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Topological character of three-dimensional nexus triple point degeneracies
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Recently a generic class of three-dimensional band structures was identified that host twofold line degen-
eracies meeting at threefold or triple point degeneracies, which resist the usual topological characterization
of isolated point degeneracies as in Dirac/Weyl semimetals. For these so-called “Nexus” fermions which lie
beyond Dirac/Weyl fermions, we lay out several concepts to characterize the wave function geometry and
spell out its topology. Our approach is based on an understanding of the analyticity properties of Nexus
wave-functions building on a two-dimensional analog studied recently by us. We use this to write down a
homological characterization of various Nexus triple point degeneracies in three dimensions.
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I. INTRODUCTION

Band theory of electronic structure occupies a venerable
place in quantum condensed matter. Historically, the basic
ideas were established quite soon after the development of
quantum mechanics. Yet, it is still an active area of research
with many surprises. Among the surprises, topological band
insulators and superconductors have captured our imagination
in a big way [1]. They had their antecedent in the integer
quantum Hall effect [2,3]. The electronic structure of these
quantum states of matter have interesting and robust phe-
nomenology, e.g., the edge states of topological bands [1,4].
Another surprise has been the wealth of physics present in
two- and three-dimensional (2d and 3d) semimetals [5,6].
The low energy excitations in semimetals also often possess
a topological character. This can lead to a certain robust-
ness against backscattering [7]. Already the low density of
semimetallic carriers at the Fermi energy makes the ef-
fect of interactions less relevant. The combination of these
two effects holds promise for technological applications of
semimetals [8].

From a theoretical point of view, what gives the semimetal-
lic carriers their topological character is the global structure
of their wave-function geometry in the Brillouin zone. Dirac
and Weyl semimetals are the well-known examples in 2d
and 3d . These semimetals have twofold degeneracies (not
counting spin) at isolated points in the Brillouin zone of-
ten protected by certain symmetries [5,9]. They can be
thought of as “topological defects” in the space of the band
wave functions. The semimetallic character obtains when
the Fermi energy is near these degeneracies. Such twofold
point degeneracies are generic only in 3d , while they are
exceptional in 2d thus requiring symmetry protection [10].
Recently, generalization of Dirac and Weyl fermions have
also been found by symmetry-protecting higher-fold point
degeneracies [11].

While there has been tremendous activity on semimet-
als with point degeneracies, it has also been realized that
band structures with twofold line degeneracies are another
possibility in the universe of possible band structures. Line de-
generacies are exceptional in 3d , and symmetry protection is
required to obtain them. Several symmetry protected possibili-
ties have been identified recently [12–15]. Among these, there
is a class of band structures where twofold line degeneracies
meet at threefold or triple point degeneracies. They have been
dubbed as Nexus fermions [15,16]. There have been material
proposals [15,17–21] and experimental observations [22,23]
on this class of fermions. Their spectral structure is intriguing,
and their band topology has been analyzed previously in terms
of the line degeneracies and Z2 topological numbers [24]. The
goal of this paper is to shed more light on the band topology
of Nexus fermions in a different manner which particularly
emphasizes Nexus triple points themselves. We want to char-
acterize the topology of these triple point degeneracies when
thought of as defects in the space of band wave functions.

The topological character of point degeneracies can be
understood by studying the band topology in one lower
dimension [25]. One generally considers a surface in the
momentum space that encloses the 3d point degeneracy in
question. Since the surface can be chosen to be gapped every-
where, one then computes the Chern number on this surface
which serves as a topological charge for the point degeneracy.
This discrete topological charge cannot be changed by small
deformations to the Hamiltonian. This approach will fail to
characterize a Nexus triple point degeneracy, because any
surface enclosing it will have gapless points where the line de-
generacies intersect with the chosen surface. Thus the general
principle of calculating a topological charge on an enclosing
surface will not work. This is why Ref. [15] called Nexus
fermions as “beyond-Weyl.” If we restrict ourselves to use
only gapped lower dimensional spaces, one can characterize
the topology of the line degeneracies by considering gapped
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loops around them [14,16,24]. Also, one can enclose two
or more different triple points together by a gapped surface
in some cases and calculate a topological invariant on that
surface [14].

The question then is how to proceed in order to characterize
the band topology of a Nexus system. This includes the basic
issue of whether Nexus triple points have a topological char-
acter or not. This is a relevant question not just as a conceptual
issue but also because of the following physical point: In
Weyl systems, the surface Fermi arcs have a protection in the
sense that they have to end at the projection of the bulk Weyl
points onto the surface [6]. This protection is linked to the
fact that the Weyl points in the bulk possess a topological
character. Reference [15] raised the analogous question on
whether the surface Fermi arcs numerically observed in their
chosen Nexus systems have a topological protection in the
sense of Weyl Fermi arcs. See the discussion on the Nexus
Fermi arcs in Ref. [15] for more on this point. Our paper gives
a constructive method to capture the topological character of
different Nexus triple points. This method is the main result of
this paper. Thus, we give an affirmative answer to the question
raised in Ref. [15], i.e., there will be surface Fermi arcs in
Nexus systems that will have to end at the projection of the
bulk triple points on to surface. We note here that Ref. [14]
give an alternate argument for the presence of protected Fermi
arcs in these systems based on mirror Chern numbers [26]
without concerning directly with the topological character of
the Nexus points.

Our method relies crucially on the analytic properties of the
band wave functions near the line degeneracies. This builds
on the results of Ref. [27] where a toy 2d band structure
was considered which had a certain likeness to the Nexus
band structures. In particular, specific 2d cuts of some Nexus
band structure resembles the toy band structure considered
in Ref. [27]. The wave functions of this toy model were
written down which made the band topology explicit. The 2d
topology could be captured by a generalization of winding
numbers [27,28]. This taught us the bigger lesson that near
line degeneracies, analytic continuation, or movement in the
space of wave functions is key to exposing the band topology
even in 3d .

Motivated by the above, we will study in detail the analyt-
icity properties of several 3d Nexus band structures. We will
use Dirac and Weyl systems as scaffolding for the analyticity
discussions of Nexus band structures. In the process, we will
come to an important notion of the generalized domain when
dealing with degeneracies. This will be necessitated by the
presence of degenerate points on the surface enclosing the
Nexus triple point degeneracy. For point degeneracies like
Weyl points, this notion is not necessitated because we can
easily find a gapped surface to surround the Weyl point.

Equipped with the generalized domain, we can finally state
data on the band topology of a Nexus band structure. This
scheme will consist of specifying and counting the distinct
analytic loops that can be drawn on the generalized domain
around a triple point. Thus we will have the desired scheme to
distinguish different triple point degeneracies based on their
distinct band topology data. This idea is very similar to the
homology classes of 1-cycles used to distinguish the topology
of different geometric objects [29]. The familiar example is

that of a sphere vs a torus. The sphere admits no loops that
cannot be contracted to a point, whereas a torus admits two
distinct classes of loops that cannot be contracted to a point.
Our scheme will do a similar characterization of the triple
points, with the structure of the homology classes being dic-
tated by the structure of the line degeneracies. In this way, we
will be able to describe several Nexus band structures written
down in the literature [15] as well as some obtained as 3d
extensions of the toy band structure in Ref. [27]. This is the
culminating result of this paper. Furthermore, this scheme can
also potentially reveal the inter-relationships between differ-
ent kinds of triple points.

We give a brief outline of the paper: Section II sets the stage
by recapitulating some 2d band structures from the point of
view of analyticity. We will be paying close attention to what
happens near degeneracies, since that is the main roadblock
in understanding the band topology of Nexus band structures.
Doing this will introduce the notion of the generalized do-
main. We then go on 3d in Sec. III. We start by discussing
the familiar Weyl system to give a clear contrast to Nexus
band structures in terms of their analyticity properties. We
then discuss several Nexus band structures. Section IV will
finally give the method to state the band topology data in
terms of homology classes of analytic loops on a generalized
domain around the triple point. This will not be hindered
by a lack of gapped property, because analyticity near the
degeneracies constrain the wave functions enough to enable
stating the topology. This will conclude our exposition on the
band topology of Nexus fermions. We end the paper in Sec. V
with a summary and outlook. We also discuss here our take
on the Fermi arc phenomenology of Nexus systems including
a conjecture regarding the charge of these surface states.

II. 2D ANALYTICITY

In this section, we will start with the analyticity discussion
in a 2d beyond-Dirac Nexus system. Let us reconsider the
band structure introduced in Ref. [27] to set up the discussion:

H (p) =
⎛
⎝ 0 px − ipy px − ipy

px + ipy 0 px + ipy

px + ipy px − ipy 0

⎞
⎠. (1)

The eigensystem of H (p) is

εα (p) = 2p cos

[
θp

3
+ (2 + α)

2π

3

]
(2a)

vα (p) = 1√
3

(
ω2+αe−i

2θp
3 (ω∗)2+αei

2θp
3 1

)T
, (2b)

where θp = arctan ( py

px
) ∈ [0, 2π ). ω = ei 2π

3 , ω2 = e−i 2π
3 are

the complex cube roots of unity and α = 0, 1, 2. This band
structure possesses a threefold degeneracy at p = 0 clearly
and has two line degeneracies coming out from the triple point
which is a signature feature of Nexus wave functions. Because
of the line degeneracies, a standard Berry phase description
of the wave-function geometry is not applicable. However,
we had used generalized winding numbers [27,28] to under-
stand this 2d wave-function geometry (cf. Table I and Sec. II
of Ref. [27]) and contrasted with other known 2d Dirac-
like wave-function geometries. In 3d , such winding number
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FIG. 1. This figure illustrates the analytic way of moving across or through the Dirac point. The left and middle figures show how that
analytic movement happens in the spectrum from the side and top views, respectively. The right figure shows the analytic movement in the
generalized domain. As mentioned in the text, the generalized domain is made of two copies of px , py plane connected at the Dirac point. The
color scheme is only for convenience.

description is not generally applicable for classification of
point degeneracies. Thus, we will take the approach to be
described below and in future sections.

Our main point of view will be to understand and write
down the key aspects of the analytic behavior of various band
structures. This is a different way of communicating invariant
data of the wave-function geometry than winding numbers
and Berry phases. For example, we often view the familiar
twofold Dirac system

HDirac
K (p) =

(
0 px − ipy

px + ipy 0

)
(3)

with the eigensystem as

ε±(p) = ±p ; v±(p) = 1√
2

(±e−iθp , 1)T (4)

by calculating Berry phase or chiral winding number [25,30]
on the gapped region in one lower dimension (e.g., any closed
loop around the degeneracy). We rather want to include the
degeneracy to be a part of the analysis.

Firstly, on a gapped loop we clearly have the analyticity
property

vi(θ + 2π ) = vi(θ ). (5)

However, we also have the following analyticity property of
Dirac wave functions

v+(θ + π ) = v−(θ ) (6)

which connects the two bands. In fact, this relation tells us
how to consistently arrive at the twofold degeneracy from all
sides without running into analytic ambiguities. Thus, we can
interpret this as the way to move analytically across the point
degeneracy. This is illustrated in the two figures from the left
in Fig. 1.

Equations (5) and (6) are nothing but an alternate way of
describing the wave-function geometry that is captured by
Berry phase and chiral winding numbers, with the additional
benefit of allowing to move across the degeneracy in an an-
alytically smooth way. This alternate viewpoint will prove
useful for us because Nexus triple points cannot be enclosed
by a gapped region in one lower dimension. As notation, we
refer to analyticity relations with the same band index on
left and right hand sides as “index-preserving” [e.g., Eq. (5)],
while analyticity relations with different band indices on both
sides as “index-connecting” [e.g., Eq. (6)].

For a quadratic band touching (QBT), the analyticity rela-
tion is in fact

v+(θ + π ) = v+(θ ). (7)

We can understand this in terms of two Dirac points (of same
winding) sitting on top of each other. Let’s first imagine these
two Dirac points are not on top of each other, and we move
analytically across both the degeneracies in a single go. In this
process, we will return back to the same band that we started
from as illustrated in Fig. 2. Now, imagine moving these two
Dirac points until they fall on top of each other to obtain a
QBT. Analyticity thus forces us that we will stay in the same
band when we cross the QBT (bottom panel of Fig. 2), i.e.,
Eq. (7). This argument also works when the QBT splits into
more Dirac points, e.g., in Bernal-stacked honeycomb bilayer

FIG. 2. An illustration of the analytic movement in the case of a
quadratic band touching (QBT). The top two panels show how the
analytic behavior of a pair of Dirac points reduces to that of a QBT
in the last panel. Thus we see how a single Dirac touching and a QBT
differ in their analytic movements across the degenerate point.
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lattice in the presence of “trigonal” warping terms when it
splits into three Dirac points of the same winding and a fourth
one with opposite winding [31].

With the above discussion in hand, we can revisit the 2d
system in Eqs. (1) and (2) in terms of its key analyticity
information. The index-connecting relation is

vα (θ + 2π ) = v(α+1) mod 3(θ ) (8)

which may be contrasted with Eq. (6) in the Dirac case. Sim-
ilarly, in contrast to Eq. (5), we arrive at the index-preserving
relation

vi(θ + 6π ) = vi(θ ). (9)

This unusual “+6π” structure is a result of the Nexus lines
emanating from the threefold degeneracy. We emphasize that
the above two relations are an alternate way of describing
the wave-function geometry when compared to a general-
ized winding number description [27]. This way of stating
the wave-function geometry via the analyticity will be our
approach to tackle the 3d Nexus geometry in the next sections.

We end this section with a final conceptual point. Even
though Eqs. (1) and (3) are multiband systems as expressed
through band-indexed eigenfunctions in Eqs. (2) and (4), the
analytic structure actually tells us that this band distinction
is a matter of convenience or convention and not funda-
mental when considering the wave-function geometry. We
can imagine a single function defined on a generalized do-
main that describes the multiband wave functions in analogy
with Riemann surfaces. This analogy can be made exact for

Eq. (2) by re-writing as εα (p) = 2p Re[ω2+αei
θp
3 ], vα (p) =

1√
3
(ω2+αe−i

2θp
3 (ω∗)2+αei

2θp
3 1)

T
, whereby we can essentially

drop the α index to write as ε(p) = 2p Re[ei
θp
3 ], v(p) =

1√
3
(e−i

2θp
3 ei

2θp
3 1)

T
that is defined on a threefold Riemann

surface connected by branch cuts of the complex cube root
function. This generalized domain restatement succinctly tells
us how to analytically move in the space of wave functions,
which is of course a key requirement to understand the wave-
function geometry.

A similar generalized domain restatement can be done for
the case of Dirac eigensystem Eq. (4). The generalized domain
is composed of two copies of the px-py plane connected at
the point degeneracy. The band-connection relation [Eq. (6)]
gives us the rule of moving through the “connecting point”
in the generalized domain from one copy of the px-py plane
to the other (see the rightmost figure of Fig. 1). In the Dirac
case, there is no branch cut structure since the eigensystem
[Eq. (4)] is perfectly analytic. The generalized domain will be
used when we discuss the 3d Nexus wave functions in the next
sections.

III. 3D ANALYTICITY

In this section, we start with the actual discussion on the
analyticity properties of 3d Nexus fermions. As mentioned
in Sec. I, line degeneracies are exceptional in 3d and require
symmetry protection, whereas they are fine tuned in 2d . Thus
the analyticity discussion in the previous section is for a fine-
tuned case, but it will help us in the following discussions.

Before we go towards Nexus analyticity properties, let us start
with the familiar case of Weyl point degeneracies to set the
stage.

A. Weyl analyticity

A Weyl point degeneracy is characterized by an effective
(low-energy) Hamiltonian of the form HWeyl = ∑

i∈{x,y,z} piσi.
The eigenenergies are ε(p) = ±p, and the eigenfunctions are
generally expressed as

v+(p) = (e−iφ cos(θ/2) sin(θ/2))T (10a)

v−(p) = (− sin(θ/2) eiφ cos(θ/2))T . (10b)

In our gauge choice where the last term is kept purely real,
they are

v+(p) = (e−iφ cos(θ/2) sin(θ/2))T (11a)

v−(p) = (−e−iφ sin(θ/2) cos(θ/2))T . (11b)

Often, the wave-function geometry of 3d point degeneracies
are understood by considering a 2d surface enclosing the
point degeneracy and computing the Chern number of the
two gapped bands on this reduced 2d system. For the Weyl
system, the Chern numbers of the two gapped bands are ±1.
We note that in the full BZ, the number of Weyl points has
to be even such that the sum of their Chern numbers is zero,
as the Chern number computed on the BZ boundary must be
zero by periodicity.

Another perspective on the Weyl geometry is the following
[32]: Consider 2d cross sections in the Brillouin zone away
from the point degeneracy, e.g., a constant kz plane which is a
representative 2d system. In such cross sections, we obtain a
gapped Dirac cone system with the specific sign of the mass
term controlled by the sign of pz. Because the 2d system is
gapped, we may compute a Chern number. On either side of
the Weyl point, the sign of the mass changes. Thus, the Weyl
degeneracy may be interpreted as a transition between the two
topologically different 2d Chern bands on either side.

However, anticipating the lack of gapped 2d surfaces in
the presence of line degeneracies for Nexus fermions, we
may ask what happens if we were to consider cross sections
which always include the Weyl point, e.g., consider any plane
going through the Weyl point. In particular, if we consider a
family of such planes, e.g., all planes containing the pz axis,
then we would like to ask how does this family of 2d bands
interpolate among each other? This forces us to grapple with
the role of the degeneracy in the analysis. This is a similar
motivation to what we have done in 2d as in Sec. II where
stating the index-connecting relation is our way of answering
this question. In 3d we will need to make a choice of the coor-
dinate system, however for the Weyl discussion, the spherical
symmetry comes to our rescue and we can use the pz axis to
set up our spherical coordinates without any loss of generality.
The analyticity relations are the following:

v+(π − θ, φ + π ) = v−(θ, φ) (12a)

vi(θ, φ + 2π ) = vi(θ, φ). (12b)

Graphically speaking, we have to exit in the same “direction”
that we came in towards the degeneracy. This is the exact
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FIG. 3. The top panel shows the line degeneracies as dashed
alternate colored lines for H3. Red-green-blue stand for bottom, mid-
dle, and top bands, respectively. The following three panels show the
band structure for generic 2d cuts that intersect the line degeneracies
highlighted in the topmost panel.

same behavior as shown in Fig. 1 in one higher dimension.
We notice here that Eq. (12a) conveys the same information
as the changing sign of mass [32] in a different way. Finally,
the generalized domain restatement will now consist of two
copies of the px-py-pz space joined again at the point degener-
acy with the above analyticity relations [Eqs. (12a) and (12b)]
as the rules to move in this generalized domain.

B. Nexus analyticity

Now, we tackle the main case of 3d Nexus triple points.
Using SU (3) generators 	i (the Gell-Mann matrices [33]) for
brevity, the 2d Nexus system [Eq. (1)] looks like

H (p) = px(	1 + 	4 + 	6) + py(	2 + 	5 − 	7). (13)

To this, we start by adding a diagonal 	3 “mass” term linear
in pz (in analogy with pzσz for the Weyl case) such that we get
a 3d Nexus triple point. Thus we have

H3(p) = H (p) + pz	
3. (14)

Figure 3 shows the line-degeneracy structure and the triple
point given by Eq. (14).

Similar to the Weyl discussion, we will discuss (1) how the
(generic) 2d cross sections away from the triple point evolve
as we cross the triple point [24] and (2) what are the analyt-
icity relations that characterize the presence of triple points.
We will sometimes refer to them as topological defects or
monopoles in analogy with Weyl point degeneracies (Sec. IV
will give a topological characterization of these defects). Also,
line degeneracies are extended topological defects present in
the Nexus system [16]. Reference [16] gave a Z2 topological
charge to the line degeneracy by computing a Z2 topological
invariant (cf. Eq. (1) in Ref. [16]) on a d − 2 = 1 dimensional
loop around the line degeneracy. One can also compute a chi-
ral winding number [34] on such loops which is a Z invariant
[25,30,35].

The eigensystem formula for H3 is comparatively more
involved than the Weyl eigensystem [Eq. (11)] and we do
not write it down explicitly. The exact details are not relevant
to understand the analyticity properties. Figure 3 shows the
evolution of (generic) 2d cuts across the triple point. We see
that on one side the top and middle bands are joined by a Dirac
point with the bottom band as standalone, while on the other
side the bottom and middle bands are joined by a Dirac point
with the top band as standalone. The triple point is thus to
be thought of as a defect which separates these two different
behaviors. We can think of these behaviors as two different
SU (2) groups [36], one involving middle and top bands and
another involving middle and bottom bands. In comparison
to the Weyl degeneracy, where the sign of the Dirac mass
changes on either side, here the triple point degeneracy is
changing one type of SU (2) defect to the other type.

To write down the analyticity relations for the H3 triple
point, we will again be motivated by how the family of 2d
systems on cross sections that include the triple point inter-
polate among each other. There are two such examples: One
shown in Fig. 3 and another shown in Fig. 4. We see that
certain cross sections will resemble the 2d Nexus system (as
in Fig. 4), while certain cross-sections will resemble a SU (2)
spin-1 system (as in Fig. 3).

For the 2d Nexus-like cross sections, the analyticity rela-
tions are given by Eq. (8) [and Eq. (9)], while for the 2d spin-1
cross sections, they are

vtop(θ + π ) = vbottom(θ ) (15a)

vmiddle(θ + π ) = vmiddle(θ ) (15b)

and clearly also the relation vi(θ + 2π ) = vi(θ ). We note here
that Eq. (15b) captures the spin-1 nature as opposed to a
twofold Dirac degeneracy and a third standalone band.

To give a different example, we quickly look at the case of
adding a diagonal 	8 “mass” term

H8(p) = H (p) + pz	
8. (16)

For this case, there is line degeneracy along the px axis as
well as the pz axis connected to the triple point degeneracy.
[One can easily see the pz-axis degeneracy coming from the
eigenspectrum of H8(px = 0, py = 0, pz ).] This is illustrated
in the top panel of Fig. 5. Generic cross sections for H8(p) will
contain two Dirac points either on the same pair of bands or
on different pairs of bands always involving the middle band.
We can again define analyticity relations similar to Eqs. (8),
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FIG. 4. This figure shows cuts with the fine tuning such that the
plane is parallel to the line degeneracy instead of generic cuts as in
Fig. 3. There are only two types of cuts and the corresponding 2d
band structures are shown in the following panels.

(9), and (15b) for corresponding cross sections containing the
triple point.

Finally, we end this section with the generalized domain
restatement for the 3d Nexus systems discussed above. It will
consist of three copies of px − py − pz space which are joined
appropriately at the line degeneracies (for both H3 and H8)
and the triple point, with the above analyticity relations giving
us unambiguous rules to move in this generalized domain. In
the next section—where we build a characterization scheme
for Nexus triple points—we will restrict ourselves to a d −
1 = 2 dimensional closed surface enclosing the triple point
as is done for the Weyl case. Again the analyticity relations
will come to our aid to govern how to move smoothly in this
(generalized) 2d surface.

IV. CHARACTERIZATION

In the previous sections, we established the rules to move
smoothly in our parameter space. Here, parameter space refers
to the generalized domain. In this section, we will describe
a (topological) characterization scheme for different kinds of
Nexus triple points by making use of these rules. Given a
Nexus system, the basic idea will be to consider an enclosing
surface around the triple point in the generalized domain. As
remarked at the end of the previous section, the enclosing
surface in the generalized domain consists of three copies
of the surface (e.g., spheres) joined at the points where the
line degeneracies cross them. On this generalized enclosing
surface, we will categorize the various topologically distinct
ways in which one may analytically loop back to the start

FIG. 5. The first panel shows the line degeneracies for H8 using
a similar convention as Fig. 3. The enclosing surface on the original
domain is also shown as the gray sphere. The second panel is the
plot of the energy spectrum on the enclosing surface parametrized by
θ, φ. The third panel shows the enclosing surface in the generalized
domain which consists of three copies of the original enclosing
surface connected to each other at the intersection points with the
underlying line degeneracies. There are four different shaped points
on these spheres representing the four connecting points.

point. This is reminiscent of the concept of homology classes
of 1-cycles [37] in topological classification of geometric ob-
jects. A very familiar example of this are the nontrivial loops
that one draws on a torus that cannot be shrunk to a point,
whereas on a sphere there are no such loops. Importantly, the
analyticity relations discussed before allow us to focus only
on the enclosing surface to capture the topological data of
the wave-function geometry without the full knowledge of the
wave functions themselves.

Let’s start with H8 in this case. The enclosing surface for
this is shown in Fig. 5. Let us imagine drawing topologically
distinct loops on this. Clearly there exist (trivial) loops that
can be shrunk to a point (not shown in the figures). H8 also
hosts nontrivial loops which are shown in Fig. 6. We see there
are two kinds of loops:

(1) those that stay on the same sphere. The drawing of
such loops relies on the index-preserving kind of analytic
relations.

(2) those that straddle different spheres. The drawing of
such loops relies on the index-connecting kind of analytic
relations.
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FIG. 6. This figure shows the homological characterization of
noncontractible loops for the case of H8 triple point. The first panel
shows the loops which do not touch any connecting point. The
second panel has all the loops which touch exactly two connecting
points. Loops touching only one connecting point are not possible
because of Fig. 1. The third and the fourth panel shows two different
kinds of loops which touch all the connecting points.

Close to the connecting point on the 2d enclosing surface,
we can imagine a small flat coordinate patch giving us our
local coordinate system in which we may use Eq. (6). There-
fore, in the drawing of the loop through the connecting point,
we have to use the step illustrated in Fig. 1. A corollary is
that there cannot be a nontrivial loop on a single sphere that
touches the Dirac-like connecting point.

With these basic steps in hand, we can enumerate all the
nontrivial homological classes, and they are shown in Fig. 6.
There are three categories of nontrivial loops. They are

(1) loops involving only two connecting points; they can
be either on the left-middle sphere pair or middle-right sphere
pair.

(2) loops involving all the connecting points; the two con-
necting points on the left and right spheres have to be joined,
while on the middle sphere we have the two choices shown in
Fig. 6.

(3) loops on the same sphere that enclose the connecting
points.

For the case of H3, the generalized enclosing surface is
shown in the second panel of Fig. 7. For this case there is only
one possible noncontractible loop in the middle sphere. This
captures the band topology of H3 and shows its distinction
from H8 (and other cases). From the above discussions, we
can immediately conclude that the 	8 triple point and two

FIG. 7. The top panel shows the enclosing surface in the orig-
inal domain for H3. In the generalized domain, the corresponding
enclosing surface consists of three connected spheres with associate
connecting points as shown in the second panel. There is only one
noncontractible loop that can be drawn in the middle sphere. Any
loop on the left and right spheres can be contracted to a point. On the
noncontractible loop, one can calculate the Berry phase which will
turn out be ±π .

different 	3 and 	̃3 triple points inside the enclosing surface
are not topologically different. In our scheme, the distinction
between different topological cases are categorized using the
noncontractible loops or 1-cycles. The number of distinct
loops only depends on the number (and kind) of the connect-
ing points (Dirac-like, or possibly QBT as in the examples to
follow) on the enclosing surface. Thus one cannot distinguish
between a pair of 	3, 	̃3 triple points and a single 	8 triple
point which gives us a thumb rule for composition of these
triple point topological defects.

We end with an application of our scheme to recent Nexus
triple points discussed in the literature which have possible
material realizations [15]. For the type II nexus system as
notated by Chang et al., there are four line degeneracies
coming out of the triple point: One along the z axis and
the other three oriented at 2π

3 angular separation about the z
axis lying in high symmetry planes. See Eqs. (2) and (3) in
Ref. [15] for the low-energy Hamiltonian and Fig. 1 for the
line degeneracy structure. This happens due to the presence
of C3z crystal symmetry [15,24]. In this case, the generalized
domain for the surface enclosing the triple point degeneracy
will have three spheres connected to each other at the points
where they intersect the line degeneracies. The topology of
this system can thus be similarly understood using the ho-
mology classes as discussed above. On this surface the loops
are again of three main types (diagram not shown due to
proliferation of noncontractible loops): (1) loop enclosing
one connecting point, (2) loop spanning two spheres, (3)
loop spanning through three spheres. Even though these three
types were also present in the case of H8, the count of each
type is different which topologically distinguishes the two
cases.

235148-7



ANKUR DAS AND SUMIRAN PUJARI PHYSICAL REVIEW B 102, 235148 (2020)

FIG. 8. The homology classes of the Nexus type I triple point
[15]. The first panel shows noncontractible loops that do not touch
any connecting points. The second panel shows loops that touch only
one connecting point. The third panel shows a loop which touches
two connecting points. The loop drawing for this case follows the
rule in the bottom panel of Fig. 2.

The case of type I as notated by Chang et al. is worth
noting. The generalized enclosing surface in this case looks
similar to that of H3 (Fig. 7). However, the characterization
of noncontractible loops is different than the H3 case. This
is due to the degeneracies being QBT-like in this case [15].
Thus while drawing the loops, we have to follow the rule
as shown in Fig. 2’s bottom panel. This allows for a new
kind of noncontractible loop on the same sphere which goes
through the connecting point. We show the various possible
loops in Fig. 8. This new kind of loop as in the middle and
bottom panel of Fig. 8 is not possible when the connecting
points are Dirac-like because in that case we are necessar-
ily forced to go to the connected sphere due to analyticity
(Fig. 1). We remark here that Ref. [15]’s statement that the
line degeneracies are characterized by a 2π Berry phase does
not paint the full picture. Such a characterization strictly can
only be applied to the noncontractible loop shown on the top
panel of Fig. 8 and not in general. Our scheme helps to make
clear which loops have a topological property based on ana-
lyticity. Once we have such loops in hand, we may compute
familiar topological invariants [16] on the gapped ones among
them.

V. CONCLUSIONS AND DISCUSSIONS

In summary, we laid a general scheme to describe the
band topology of the so-called Nexus triple point fermions.
This was based on an understanding of the analyticity prop-
erties near (line) degeneracies which are an integral part of
the Nexus band structure. This scheme is built on the in-
sight gained in Ref. [27] where we could see the analyticity
properties near a line degeneracy explicitly. The discussion
started with the known cases of Dirac and QBT bands in 2d

in Sec. II. We use analyticity to define a generalized domain
where we go smoothly across the “connecting” points at the
degeneracies (see Fig. 1). We emphasise that in the original
domain there is a nonanalyticity in the space of wave functions
at a (nonaccidental) degeneracy which is then considered a
topological defect. In the generalized domain, however, this
issue is not there. For the 2d Nexus case, the generalized do-
main is a familiar object—Riemann surfaces associated with
z1/3—known from the study of complex analysis. However,
the general idea is applicable in any situation. So we take this
scheme to 3d and define generalized domains for 3d Nexus
triple points in Sec. III.

In analogy with Weyl points and Chern numbers on associ-
ated enclosing surfaces, we characterize the 3d Nexus points
by enclosing them in the generalized domain (see bottom
panel of Figs. 5 and 7) in a departure from existing literature.
Section IV describes the triple point defect topology in terms
of noncontractible loops that can be drawn on this enclos-
ing surface. These are the 1-cycle homology classes of the
generalized domain. Different Nexus triple points have their
unique data of these 1-cycle homology classes. This discrete
set of data gives the triple point its topological character,
since they will be stable to small deformations of the Hamil-
tonian. We reiterate here again that this way of describing
the topology is actually more general (e.g., we can enclose
multiple Nexus points, etc.), however, we have principally
concerned ourselves with single Nexus triple points. Line
degeneracies on the other hand are characterizable by using
topological invariants defined on the gapped loops around
them [16]. Our enclosing scheme is finally applied to exam-
ples of Nexus triple point in the literature which has possible
material realizations [14,15], whereas only the topology of
gapped enclosing loops around the line degeneracies and their
evolution across the triple point had previously been discussed
[14,15,24].

A. Surface Fermi arcs

This final result of our paper provides an answer to the
question of Fermi arc protection in Nexus systems that was
raised by Ref. [15]. We restrict our discussion to the zero or
weak spin-orbit coupled case for simplicity as in type I of
Ref. [15]. However, there can be more general situations with
multiple triple points in a multiband system in the presence
of spin orbit coupling [14], where the Fermi arcs can be
more elaborate, whose exact structure depends on the actual
details of the band structure. For the restricted case, the Nexus
triple points are topological in nature, therefore the associ-
ated surface arcs will be protected and will necessarily go
through the surface projections of the Nexus triple point. We
can already conclude that there will at least be two protected
Fermi arcs because of the following: In the case of a Weyl
system, we know that the total Chern number of filled bands
on 2d cross sections changes across the Weyl point which
leads to the existence of the Fermi arcs (see Sec. II C 1 of
Ref. [6]). For a Nexus system with the Nexus points assumed
to lie close to the Fermi level, there will be two filled 2d
bands on generic cross sections on one side, while there will
be a single filled 2d band on the other side as already seen
in Sec. III. Now, the total Chern number of the filled bands

235148-8



TOPOLOGICAL CHARACTER OF THREE-DIMENSIONAL … PHYSICAL REVIEW B 102, 235148 (2020)

on either side is zero. Thus, there cannot be a nonzero Hall
conductance. However, the two filled bands have a nonzero
chiral winding number (Sec. III B), while the single filled
band does not have any such winding. Due to this winding
number change across Nexus points, there will be at least
two counterpropagating zero modes on the 2d boundary to
ensure that the Hall conductance is zero, thereby leading to
two surface Fermi arcs on the 3d boundary. The presence of
two surface arcs has been seen in numerics [14,15]. An inter-
esting question remains as to the effect of the chiral winding
number on the charge of these edge modes. We conjecture
that the charge may not be unity for higher chiral winding
numbers.

B. Outlook

We end with some discussion on the conceptual issues that
still remain to be understood. One thing that we have puzzled
over is whether there exists a Chern number like description
of the Nexus triple point topology by making use of the Berry
connection/curvature technology, in spite of the absence of
a gapped enclosing surface which motivated the entire line
of reasoning in this paper. Instead of thinking as a single
analytic “band” defined on the generalized domain which gave
us our homological characterization scheme, if we think of
three bands on the conventional domain, then the Dirac points
are like monopoles on the enclosing surface. The associated
Berry curvature will thus diverge at the degeneracy points on
the sphere. So the integral of the Berry curvature over the
sphere is not guaranteed to be well defined. Could there still be
a finite piece in this integral which may capture the underlying
topological nature?

Another approach could instead be to consider a non-
Abelian characterization. In fact, this approach can be
implemented for the 2d example H introduced in Sec. II [38].
A similar implementation in 3d is not yet clear to us, but
we may anticipate a matrix of topological charges instead
of a single scalar charge. Finally, some other mathematical
machinery might be useful that we don’t anticipate yet.

We end with some final thoughts on connecting the ho-
mological loops to possible experimental observable. As
mentioned before, the topological character of degeneracies
in the bulk have profound effects on the surface states. Thus
for the case of the Nexus triple point, we may specifically ask
how the homological loop classes identified in this paper—
especially the ones which live on multiple spheres—affect
the surface states. Each homological class may leave its own
distinct imprint on the surface states which can perhaps be
identified in experiments or simulations. Of course, the effect
of electron-electron interactions [39] or disorder on Nexus
fermions are yet to be fully explored.
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