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Peierls versus Holstein models for describing electron-phonon coupling in perovskites
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We use the momentum average approximation together with perturbative approaches, in the appropriate limits,
to study the single polaron physics on a perovskite lattice inspired by BaBiO3. We investigate electron-phonon
coupling of the Peierls type whereby the motion of ions modulates the values of the hopping integrals between
sites and show that it cannot be mapped onto the simpler one-band Holstein model in the whole parameter space.
This is because the dispersion of the Peierls polaron has sharp transitions where the ground-state momentum
jumps between high-symmetry points in the Brillouin zone, whereas the Holstein polaron always has the same
ground-state momentum. These results imply that careful consideration is required to choose the appropriate
model for carrier-lattice coupling in such complex lattices.
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I. INTRODUCTION

Materials with perovskite structure ABO3 are known to
have a wide variety of extraordinary properties, ranging
from unconventional high-temperature superconductivity in
cuprates [1–4], to an unusual metal-to-insulator transition
in rare-earth nickelates [5], to colossal magnetoresistance in
manganites [6,7], to multiferroic behavior [8], among others.
Many of these properties are believed to arise from the inter-
play of charge, spin, orbital, and lattice degrees of freedom
and of their various interactions. A full detailed treatment of
all this complexity is still unfeasible, resulting in the urgent
need to identify simpler but useful models. For instance, is it
ever necessary to consider the full multiplet structure for rare
earths with partially filled shells, or does it suffice to include
explicitly only one/few of them, with a simplified description
for correlations? One well-known example where this kind of
question is relevant is the cuprates, where most models only
consider the 3dx2−y2 orbital for Cu [9–11]. Even more basic
is the question of which of the constituent elements need to
be included in the modeling. To continue with the example of
the CuO2 layer, even though it is well known that the doped
holes are mostly on the anions, most models do not explicitly
include them. Another example are the rare-earth nickelates,
where only recently it has become clear how essential it is
to include the oxygen ions in the model [12,13]. Of course,
answers will vary from one material to another, but it is im-
portant to ask such questions and to understand when certain
approximations may be valid and when they are certainly not.

In this work, we focus on the modeling of the electron-
phonon coupling. To keep the discussion specific, from now
on we will use the perovskite BaBiO3 as our inspiration,
although much of the following discussion applies to other
perovskites as well. BaBiO3 is a good choice because (i) it has
no complications from strong correlations and/or spin-orbit
coupling (for reasons detailed in the next section), and (ii) the

electron-phonon coupling is believed to be strong in this mate-
rial, and in fact K-doped BaBiO3 has a record high (at ambient
pressure) TC ≈ 35 K for a superconductor with a phonon
glue. The reason for this high value of TC is not yet settled:
Conventional density functional theory (DFT) results predict
a much too weak coupling [14–19], although a more local
molecularlike description of the electronic structure yields a
substantial electron-phonon coupling [20].

However, it is not just the strength of the coupling that
is still controversial but also its very form. This issue is
directly linked to the one we referred to above, of how to
model the crystal itself. Early work on BaBiO3 assumed that
the O 2p orbitals are full and that therefore only the Bi 6s
orbitals are valence orbitals, because conventional counting
gives Bi4+ with 6s1 electronic structure in the undoped parent
compound. A naive, purely electronic model would therefore
predict a metallic ground state, with a half-filled valence
band described by tight-binding hopping tss between neighbor
Bi sites.

This, however, is inconsistent with the experimental obser-
vation of an insulating ground state, with alternating Bi sites
surrounded by expanded and collapsed O octahedra, respec-
tively. This phenomenology can be accounted for by adding
electron-phonon coupling to the model. The lattice distortion
is provided by displacements of the O ions along their Bi-O-Bi
bond. This makes sense not just because it is consistent with
the experimental observation but also because O is the lightest
ion and thus the most mobile one.

The assumptions that the valence electrons are on Bi while
the phonons are on O, essentially fix the form of the possible
electron-phonon coupling: Charge fluctuations on the Bi are
associated with “breathing-mode”-like distortions of the O
octahedra. One drives the other through Coulomb interactions,
resulting in an undoped insulating ground state with alternat-
ing Bi3+/Bi5+ surrounded by expanded/collapsed octahedra,
respectively. This so-called Rice-Sneddon electron-phonon
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coupling model was extensively used to investigate the for-
mation and properties of polarons and bipolarons in BaBiO3

[21–24]. Subsequently, it was shown to map exactly onto
a generalized Holstein model [25]. This has one effective
(symmetrical) optical boson mode per octahedron, and a
Holstein-like coupling gi j between the density of electrons
n̂i at Bi site i and the distortion b†

j + b j associated with this
symmetric phonon of the octahedron surrounding the Bi site j,
where gi j decreases very fast with the distance �Ri − �Rj . Thus,
to very good accuracy, the Rice-Sneddon model is equivalent
to a standard Holstein model [26] with gi j = δi jg, and indeed
this was then used to study the optical properties of BaBiO3

and the metal-insulator transition in hole-doped BaBiO3 [27].
Generically, electron-phonon coupling arises not just from

the modulation of the electron’s onsite energy like described
by the Rice-Sneddon and Holstein models (from now on,
for simplicity, we will only list the Holstein coupling as the
representative of this class of models). It also arises because
lattice distortions modulate the hopping of the electron, i.e.,
its kinetic energy, as originally noted by Barisic et al. [28]
However, we emphasize that with the assumptions that the
valence electrons are on Bi while the phonons are on O, we
do not expect this latter type of electron-phonon coupling to
be important. Naively, one could say that because the Bi ions
are fixed, there cannot be any modulation of the tss between
neighboring Bi. Of course, in reality the hopping proceeds
through the ligand O site, and so tss ∝ tsptps/�, where tsp and
tps are the hoppings between the first Bi and the ligand O,
and the ligand O and the second Bi, respectively, while �

is the charge transfer energy. Both tsp and tps are modulated
by the displacement of the O, however to first order these
modulations cancel each other because increase of the Bi-O
bond length implies a decrease of the O-Bi bond length and
vice versa.

Thus, to the extent that a perovskite ABO3 is well modelled
in terms of valence orbitals on the B sites and optical phonons
on the O sites, the dominant electron-phonon coupling must
be of Holstein type (or the more sophisticated, but essentially
equivalent, Rice-Sneddon type). This model becomes very
accurate in the limit where the ratio tsp/� → 0, as this is the
condition for the O bands to be placed well below the Fermi
energy (in the electron picture) and therefore be completely
full.

In many (arguably most) perovskites, this ratio is not
extremely small. Instead, typically there is significant hy-
bridization between the B site and the ligand O, meaning
that at least the O2pσ ligand orbital must be included into
the set of valence orbitals, thus turning the prior one-band
model into a many-band model. In particular, for BaBiO3,
recent DFT results from Foyevtsova et al. [29] and Khazraie
et al. [30] have highlighted this strong hybridization between
O and Bi which gives rise to the bond-disproportionated
state where holes reside on the O sites in “molecularlike”
orbitals.

The addition of the O2pσ ligand orbital in the set of va-
lence orbitals is easy to account for, so far as the electronic
component of the model is concerned. The minimal hopping
Hamiltonian is now described by tsp hopping between neigh-
bor O and Bi sites, and tpp hopping between neighbor O sites
(for more details, see next section) and is supplemented by a

charge transfer energy � characterizing the energy difference
between the two sets of orbitals. Of course, onsite repulsion
should also be included if correlations are important, but this
is not the case for BaBiO3.

However, the explicit inclusion of the O orbitals signif-
icantly complicates the description of the electron-phonon
coupling. The Holstein coupling described above is still ex-
pected to be present but is now supplemented by the second
type of coupling which modulates both the tsp and tpp hop-
pings as O ions move. For brevity, we call this the Peierls
coupling, although as already mentioned, it was first proposed
by Barisic et al. [28] and was then used with great success
to study polyacetylene within the Su-Schrieffer-Heeger model
[31,32].

This complication of having both Holstein and Peierls
electron-phonon coupling would be significantly mitigated if
it could be shown that the Peierls coupling [28,31,32] can
also be effectively reduced to a Holstein-like coupling. In that
case, electron-phonon coupling in perovskites would be well
described by a Holstein model, with a coupling strength g that
accounts for both components.

In this work, we consider precisely this question of whether
the Peierls [28,31,32] and Holstein models are equivalent. We
are unable to provide accurate results in the physically rele-
vant limit of half filling, i.e., when there is one hole per unit
cell. This is because computational methods are still unable to
deal with 3D lattices and quantum phonons; the current state
of the art is a rather small 2D Lieb lattice cluster, see Ref. [33].
On the other hand, we do have access to accurate approx-
imations in the single carrier limit. Hence, we consider the
extreme case when there is a single hole in the entire system
(effectively zero carrier concentration, for an infinite lattice),
because here we can study the properties of the resulting po-
laron sufficiently accurately to draw unequivocal conclusions.
Moreover, we investigate the behavior of our model in the
wider parameter space, including regions that are far from
where BaBiO3 is expected to be located. This is partially
due to technical reasons, as the variational approximation that
we employ becomes more accurate for phonon frequencies
comparable to, or larger, than the electronic bandwidth. As
we show, the behavior of interest to us evolves smoothly with
decreasing phonon frequencies, so some inferences can be
made about what happens in the adiabatic limit. Nevertheless,
it is important to find other methods that are reliable in this
limit to separately verify our conclusions.

A second reason to study models with relatively narrow
bandwidths is the concerted effort in modern condensed mat-
ter physics to develop so-called “flat-band” materials like
twisted graphene or ordered impurity-based midgap bands in
semiconductors or insulators. In such materials, the effective
bandwidths can be comparable to or smaller than the phonon
frequencies, and our results would be directly relevant to
them.

Our results demonstrate that in certain regions of the pa-
rameter space, the Peierls model [28,31,32] on a perovskite
lattice exhibits single polaron behavior that is impossible to
reproduce with a Holstein model. Specifically, as the electron-
phonon coupling is increased, the polaron dispersion changes
its shape such that the ground-state momentum switches from
its free-carrier value to another high-symmetry point in the
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FIG. 1. (a) Sketch of the model for an infinite 3D lattice, showing
s orbitals at the B sites, and the ligand 2p orbitals at the O sites. The
A sites are ignored. (b) Our choice for the unit cell i has an s orbital
labeled by si and three 2p orbitals labeled xi, yi, and zi along the three
ligand bonds.

Brillouin zone. Such discontinuous, sharp transitions are im-
possible to occur in the ground-state properties of a Holstein
polaron [34]. Based on this result, we conclude that the Peierls
model cannot always be replaced with a Holstein model when
studying a perovskite system.

This being said, it is important to emphasize the caveat
that our study is in the single-polaron limit. It is possible that
at finite carrier concentration, the mapping between Peierls
[28,31,32] and Holstein couplings might be valid for some
other reasons—however, this has to be explicitly verified.
To the best of our knowledge, there is no work addressing
this question. We also emphasize that there are regions of
the parameter space (including the region where BaBiO3 is
believed to be located) where the single polaron ground-state
momentum equals the free-carrier value, and therefore a Hol-
stein model may be sufficient to mimic the polaron behavior
for a correct choice of effective parameters. (This statement
still remains to be verified at half filling).

The key result of our study is that equivalence between
Peierls and Holstein models is not guaranteed for perovskite
materials, therefore one must either explicitly include the
Peierls coupling [28,31,32] in the model, or one must do
detailed work to justify the use of a Holstein model as a
reasonable description of the electron-phonon coupling for
that specific material (set of parameters).

The paper is organized as follows: In Sec. II we intro-
duce our model, in Sec. III we describe the various methods
we used to study it, and in Sec. IV we present the results.
Section V contains the discussion and conclusions. Technical
details are relegated to the appendices.

II. MODEL

We use the following approximations to model the generic
perovskite ABO3:

(i) Sites A are taken to be irrelevant for the physics of
interest to us and are ignored. Physically, this implies that
electronic bands with dominant A character are lying well be-
low and/or well above the Fermi energy. For BaBiO3, which is
our main inspiration, this is a good approximation. It reduces
the lattice of interest from a full perovskite to the BO3 lattice
sketched in Fig. 1(a).

(ii) For the B sites, the relevant electronic orbital is non-
degenerate and spatially well spread out, so that the onsite
Hubbard repulsion can be safely ignored. This is a good ap-
proximation for BaBiO3, where this is the Bi:6s orbital. From

now we will call this the “s” orbital, and denote by s†
i,σ the

creation operator for a hole with spin σ in this orbital of the
atom B in the unit cell i.

(iii) At each O site, we only keep in the model the 2pγ

orbital with ligand character, i.e., γ = x, y, z for the O located
on bonds parallel to x, y, z, respectively. We will refer to this
as the x, y, or z orbital and use either the generic γ

†
i,σ operator

when referring to any of the three O in the unit cell i or the
specific x†

i,σ , y†
i,σ , z†

i,σ for the creation operator associated with
adding a hole to the O located on the x, y, z bond of unit cell
i, see Fig. 1(b).

(iv) We ignore all phonon modes that are primarily located
on A and B sites and instead keep only the optical phonon
describing longitudinal (parallel to its ligand bond) oscilla-
tions of each O. The first part is reasonable as the A and B
atoms are much heavier than O, so we expect their motion
to mostly contribute to very low-energy phonon modes which
do not couple strongly to the hole’s motion (see below). The
second part is justified because to first order, one can think of
each O as oscillating longitudinally between its two immobile
B neighbors, with a characteristic frequency � that is the
same at all O sites. For a crystal, this is equivalent with an
Einstein phonon mode of frequency � on the O sites. In the
following, we will denote the phonon creation operator for the
γ = {x, y, z} O site in unit cell i as b†

i,γ .
In this work, we focus on the effect of this phonon mode

on the hybridization between neighbor O and B sites, as well
as neighbor O sites. The resulting electron-phonon coupling
is known as a Peierls coupling [28,31,32] and should be
contrasted to the Rice-Sneddon model that focuses on the
modulation of the onsite energy of a hole located in the s
orbital, due to oscillatory motion of adjacent O. As discussed
in the Introduction, the latter has been argued to be well
modelled by an effective Holstein coupling on a simplified
cubic lattice with only B sites included. Our results discussed
below show that this equivalence with a Holstein model does
not hold for the Peierls coupling in a considerable region of
the parameter space.

To summarize, the Peierls model that we study is:

Ĥ = Ĥ0 + V̂ , (1)

where

Ĥ0 = �
∑
i,γ

b†
iγ biγ − �

∑
i,γ

γ
†
i γi + Tsp + Tpp (2)

describes the Einstein phonon modes (we set h̄ = 1), the
charge-transfer energy � between p and s atomic orbitals, and
the nearest neighbor (nn) s-p and p-p hopping, respectively,
while

V̂ = Hsp + H pp (3)

is the Peierls electron-phonon coupling [28,31,32] describing
the modulation of the s-p and p-p hoppings due to the O
vibrations. Specifically:

Tsp = t
∑
i,γ

s†
i (γi − γi−γ ) + H.c.

Tpp = −tp

∑
i,γ

γ
†
i (γ ′

i − γ ′
i−γ ′ − γ ′

i+γ + γ ′
i+γ−γ ′ ) + H.c.
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Hsp = −αt
∑
i,γ

[γ †
i (si + si+γ )(b†

iγ + biγ ) + H.c.]

H pp = βtp

∑
i,γ

[γ †
i (γ ′

i − γ ′
i−γ ′ + γ ′

i+γ − γ ′
i+γ−γ ′

+ γ ′′
i − γ ′′

i−γ ′′ + γ ′′
i+γ − γ ′′

i+γ−γ ′′ )(b†
iγ + biγ ) + H.c.],

where we use the short-hand notation:

γ ′ =
⎧⎨
⎩

y, if γ = x
z, if γ = y ;
x, if γ = z

γ ′′ =
⎧⎨
⎩

z, if γ = x
x, if γ = y
y, if γ = z

in the above sums. We note that here and in the following
we ignore the spin degree of freedom σ of the hole, which is
irrelevant in the one-hole limit we study below.

Apart from �, the parameters are the charge-transfer en-
ergy � and the hopping integrals t and tp for s-p and p-p
hopping, respectively, when the O are at their equilibrium
positions. The latter are negative numbers t, tp < 0 for holes,
with the additional signs due to the orbitals’ overlaps explic-
itly written in the Hamiltonians above. Similarly, α and β

characterize the electron-phonon couplings coming from the
modulation of the s-p and p-p hoppings when the O are dis-
placed out of their equilibrium positions. For holes, α, β > 0
and according to Harrison’s rule, β = α/2 [35].

Finally, we note that the single electron case can be treated
similarly, by appropriately changing the signs of the hoppings.
In fact, it can be shown that the Hamiltonian with tp = 0 is
particle-hole symmetric, and thus the results are identical.
A finite tp breaks this symmetry so there will be quantita-
tive, but not qualitative, differences between the single-hole
and single-electron results. These will not affect our main
conclusions.

The BO6 cluster model

Density functional theory (DFT) studies of BaBiO3 re-
vealed that the most important hybridization is between the
s orbital and the linear combination of neighbor O p orbitals
with A1g symmetry [29]. This stabilizes “molecular”-like or-
bitals with s + pA1g character and suggests a possible mapping
onto a simple cubic lattice by retaining only the lowest such
state for each BO6 cluster.

To test this hypothesis, we also investigate a single BO6

cluster and the effects of Peierls coupling [28,31,32] on its
spectrum. The Hamiltonian is that of Eq. (1) when limited to
a single B site and its 6 O neighbors. For convenience, for the
cluster case we choose a different convention for the signs of
the 2p orbitals’ lobes, as shown in Fig. 2.

The corresponding cluster model is:

H = �

6∑
i=1

b†
i bi + �s†s −

6∑
i=1

t (s† pi + p†
i s)

−
6∑

i=1

αt (s† pi + p†
i s)(b†

i + bi )

− tp

∑
i=1,3,5

[(p†
i + p†

i+1)(pi+2 + pi+3) + H.c.]

FIG. 2. BO6 cluster with the central s orbital surrounded by six
p ligand orbitals. Note that for convenience, here we use a different
convention for the signs of the p1, p4, and p6 orbitals than used in the
lattice case depicted in Fig. 1.

− βtp[[p†
6(b†

6 + b6) + p†
5(b†

5 + b5)](p4 + p3)

+ (p†
5 + p†

6)[p3(b†
3 + b3) + p4(b†

4 + b4)] + · · · ], (4)

where i labels are cyclic with period 6. We only list here a few
of the terms in H pp (the last two lines); the full expression
is given in Appendix A. All the parameters have the same
meaning as in Hamiltonian (1).

The cluster Hamiltonian can be written more simply in
terms of hole and boson operators consistent with its sym-
metry. We define the new hole operators:

P1 = 1√
6

(p1 + p2 + · · · + p6)

P2 = 1√
12

(2p1 + 2p2 − p3 − p4 − p5 − p6)

P3 = 1√
4

(p5 + p6 − p3 − p4)

P4 = 1√
2

(p6 − p5)

P5 = 1√
2

(p4 − p3)

P6 = 1√
2

(p1 − p2)

and similarly for the boson operators: B1 = ∑6
i=1 bi, etc. P†

1
creates a hole in the linear combination of O 2p orbitals with
A1g (s-like) symmetry, P†

2 and P†
3 correspond to the Eg terms

with d3z2−r2 and dx2−y2 symmetry, respectively, and P†
4 , P†

5 and
P†

6 correspond to the T1u terms with px, py, and pz symmetry,
respectively. We define the new bosonic operators Bi similarly.

In the new basis, the cluster Hamiltonian becomes:

H = �

6∑
i=1

B†
i Bi + �s†s − T (s†P1 + P†

1 s)

− αt
6∑

i=1

(s†Pi + P†
i s)(B†

i + Bi )

− tp(4P†
1 P1 − 2P†

2 P2 − 2P†
3 P3)

− βtp

(√
8

3
(B†

1 + B1)(2P†
1 P1 − P†

2 P2 − P†
3 P3) + · · ·

)
,

(5)
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where the dots in the last line refer to terms involving phonon
operators Bi + B†

i with i �= 1, i.e., the other Eg and T1u sym-
metries are included. The complete Hamiltonian can be found
in Appendix A. Note that because of the pp hopping, the
effective charge transfer energy between the s and the P1

molecular orbital is �1 = � + 4tp, whereas for the Eg molec-
ular orbitals, the effective charge transfer energy is �2 =
�3 = � − 2tp.

The third term shows that indeed the s orbital only hy-
bridizes with the P1 molecular orbital with the same A1g

symmetry, and the effective hopping is T = √
6t . However,

because the presence of deformations breaks this symmetry,
the Peierls α electron-phonon coupling [28,31,32] allows hop-
ping between the s and any of the Pi orbitals, if bosons with
the same symmetry i are either already present or are being
created during the process—see terms on the second line.
Terms generated by the modulation of the p-p hopping can
be understood similarly.

III. METHODS

We studied the models described above by a variety of
means which we briefly review here, with full details relegated
to various Appendixes.

A. Perturbation theory for the lattice case
in the antiadiabatic limit

In the antiadiabatic limit where � is the largest energy
scale, we can use perturbation theory to project out the high-
energy states with one or more phonons to obtain an effective
Hamiltonian describing the motion of the polaron. The result-
ing analytical dispersion is useful because it allows us to gain
intuition about the behavior of the polaron in this limit, as
discussed below.

We partition the Hamiltonian into Ĥ = ĥ0 + ĥ1, where
ĥ0 ≡ �

∑
i,γ b†

iγ biγ is the large part, and ĥ1 includes all the
other terms and is treated as the perturbation. Using standard
second order perturbation theory (PT) [36], we obtain the
low-energy effective Hamiltonian to be:

ĥ = ĥ0 + P̂0ĥ1P̂0 + P̂0ĥ1
1 − P̂0

E0 − ĥ0
ĥ1P̂0 + O

(
1

�2

)
,

where P̂0 is the projection operator onto the highly-
degenerate, one-hole ground state manifold of ĥ0, i.e.,
zero-phonon states with energy E0 = 0.

After carrying out these calculations, we find that ĥ =
−�

∑
iγ γ

†
i γi + Tsp + Tpp + δĥ + O( 1

�2 ) where:

δĥ = − α2t2

�

∑
jγ

(s̃†
j,γ + s̃†

j−γ ,γ )s j − 2α2t2 + 8β2t2
p

�

∑
jγ

γ
†
j γ j

+ αβttp

�

∑
jγ

(γ̄ †
j,γ ′ + γ̄

†
j,γ ′′ + γ̄

†
j−γ ,γ ′ + γ̄

†
j−γ ,γ ′′ )s j

− αβttp

�

∑
jγ

(−s̃†
j,γ ′′ + s̃†

j+γ ,γ ′′ − s̃†
j−γ ′′,γ ′′ + s̃†

j+γ−γ ′′,γ ′′

− s̃†
j,γ ′ + s̃†

j+γ ,γ ′ − s̃†
j−γ ′,γ ′ + s̃†

j+γ−γ ′,γ ′ )γ j

− β2t2
p

�

∑
jγ

(γ̄ ′′†
j,γ + γ̄

′′†
j,γ ′ − γ̄

′′†
j+γ ,γ − γ̄

′′†
j+γ ,γ ′ + γ̄

′′†
j−γ ′′,γ

+ γ̄
′′†
j−γ ′′,γ ′ − γ̄

′′†
j+γ−γ ′′,γ − γ̄

′′†
j+γ−γ ′′,γ ′ + γ̄

′†
j,γ ′′

+ γ̄
′†
j,γ − γ̄

′†
j+γ ,γ ′′ − γ̄

′†
j+γ ,γ + γ̄

′†
j−γ ′,γ ′′

+ γ̄
′†
j−γ ′,γ − γ̄

′†
j+γ−γ ′,γ ′′ − γ̄

′†
j+γ−γ ′,γ )γ j (6)

and we used the short-hand notation:

s̃†
j,γ ≡ s†

j + s†
j+γ

γ̄
†
j,γ ′ ≡ γ

′†
j − γ

′†
j−γ ′ + γ

′†
j+γ − γ

′†
j+γ−γ ′ .

The expression of δĥ may seem complicated, but it consists
of simple terms whose appearance is conceptually straightfor-
ward to understand. They can be divided into onsite energies
like −6α2t2/�

∑
j s†

j s j (part of the first term on the first line),
which reflect the polaron formation energy as a hole located
at an s site hops to a neighbor O and back while creating and
then reabsorbing a phonon at that O site. The onsite energy
at the O sites is also renormalized (last term on the first line)
but by a different amount, so together these two terms imply
a change of the effective �.

All other terms describe longer-range hopping dynamically
generated through phonon emission+absorption. For exam-
ple, the first term on the first line contains terms proportional
to s†

j′s j , where j′ and j are nn neighbor s orbitals. These terms
are generated when a hole hops from site j to the O located in
between j and j′ while creating a phonon at that O and then
hops again while absorbing the phonon and lands at site j′.
Similar processes generate additional s-p and p-p hoppings,
which supplement and renormalize the bare hopping Tsp + Tpp

and will therefore modify the polaron dispersion.
To find the polaron dispersion, we Fourier transform ĥ. For

any k point in the cubic Brillouin zone, we get a 4×4 matrix
that can be diagonalized numerically. In the following, we
focus on the lowest-energy band in order to trace its evolution,
in particular how the momentum of the ground state evolves
in the parameter space.

B. Perturbation theory for the lattice case for weak
electron-phonon coupling

Another case that can be treated with standard PT is when
the electron-phonon coupling α → 0. For simplicity, we set
β = 0 and treat only the equivalent 1D case [37]—this suf-
fices for our needs. The more general 3D case with β �= 0 can
be treated similarly.

Using Rayleigh-Schrödinger perturbation to second order,
the polaron energy is:

EP(k) = E0(k) + (αt )2

8π

∫ π

−π

dq

[
− (1 + e−i(k−q) )(1 + eik )

(
1

E0(k) − � − E0(k − q)
− 1

E0(k) − � + E0(k − q)

)

+ (1 + e−i(k−q) )(1 + ei(k−q) )

(
1

E0(k) − � − E0(k − q)
+ 1

E0(k) − � + E0(k − q)

)
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+ (1 + eik )(1 + e−ik )

(
1

E0(k) − � − E0(k + q)
+ 1

E0(k) − � + E0(k + q)

)

− (1 + e−ik )(1 + ei(k+q) )

(
1

E0(k) − � − E0(k + q)
− 1

E0(k) − � + E0(k + q)

)]
(7)

where E0(k) = −|2t sin(k/2)| is the free-hole dispersion and
a = 1. This result is only valid for phonon energy � > 2|t |,
because otherwise the denominators vanish for large enough
k (Brillouin-Wigner PT must be used in this case). For α = 0,
the GS is at k = π and has energy E0(π ) = −2|t |, while
E0(0) = 0. Note the additional phase factors inside the in-
tegrand. These appear because the Peierls electron-phonon
vertex, when Fourier transformed, depends explicitly on both
the hole momentum k and the phonon momentum q. This
(k, q) dependence is a direct consequence of the nondiagonal
nature of the Peierls coupling and is very unlike the Holstein
model, where this vertex is a constant.

C. Momentum average (MA) approximation for the lattice case

The two methods introduced above are only accurate
in the asymptotic limits of very large phonon frequencies

and/or very weak electron-phonon coupling. To gain an un-
derstanding of what happens in other regions of the parameter
space, we use MA, which is a variational method [38–42]
for calculating the one-hole Green’s functions Gβα (k, ω) ≡
〈0|βkĜ(ω)α†

k|0〉, where α, β ∈ {s, x, y, z} are any pair of

orbitals, Ĝ(ω) = [ω + iη − Ĥ ]
−1

is the resolvent for the
Hamiltonian of Eq. (1), and |0〉 is the vacuum for holes and
phonons.

Here we present a brief overview of MA, with technical
details relegated to Appendix B. To find Gβα (k, ω), we use
Dyson’s identity: Ĝ(ω) = Ĝ0(ω) + Ĝ(ω)V̂ Ĝ0(ω), where Ĥ0

is the Hamiltonian of Eq. (2), V̂ = Ĥ − Ĥ0, and Ĝ0(ω) =
[ω + iη − Ĥ0]−1 is the resolvent for Ĥ0, whose corresponding
propagators Gβα

0 (k, ω) = 〈0|βkĜ0(ω)α†
k|0〉 can be calculated

by Chebyshev Polynomials expansion, as explained in Ap-
pendix C. Using Dyson’s identity leads to the exact equation:

Gβα (k, ω) = Gβα

0 (k, ω) − αt
∑

γ

(1 + eikγ a) f̃ (1)
γ ,γ Gsα

0 (k, ω)

−
∑

γ

[
αt f̃ (1)

s,γ − βtp
(

f̄ (1)
γ ′,γ + f̄ (1)

γ ′′,γ + ξγ ′′γ (k) f̃ (1)
γ ′′,γ ′′ + ξγ ′γ (k) f̃ (1)

γ ′,γ ′
)]

Gγα

0 (k, ω), (8)

where we defined the generalized propagators

f (n)
γ ,δ,
(k, ω) ≡

∑
j

eikRj

N
〈0|βkĜ(ω)γ †

j+
(b†
jδ )n|0〉 (9)

and we use the short-hand notations:

ξγ1,γ2 (k) ≡ 1 − e−ikγ2 a + eikγ1 a − ei(kγ1 −kγ2 )a

f̃ (n)
s,γ ≡ f (n)

s,γ ,0 + f (n)
s,γ ,γ

f̃ (n)
γ ,γ ≡ f (n)

γ ,γ ,0

f̄ (n)
γ1,γ2

≡ f (n)
γ1,γ2,0

− f (n)
γ1,γ2,−γ1

+ f (n)
γ1,γ2,γ2

− f (n)
γ1,γ2,γ2−γ1

in which the dependence on (k, ω) of the various f propaga-
tors is not written explicitly for brevity.

To find equations of motion for the various f (1) propagators
appearing in Eq. (8), we apply again Dyson’s identity. The
electron-phonon coupling terms either remove the phonon,
linking the various f (1) back to various Gβα (k, ω), or add
a phonon and thus also link to new propagators with two
phonons present in the initial (ket) state. If the two phonons
are on the same O site, the corresponding propagator is one of
the f (2) defined in Eq. (9) and we keep it, but we ignore the
propagators with phonons located on different sites. The same
procedure is employed to generate equations of motion for all
f (n) for any n � 2, linking them to various f (n−1) and f (n+1).

The resulting equations, listed in Appendix B where we
also discuss their solution, implement the variational guess
[40–42] that the largest weight to the polaron cloud comes
from configurations where all phonons are at the same O site.
That this should be a reasonable choice can be seen as follows:
(i) If the hole is at an O site that is already displaced, i.e., it has
phonons, the Peierls electron-phonon coupling α will hop it to
one of its neighbor B sites and create an additional phonon at
the original O site—this process is included in our variational
calculation. The Peierls electron-phonon coupling β will hop
the hole to an adjacent O site, creating a new phonon either at
the original O site (a process we include) or at the new O site
(a process we ignore, because now there would be phonons
on two different sites). Similarly, if (ii) the hole is at a B
site neighbor to an O with several phonons, then a Peierls α

process can take the hole back to the displaced O site, adding
to the number of phonons there (we keep this) or to a different
O site (we dismiss this as it would add a phonon at the new
site). The reason is that each phonon costs an energy � but
the hole cannot take advantage of (interact simultaneously
with) phonons on multiple sites, so the most advantageous
low-energy approach is to keep the phonon cloud spatially
small.

We have tested this intuition for the 1D version of this
model in Ref. [37], where we compared the MA results
against those of exact diagonalization (ED) with excellent suc-
cess. ED is prohibitively expensive in higher dimensions, but
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we know from extensive studies of MA for other models that
its accuracy improves with increasing dimensionality [38–40].
Mathematically, this is a consequence of the fact that all else
being equal, propagators in higher dimensions decrease faster
with increasing distance. As mentioned above, the variational
constraint implemented here is that we only keep configura-
tions with phonons on one site. To create a spatially more
extended cloud, the electron has to travel between sites host-
ing phonons. Such processes will have a very small amplitude
of probability if the propagator to move between different sites
is very small, which is indeed the case at energies lying below
the free particle bands.

Additionally, MA accuracy can be gauged by increasing
the variational space. The simplest new configurations are
those allowing an extra phonon on a different site than the
one that already has a cloud. For the 1D and 2D versions
of this model we found that including these additional states
has very small influence on the results, for instance changing
eigenenergies by very few percent, so long as the phonon
frequency is not very small compared to the free electron
bandwidth [37,43]. (It is well documented that MA becomes
less accurate in the adiabatic limit [39,40], which is why here
we only show MA results for sufficiently large � where we
trust our results to be accurate within a few percent). We have
not implemented an expanded variational MA calculation for
the 3D case discussed here because it becomes mathemati-
cally quite cumbersome and small quantitative changes would
not affect the qualitative conclusions we draw below.

D. Variational approximation for the cluster Hamiltonian

The spectrum of the cluster Hamiltonian of Eq. (5) can be
found by exact diagonalization, but for our purposes it suffices
to use a variational approximation that sets an upper bound
to the ground-state energy. The best trial wave function we
found is:

|ψv〉 = s† + ∑6
i=1 χiP

†
i√

1 + ∑6
i=1 χ2

i

6∏
i=1

e− 1
2 η2

i +ηiB
†
i |0〉 , (10)

where χi and ηi are the variational parameters. After some
algebra, we find:

〈ψv|H|ψv〉 = � − 2tχ1

1 + ∑
i χ

2
i

+ �
∑

i

η2
i − 4αt

∑
i χiηi

1 + ∑
i χ

2
i

+ · · · ,

where the dots are terms from p-p hopping, which we do
not write here explicitly but we did include when generating
the results shown below. This is minimized to find an upper
bound for the cluster GS energy, which we refer to as the
“variational” cluster energy.

E. A1g approximation for the cluster Hamiltonian

Given that the s orbital only hybridizes with the P1 orbital
with a large T = √

6t , one may expect that the terms with A1g

symmetry contribute most to the ground state. We could then
remove from the cluster Hamiltonian the terms with boson
operators of other symmetries and still expect a good low-
energy description.

The resulting simplified cluster Hamiltonian is:

HA1g = �s†s + �B†
1B1 − T (s†P1 + P†

1 s)

− αt (s†P1 + P†
1 s)(B†

1 + B1)

− 4tpP†
1 P1 − 4

√
2

3
βtpP†

1 P1(B†
1 + B1). (11)

Its ground state energy can be found using continued fractions
[44], see Appendix D. We refer to it as the “A1g” cluster
energy.

F. Holstein approximation for the cluster Hamiltonian

We rewrite the electronic part of HA1g in terms of the
(for holes) bonding d†

1 = (s† − P†
1 )/

√
2 and antibonding d†

2 =
(s† + P†

1 )/
√

2 operators. For T 
 �, the bonding orbital is
located about 2T below the antibonding one, and we expect
to get a good low-energy approximation by ignoring all terms
involving d2 operators.

The resulting simplified cluster Hamiltonian is:

HH = εd†
1 d1 + �B†

1B1 + gH d†
1 d1(B†

1 + B1).

This defines a one-site Holstein model with effective pa-

rameters ε = �
2 − T − 2tp and gH = αt − 2

√
2
3βtp. It can be

solved exactly and has a one-hole ground-state energy EH =
ε − g2

H/�. In the following, we refer to this as the “Holstein”
cluster energy.

By comparing the variational, A1g, and Holstein cluster
energies, we can infer the validity of these various approx-
imations in different regions of the parameter space, to see
when/if a Holstein model provides a good low-energy descrip-
tion of the cluster. Together with the results for the lattice
case, this will allow us to understand the equivalence (or lack
theoreof) between the Peierls and the Holstein models on the
perovskite lattice.

IV. RESULTS

In this section, the values chosen for the various parameters
are for illustration purposes, so that a broad region of the
parameter space can be sampled. Results specific to the values
we believe to be appropriate for BaBiO3 are presented and
discussed in the last section.

A. Results for the cluster

Figure 3 compares the cluster ground-state energies Egs

obtained with the variational (symbols), A1g (full line) and
Holstein (dashed line) approximations. In all cases, we use
|t | = 1 as the unit of energy. Panels (a) and (e) show the evo-
lution of Egs with the Peierls coupling α (with β = α/2 used
throughout), when tp = 0 and � = 0. The phonon frequency
is � = 0.1 in panel (a) and � = 2 in panel (e). The three
approximations are in very good agreement. The same is true
for panels (b) and (f), where we track the dependence of Egs

on �. Here, we continue to keep tp = � = 0, and we set the
Peierls coupling α = 0.2 in panel (b) and α = 1.2 in panel (f).
We conclude that for vanishing � and p-p hopping, a Holstein
description is very satisfactory for the cluster for all phonon
frequencies and electron-phonon couplings.
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FIG. 3. Comparison between the cluster ground state energies obtained with the variational (symbols), A1g (full line) and Holstein (dashed
line) approximations, respectively, as a function of various parameters. If not otherwise specified, parameters used in (a)–(d) are t = −1,
tp = 0, � = 0, � = 0.1, and α = 0.2 and in (e)–(h) t = −1, tp = 0, � = 0, � = 2, and α = 1.2. In all cases, β = α

2 .

This is no longer the case, however, when either � �= 0
and/or tp �= 0. In panels (c) and (g) we track the dependence
of Egs on �, when tp = 0 and � = 0.1, α = 0.2 in panel
(c), versus � = 2, α = 1.2 in panel (g). Both cases show
good agreement between the variational and the A1g results,
suggesting that the cluster distortion remains s-like. However,
projecting out the antibonding orbital becomes increasingly
inaccurate with increasing �. This is because a large � fa-
vors a different mix between the s and P1 orbitals than the
50/50 mix favored by the hybridization T and by the electron-
phonon coupling, see Eq. (11). As a result, there is no unique
choice for a single “cluster” low-energy electronic orbital onto
which to project, thus a Holstein-like description becomes
increasingly inaccurate.

The problem is further exacerbated if we add a finite tp

hopping. This term is known to be important because it is
primarily responsible for setting the bandwidth of the O band,
which is generally considerable in perovskites. Physically,
this is a consequence of the rather short distance between
adjacent O, which means that tp is not negligible compared
to t . As already noted, it also decreases the effective charge
transfer energy between the s and P1 orbitals. The dependence
of Egs on |tp| is shown in panels (d) and (h). In both cases
� = 0, and the values of the other parameters are as in (c)
and (g), respectively. For any finite tp, the A1g approximation
fails rather fast, and the Holstein one is even worse. The
reason is that the β Peierls coupling connects the s-like O
distortion described by B1, B†

1 not just to the P1 orbital with
A1g symmetry but also to the Eg orbitals P2, P3, see Eq. (5).
In term, when the electron occupies one of these other orbitals,
it favors the appearance of distortions with the same symme-
try, see the α term in Eq. (5). The end result is that the other
distortion modes are also activated, so now even the projection
onto the A1g symmetry is inaccurate, making the further steps
to a Holstein mapping impossible.

Indeed, we find that the downturn of the variational energy
at larger tp occurs because the Eg symmetry starts to dominate
over the A1g one, as shown by their weights in the variational

calculation (not shown here). This is reminiscent of the phase
transition [30] in BaBiO3 between the A1g dominated bond-
disproportionated state and the Eg metallic state, driven by the
change of effective charge transfer energy �1 = � + 4tp.

It is important to emphasize that the activation of the
cluster bosonic modes with other Eg symmetries does not
necessarily imply a nonsymmetric distortion of the O cage
(i.e., one breaking the cubic symmetry), so far as the average
distortion is concerned. For example, activation of the B3

(x2 − y2) distortion will either bring the O on the x bonds
closer and push the y bonds O further out or vice versa.
A wave function which has equal contributions from both
positive and negative B3 distortions will, in average, retain
the cubic symmetry. To conclude, the cluster results already
demonstrate that an effective Holstein description is likely to
fail for realistic systems with finite charge-transfer energies
� �= 0 and finite p-p-hopping tp �= 0.

B. Results for the lattice

As just shown, the cluster results indicate that the Holstein
mapping is not valid in parts of the parameter space. We
expect this conclusion to be even stronger for the lattice case,
given its lower symmetry group.

We begin in the antiadiabatic limit � 
 t . As mentioned,
this limit is not very physical: Most materials are rather in
the adiabatic limit, although this may change for “flat-band”
materials. However, here we can use PT predictions to verify
and validate the MA results, and moreover, the effective PT
Hamiltonian allows us to understand the results. As we then
show further below, the qualitative behavior remains similar
for all values of �, so gaining first intuition in this regime is
valuable.

We first set � = 0, tp = 0 and study the evolution of
the polaron dispersion with increasing α = 4.8, 5, 5.2 (and
β = α/2) for � = 80, |t | = 1. The results are shown in Fig. 4
(MA and PT results are identical in this limit). As customary,
the high-symmetry points in the cubic Brillouin zone are

235145-8



PEIERLS VERSUS HOLSTEIN MODELS FOR DESCRIBING … PHYSICAL REVIEW B 102, 235145 (2020)

FIG. 4. Polaron dispersion in the antiadiabatic limit. These are
perturbational results but in excellent agreement with the MA re-
sults. Parameters are |t | = 1, tp = � = 0, � = 80 and (a) α = 4.8,
(b) α = 5, and (c) α = 5.2. Red dots indicate the ground state.

G = (0, 0, 0), M = (π, π, 0), X = (π, 0, 0), and R =
(π, π, π ) (we set a = 1).

For a Holstein model, the polaron dispersion has roughly
the same shape as the free-hole band, but its bandwidth
decreases monotonically with increasing electron-phonon
coupling. In contrast, here we see that for α > 5, the band-
width starts to increase again. This is associated with a sharp
switch of the momentum of the ground state from R to G, i.e.,
a change of the shape of the dispersion that is impossible for a
Holstein model [34]. In Fig. 5(a) we show the location of this

FIG. 5. (a) Ground state momentum kgs in the (�, α) parameter
space, showing a sharp transition from kgs = R to kgs = G. Here,
|t | = 1, tp = 0, � = 0. (b) Same as in (a) but for tp = −0.2. In this
case, kgs moves from R → M → X → G.

FIG. 6. Evolution of the polaron dispersion with α, when tp =
−0.2. Parameters not explicitly listed in the panels are as for Fig. 4.

sharp transition in the (α,�) plane, when tp = 0,� = 0 and
� 
 1.

We now consider what happens when � �= 0, tp �= 0. We
find that if tp = 0, setting � �= 0 simply shifts the location
of the transition in the parameter space (not shown). More
spectacular is the case tp �= 0, where as α increases, we find
not one but three closely spaced ground-state transitions from
R → M → X → G, see Fig. 5(b). The evolution of the po-
laron dispersion across these transitions is shown in Fig. 6.

Similar sharp transitions (sudden jumps) of the GS mo-
mentum between high-symmetry points have also been found
for the 1D and 2D versions of this model, see Refs. [37,43,45].
They can be understood in several ways.

In the antiadiabatic limit, PT shows that the main effect
of the Peierls electron-phonon coupling is to dynamically
generate longer-range hopping terms and to renormalize the
charge-transfer energy, see δĥ of Eq. (6) and following discus-
sion. These longer-range hoppings favor a different kgs than
that of the bare-hole dispersion, and thus the transition oc-
curs when the electron-phonon coupling is strong enough that
these new terms dominate the polaron dispersion. For tp �= 0,
the number of such phonon-mediated longer-range hoppings
increases further and the resulting, more complex polaron
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FIG. 7. Measure of the polaron energy EP(k) on the coupling α,
in the limit α → 0. Note that for k = 0, the polaron energy decreases
faster with α than for k = π . These are 1D results obtained with
weak-coupling PT of Eq. (7). Parameters are t = −1, tp = 0, � = 0.

dispersion has more transitions. More discussion along these
lines is available in Ref. [37].

This argument, however, is predicated on the system be-
ing in the antiadiabatic limit, and thus one might wonder if
similar physics is seen at lower, more physical values of �.
Before showing results proving that this is indeed the case,
we provide a second argument explaining the origin of the
kgs jump(s). This is based on PT for weak electron-phonon
coupling. For simplicity, we carry out this analysis for the 1D
equivalent of our 3D model.

As shown in Eq. (7), the PT expression for EP(k) de-
pends on k not just through the usual energy denominators
but also because of the explicit (k, q) dependence of the
Peierls electron-phonon vertex. The latter essentially means
that holes with different momenta k couple with different
strengths to the phonons, and this will affect how fast their
energy is lowered with increasing α. Indeed, in Fig. 7 we plot
dEP(k)/d (αt )2 when α → 0, as a measure of this dependence
of EP(k) on α. Both at k = 0 and at k = π the values are
negative, as expected, showing a lowering of the energy in the
presence of electron-phonon coupling. However, the slopes
are very different, with EP(0) moving faster towards lower
energies than EP(π ). This explains how it is possible that at
a large enough α, the GS momentum will switch from the
free-hole value kgs = π to kgs = 0, instead. Also note that this
difference is enhanced as one moves towards the adiabatic
limit, suggesting that the existence of the transition(s) should
be expected for any �, not just in the antiadiabatic limit. We
confirm this below.

We now use MA to show that qualitatively similar behavior
is seen at lower, more physical values of � where PT cannot
be used. Indeed, we find that the sharp transitions persist,
specifically again if tp = 0 there is one from R → G, see
Fig. 8(a), and if tp �= 0 there are three from R → M → X →
G, see Fig. 8(b). In panel (b) we also show the slight shift of
these transition lines if we set � = 1. The shape and evolution
of the spectra for various α is shown in Fig. 9 and are consis-
tent with those found in the antiadiabatic limit. One challenge
with using MA is that it is hard to accurately calculate the
free-hole propagators Gαβ

0 (k, ω) for this complicated lattice,
as they have fast oscillations in their ω dependence due to the
finite cutoff in the Chebyshev polynomials expansion and the

FIG. 8. Ground state momentum transitions in the (α,�) space,
for smaller �. Panel (a) is for tp = � = 0; panel (b) is for tp =
−0.2, � = 0 (solid lines) and tp = −0.2, � = 1 (dotted lines). Error
bars are smaller than the size of the symbols. In the MA calculations
used to generate this data, 1013 unit cells are used for the 3D lattice
and 500 terms are summed in the Chebyshev expansions for the
free-hole propagators Gαβ

0 (k, ω). Other parameters are t = −1 and
η = 0.02.

finite size of the lattice discretizing the free-hole spectrum.
We pushed the limit of our computational power to consider
a larger system (1013 sites) and adopted a moderate peak
broadening η = 0.02 to alleviate this problem. This allows us
to find the lowest eigenenergies with sufficient precision so
that the corresponding error bars are smaller than the size of
the symbols. Of course, we cannot estimate the error bars due
to using this version of MA, as opposed to a more sophisti-
cated one, corresponding to a bigger variational space and thus
more accurate. Nevertheless, the good qualitative agreement
between these results and those obtained in the antiadiabatic
limit gives us confidence that these transitions occur at lower
values of � as well.

V. DISCUSSION

We used the MA approximation and various perturbative
limits to study single polaron physics on a perovskite lattice.
The main motivation was to study a multiband model with
Peierls electron-phonon coupling to see if it can be mapped
onto a much simpler Holstein model.

We find sharp transitions in the Peierls polaron ground-
state properties. Such transitions are known to be impossible
in the Holstein model [34] (more generally, any g(q) models
including Rice-Sneddon). Thus, our main conclusion is that
Peierls coupling cannot automatically be replaced by sim-
pler couplings like the Holstein model. Such a replacement
could work well in the region of the parameter space where
both models predict the same qualitative shape of the polaron
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FIG. 9. Polaron dispersion calculated with MA for t = −1, � =
2, tp = −0.2, � = 0 and α values as indicate on the panels. For small
α we find kgs = R, see panel (a), while for large α we find kgs = G.
At intermediary values, the GS (shown by the bigger red dot) is either
at M or X. Other parameters and settings are like for Fig. 8.

dispersion, but will not work in the region(s) where the Peierls
coupling changes the momentum of the GS. Moreover, we
find that it is not enough to study a small cluster to decide
whether the parameters are such that Holstein may work, one
needs to study the lattice case. This is because the cluster so-
lution suggested that mapping onto a Holstein model is good
when � = tp = 0, whereas the lattice results demonstrate that
even in this case, a sharp transition occurs with increased
electron-phonon coupling.

This being said, we re-emphasize that this conclusion is
valid in the insulating limit, where there is a single carrier
in the system so that a single polaron forms—this limit can
be studied with MA and reinforced by PT results. Unfor-
tunately, at this time we do not have access to similarly

FIG. 10. Dispersion of the 3D Peierls polaron using parameters
appropriate for BaBiO3. Panel (a) shows a wider energy interval,
while panel (b) focuses on the low-energy part. The gray line shows
the lowest free hole band (α = 0) while the blue symbols show the
MA results (with error bars comparable to the symbol size) at the
high symmetry points for a coupling α = 0.206, for a system with
1013 sites and η = 0.02. Other parameters are t = −1, tp = −0.3,
� = 0.19, � = 0.033.

accurate approximations that deal with finite concentrations
of carriers, so we cannot make any confident claims about
those systems. The same is true for the single polaron in the
strongly adiabatic limit, where the variational space used for
the MA implemented here is too limited. These questions
remain open.

Keeping in mind these caveats, we now use MA to generate
single polaron results for parameters appropriate for BaBiO3

at half filling. Continuing to use t = −1 as our energy unit,
DFT results [20] find tp = −0.3, � = 0.19, � = 0.033, and
α = 0.206. A rough extrapolation of the curves shown in
Fig. 8(b) suggests that this point falls to the left of the tran-
sition lines (the GS momentum is still at R like for the free
carriers) although not by much.

Figure 10 shows the corresponding MA results at the high
symmetry points, as well as the lowest free hole band (gray
line). The typical error bar here is greater than that in Figs. 8
and 9, because the peak of the polaronic state is much closer
to the continuum above it, and this impacts its fitting with
a simple Lorentzian. The electron-phonon coupling signifi-
cantly renormalizes the polaron bandwidth, proving that this
is indeed a strong coupling. The GS remains at the R point like
for the free hole, therefore these parameters fall in the region
of the parameter space where both models predict the same
qualitative shape of the polaron band. Thus, it is possible that
this dispersion could be captured with an appropriately cho-
sen Holstein model. However, to what extent this conclusion
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continues to hold for the finite hole concentrations that are
physically relevant for BaBiO3 is a matter for future studies.
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APPENDIX A: COMPLETE HAMILTONIANS
FOR THE CLUSTER MODEL

The full cluster Hamiltonian in Eq. (4) is

H = �

6∑
i=1

b†
i bi + �s†s −

6∑
i=1

t (s† pi + p†
i s)

−
6∑

i=1

αt (s† pi + p†
i s)(b†

i + bi )

− tp

∑
i=1,3,5

[(p†
i + p†

i+1)(pi+2 + pi+3) + H.c.]

− βtp[[p†
6(b†

6 + b6) + p†
5(b†

5 + b5)](p4 + p3)

+ (p†
5 + p†

6)[p3(b†
3 + b3) + p4(b†

4 + b4)]

+ [p†
4(b†

4 + b4) + p†
3(b†

3 + b3)](p1 + p2)

+ (p†
4 + p†

3)[p1(b†
1 + b1) + p2(b†

2 + b2)]

[p†
1(b†

1 + b1) + p†
2(b†

2 + b2)](p6 + p5)

+ (p†
1 + p†

2)[p6(b†
6 + b6) + p5(b†

5 + b5)] + H.c.]

and the full Hamiltonian in the symmetry basis in Eq. (5) is

H = �

6∑
i=1

B†
i Bi + �s†s − T (s†P1 + P†

1 s)

− αt
6∑

i=1

(s†Pi + P†
i s)(B†

i + Bi )

− tp(4P†
1 P1 − 2P†

2 P2 − 2P†
3 P3)

− βtp

(√
8

3
(B†

1 + B1)(2P†
1 P1 − P†

2 P2 − P†
3 P3)

+
√

2

3
(B†

2 + B2)(P†
1 P2 + P†

2 P1 −
√

2P†
2 P2 +

√
2P†

3 P3)

+
√

2

3
(B†

3 + B3)(P†
3 (P1 +

√
2P2) + H.c.)

+
√

1

3
(B†

4 + B4)(P†
4 (2

√
2P1 + P2 −

√
3P3) + H.c.)

+
√

1

3
(B†

5 + B5)(P†
5 (2

√
2P1 + P2 +

√
3P3) + H.c.)

+
√

4

3
(B†

6 + B6)(P†
6 (

√
2P1 − P2) + H.c.)

)
.

APPENDIX B: DETAILS OF THE MA IMPLEMENTATION

As discussed in the main text, we implement the simplest
MA(0) version, which allows the phonon to appear only at one
site in any given configuration. With this restriction, for γ =
s, x, y, z and δ = x, y, z, we find that

f (n)
γ ,δ,
 = (

f̃ (n+1)
δ,δ + n f̃ (n−1)

δ,δ

)[
(−αt )

(
Gsγ

0,−
 + Gsγ
0,−
+δ

)
+ βtp

(
ḡδ′γ

−
 + ḡδ′′γ
−


)]
+ Gδγ

0,−


[
(−αt )

(
f̃ (n+1)
s,δ + n f̃ (n−1)

s,δ

)
+ βtp

(
f̄ (n+1)
δ′,δ + f̄ (n+1)

δ′′,δ + n f̄ (n−1)
δ′,δ + n f̄ (n−1)

δ′′,δ

)]
,

where f ≡ f (ω) while G0 ≡ G0(ω − n�) because of the cost
of the n phonons present, and then indexes γ ′, γ ′′ associated
with a given γ are defined in the main text following Eq. (3).
The free carrier propagators G0(ω) are defined as:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Gγ γ ′
0,i− j (ω) ≡ 〈γi|Ĝ0(ω)|γ ′

j〉
ḡδ′γ

−
 (ω) ≡ Gδ′γ
0,−
(ω) − Gδ′γ

0,−
−δ′ (ω) + Gδ′γ
0,−
+δ (ω)

−Gδ′γ
0,−
+δ−δ′ (ω)

ḡδ′′γ
−
 (ω) ≡ Gδ′′γ

0,−
(ω) − Gδ′′γ
0,−
−δ′′ (ω) + Gδ′′γ

0,−
+δ (ω)

−Gδ′′γ
0,−
+δ−δ′′ (ω),

where i, j, 
 are site indices.
Substituting these equations of motion for f (n)

γ ,δ,
 into the

definitions of f̃ (n)
s,γ , f̃ (n)

γ ,γ , f̄ (n)
γ ′,γ , and f̄ (n)

γ ′′,γ , we find that the latter
define recurrence relations linking propagators with a given n
only to those with (n + 1) and (n − 1). In other words, we can
define a vector

vT
γ ,n ≡ (

f̃ (n)
s,γ , f̃ (n)

γ ,γ , f̄ (n)
γ ′,γ , f̄ (n)

γ ′′,γ

)T
(B1)

such that the equations of motion can be written in compact
form as:

vγ ,n = αγ nvγ ,n+1 + nαγ nvγ ,n−1. (B2)

Here αγ n is a known matrix whose entries can be read directly
from the equations of motion. Note that for n = 0, after some
simplifications, vγ ,0 can be written in terms of the various
propagators Gαβ (ω) of interest, specifically:

vγ ,0 =

⎡
⎢⎢⎣

(1 + e−ikγ a)Gβs(ω)
Gβγ (ω)

(1 − eikγ ′ a + e−ikγ a − ei(kγ ′ −kγ )a)Gβγ ′
(ω)

(1 − eikγ ′′ a + e−ikγ a − ei(kγ ′′ −kγ )a)Gβγ ′′
(ω)

⎤
⎥⎥⎦

= Pγ ṽ0

where Pγ is a matrix and ṽ0 is defined to be
(Gβs, Gβx, Gβy, Gβz )T .

Such matrix recurrence relations are solved with the ansatz
vγ ,n = Aγ ,nvγ ,n−1 which allows us to calculate the matrices
Aγ ,n recursively, starting from Aγ ,N = 0 for a sufficiently large
N . This N defines the largest number of phonons allowed to
appear in a self-energy diagram, and is increased until the
results converge. Once Aγ ,n=1 is known, the various propa-
gators Gαβ (ω) are obtained from Eq. (8). Peaks in the spectral
weights − 1

π
�Gαβ (ω) indicate the eigenenergies of Ĥ and thus

allow us to determine the lowest eigenenergy for any given
momentum k.
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APPENDIX C: CHEBYSHEV POLYNOMIAL EXPANSION
FOR FREE PROPAGATORS

Such expansions are well established for a variety of prob-
lems. Here we briefly summarize the main steps, following
Ref. [46].

Chebyshev polynomials Tn(x) ≡ cos(n cos−1(x)) are well
defined only for x ∈ [−1, 1], thus we need to rescale the range
of eigenvalues of the noninteracting Hamiltonian H0 before
applying the Chebyshev expansion to it. Emax and Emin can
be found by Fourier transforming H0 to momentum k space
and maximizing or minimizing the energies in the k parameter
space. We define a = Emax−Emin

2 and b = Emax+Emin
2 and write the

normalized Hamiltonian as H̃0 = H0−b
a and denote the cor-

responding noninteracting Green’s function as G̃0(ω̃), where
ω̃ = (ω − b)/a. We expand [46]

G̃αβ

0, j (ω̃) =
∞∑

n=0

2i−1 (ω̃ − i
√

1 − ω̃2)n

√
1 − ω̃2

〈α j |Tn(H̃0)|β0〉
1 + δn0

where T0(x)=1, T1(x)=x and Tn+1(x)=2xTn(x) − Tn−1(x).
If we define |Jn〉 ≡ Tn(H̃0) |β0〉, then |Jn+1〉 = 2H̃0 |Jn〉 −

|Jn−1〉, thus these |Jn〉 can be determined recursively starting
from |J0〉 = |β0〉 and |J1〉 = H̃0 |β0〉. The summation is trun-
cated at a value large enough so that G̃α,β

0, j is converged. We

note here that there are unphysical oscillations in the G̃α,β

0, j ob-
tained if plotted versus energy. This is caused by the standing
waves selected due to the finite size of the system. Since η is
inversely proportional to the lifetime of the state, we can either
increase the size of the system or use a larger η so that the state
cannot live long enough to reach the edge of the system, and
hence the finite-size oscillations are smoothed out. Having a
larger system would increase the demand for computational
power exponentially, therefore we are forced to use a fairly
large η (0.1 in our case) in order to get a smooth enough curve
for G̃α,β

0, j . Rescaling back, the various free propagators are:

Gαβ

0, j (ω + iη) = 1
a G̃αβ

0, j (
ω−b

a + i η

a ) where η is the broadening
of the Lorentzian peak in the energy spectrum.

APPENDIX D: DETAILS OF THE CONTINUED FRACTION
SOLUTION FOR THE CLUSTER

We consider the Hamiltonian of Eq. (11), where two differ-
ent electronic orbitals s and P1 (renamed p in the following,
for simplicity) are coupled to the same boson mode B1 (re-
named b in the following, for simplicity). The full Hilbert

space corresponding to the one-carrier sector is spanned by
the basis {|s, n〉 ≡ s†(b† )n|0〉√

n!
, |p, n〉 ≡ p†(b† )n|0〉√

n!
} with n � 0.

We define the propagators:{
Sn(m, z) ≡ 〈s, n|Ĝ(z)|s, m〉
Pn(m, z) ≡ 〈s, n|Ĝ(z)|p, m〉 .

Their equations of motion are generated from the appropriate
expectation values of the identity Ĝ(z)(z − Ĥ ) = 1. For the
Hamiltonian of Eq. (11), we find:

Sn(m, z)(z − � − m�) + Pn(m, z)t

− Pn(m + 1, z)αt
√

m + 1 − Pn(m − 1, z)αt
√

m = δmn

and

Sn(m, z)t − Sn(m + 1, z)αt
√

m + 1

− Sn(m − 1, z)αt
√

m + Pn(m, z)(z − �m) = 0.

These can be grouped as recurrence equations for 2×2
matrices:

γmWnm − αmWn,m+1 − βmWn,m−1 =
[
δn,m

0

]

where

γm ≡
[

z − � − m� t
t z − �m

]
;

αm ≡
[

0 αt
√

m + 1
αt

√
m + 1 0

]
;

βm ≡
[

0 αt
√

m
αt

√
m 0

]
;

Wn,m ≡
[
Sn(m, z)
Pn(m, z)

]
.

As already discussed, such recurrence relations are solved
with the ansatz Wn,m+1 = An,m+1Wnm if m � n. This gives
the continued fraction Anm = (γm − αmAn,m+1)−1βm, which
can be evaluated starting from AnM = 0 for a sufficiently
large M. Similarly, for m � n we use the ansatz Wn,m−1 =
Bn,m−1Wn,m and obtain Bn,m = (γm − βmBn,m−1)−1αm, which
can be computed starting from m = 0, noting that β0 ≡ 0.
Putting Wn,n+1 = An,n+1Wnn and Wn,n−1 = Bn,n−1Wn,n into the
equation with n = m, we get:

Wnn = (γn − αnAn,n+1 − βnBn,n−1)−1

[
1
0

]

from which we can read out the propagators Sn(m, z) and
Pn(m, z).
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