the fermions with strength ∼λ2/(h̄ω�q0 ).
Finally, we mention in passing that we have checked the effect
of back-reaction of the system on the bath and ensured that
our results do not change due to neglect of back-reaction for
h̄ωq/J � 1. In the opposite limit, back-reaction cannot be
neglected and we leave this issue for future study.

Possible experimental platforms which can emulate such
models involves ultracold atom setups [23,24] or quantum
dots [25,26]. In particular, in Ref. [24], Dirac fermions de-
scribed by H0 was experimentally realized by emulating
fermions on a honeycomb lattice such as the one found in
graphene. The bosonic bath may be realized by coupling such
a system to a bath of oscillators; this was done for bosonic
condensates earlier [27]. For the fermionic bath, the setup
in Ref. [24] may be coupled to another 2D square lattice
which hosts fermions with tight binding dispersion. We pro-
pose the measurement of expectation of fermion density n =
〈∑�k ψ

†
�k ψ�k〉 as a function of time in such composite systems

to verify the presence of two different dynamical regimes.
In conclusion, we have studied driven dynamics of a class

of integrable fermionic models coupled to either fermionic or
bosonic baths. We have charted out the dynamical phases of
these systems as a function of drive frequency and system-
bath parameters. Our results show that the effect of these
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baths on the driven system depends crucially on whether they
preserve the integrability of the system. We have discussed
experiments which can test our results.
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