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Time-dependent approach to inelastic scattering spectroscopies in and away from equilibrium:
Beyond perturbation theory
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We propose a nonperturbative numerical approach to calculate the spectrum of a many-body Hamiltonian with
time and momentum resolution by exactly recreating a scattering event using the time-dependent Schrödinger
equation. Akin to an actual inelastic scattering experiment, we explicitly account for the incident and scattered
particles (e.g., photons, neutrons, electrons, etc.) in the Hamiltonian and obtain the spectrum by measuring
the energy and momentum lost by the particle after interacting with the sample. We illustrate the method by
calculating the spin excitations of a Mott-insulating Hubbard chain after a sudden quench with the aid of the
time-dependent density matrix renormalization group method. Our formalism can be applied to different forms
of spectroscopies, such as neutron and Compton scattering and electron-energy-loss spectroscopy, for instance.
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I. INTRODUCTION

Inelastic scattering and, in general, energy-loss spectro-
scopies are exceptional tools that enables experimentalists to
peek into the hidden mechanisms responsible for the mag-
netic and electronic excitations inside solids and molecules.
For instance, the inelastic neutron scattering cross section is
proportional to the magnetic dynamical structure factor [1–4],
while Compton and electron-energy-loss (EELS) spectra are
related to the charge density excitations [5–8]. In all these
techniques, a sample is subjected to a beam of incident par-
ticles (neutrons, x-ray photons, and electrons, respectively, in
the aforementioned cases), and the energy distribution of the
scattered particles after they have interacted with the specimen
is analyzed. In most cases, particles are able to penetrate
several atomic layers before they are reflected, transferring
part of their energy and momentum to the degrees of freedom
in the material in the process. The corresponding information
is gathered by measuring the energy and momentum “lost,”
which correspond, by conservation, to the energy and momen-
tum transferred to the solid.

The foundations of time-dependent perturbation theory for
quantum scattering are due to Schwinger and Lippman [9],
who derived an expression for the scattering cross section as
a linear response that accounts for the transition rate between
the eigenstates as in Fermi’s golden rule. If the system orig-
inally is in the ground state |0〉, this approach allows one to
express the energy- and momentum-resolved spectral function
as (we use units in which h̄ = 1)

SO(k, ω) = 2π
∑

n

|〈n|Ok|0〉|2δ(ω − En + E0), (1)

where k represents the momentum quantum number, |n〉 are
the eigenstates of the system’s unperturbed Hamiltonian with-
out the V term with energy En, and Ok is the Fourier transform

of the operator O associated with the interaction potential
between the incident particles and the degrees of freedom
inside the sample (spin or electron density), which typically
enters as a local contact term, as we describe in the next
section.

The relative simplicity of the previous expression has al-
lowed theorists and experimentalists to model and compare
predictions with theory very accurately. In the particular con-
text of strongly correlated quantum matter, these calculations
are carried out by means of state-of-the-art computational
techniques. These include exact diagonalization [10], which
is limited to small system sizes; quantum Monte Carlo, which
is conditioned by the sign problem and requires uncontrolled
analytic continuations and the use of the max entropy approxi-
mation [11–18]; the dynamical density matrix renormalization
group (DMRG) [19–21], which is computationally demand-
ing and applies mostly to quasi-one-dimensional systems; the
time-dependent DMRG [22–27]; and recent variations using
Chebyshev expansions [28–30], also limited by the entangle-
ment growth. In addition, matrix product states have been used
to build variational forms for excited states [31,32]. Similar
ideas were explored with variational Monte Carlo, which can
easily be extended to higher dimensions and is free from the
sign problem [33–36].

Despite their success, these methods hit a hard wall when it
comes to studying dynamics of a system far from equilibrium,
as a result of a pump or a quench, for instance. In that case, it
is appropriate to assume that the system is initially in a generic
state |φ〉 = ∑

n an|n〉. The expression for the spectral function
is now given as [37]

SO(k, ω, t ) = 4π2
∑

m

∣∣∣∣∣
∑

n

an〈m|O|n〉δt (ω − ωmn)

∣∣∣∣∣
2

, (2)
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FIG. 1. Scattering process of a single particle in one dimension.

where we have introduced the time dependence in the defini-
tion

δt (ω) = 1

π

sin (ωt/2)

ω
→

t→∞ δ(ω). (3)

Unlike the equilibrium case, this expression cannot be sim-
plified, and at the same time, most methods listed above no
longer apply [37–39], forcing us to rely on the limited power
of exact diagonalization.

The aim of this work is to compute the spectrum of energy-
loss spectroscopies without resorting to perturbation theory
or to the calculation of the full eigenspectrum of the system.
Working directly in the time domain, we propose to simu-
late the entire scattering event by solving the time-dependent
Schrödinger equation for an equivalent system comprising the
sample, a source, and a detector. The interaction terms be-
tween incident and reflected particles are included explicitly,
and a response function for the detector can be calculated
exactly in real time. In this scenario, the spectrum can be
conveniently obtained with low computational effort using
the time-dependent DMRG (TDMRG). Besides the obvious
numerical advantages, our method is able to reveal features in
the scattering spectrum that remain hidden in the conventional
perturbative expression obtained from the linear response.

Our paper is organized as follows: In Sec. II, we present
the mathematical formulation and the numerical scheme used
to simulate the scattering event using the time-dependent
DMRG method. In Sec. III, we show numerical results for the
Heisenberg chain and the Hubbard chain in and away from
equilibrium. We finally close with a discussion.

II. METHOD

In “energy-loss” spectroscopies an incident particle (pho-
ton, neutron, electron) with initial energy ωs interacts with
a system described by a Hamiltonian H0 and is inelastically
reflected with final energy ωd , typically off resonance. In an
actual experiment, the energies ωs = k2

s /2m and ωd = k2
2/2m

correspond to the kinetic energy of free particles (neutrons,
electrons) in the beam (obviously, these expressions do not
apply to photons). Conservation laws imply that the energy
lost by the particle has been transferred to the system �E =
ωd − ωs (see Fig. 1). As mentioned in the Introduction, the
measurement of the cross section of the outgoing particle is
directly related to the excitation spectrum of the sample.

To model this process we consider the Hamiltonian

H = H0 + Hd + V, (4)

where H0 is the Hamiltonian for the system of interest charac-
terized by the energy scale J and

Hd = ωsns + ωd nd (5)

represents the energy of a particle coming in with energy ωs

and going out with energy ωd . From now on we will refer to
the “orbitals” representing these two states as “source” and
“detector”/“probe,” respectively. The term V is a “contact”
interaction between the particles and the sample that remains
to be determined, depending on the nature of the spectroscopy
of interest.

For simplicity, let us first focus on the energy spectrum
without momentum resolution. In this case, the contact term
acts only on a site that we label 0. We assume that there is no
absorption and the incident particle can only be reflected.

We want to represent a single-particle scattering event,
in which, initially, orbital s is occupied, while d is empty.
The term V is responsible for making the particle undergo
a transition from a state with energy ωs to a state with final
energy ωd due to either the Coulomb interaction or some other
effect. In the case in which the force is of electrostatic origin,
the potential is described as

V = J ′n0(ns + nd )(c†
s cd + H.c.)

= J ′n0(c†
s cd + H.c.), (6)

where n0, ns, and nd are the occupation numbers of the sys-
tem’s orbital 0, source, and detector, respectively. Since the
particle can be in only the source or the detector, ns + nd = 1
is a constraint and must be satisfied at all times. Note that
the creation and annihilation operators in this expression can
be either bosonic or fermionic since there is only one such
particle and its nature does not play a role. The constant J ′ is
a matrix element that will depend on the particular details of
the electronic wave function. The calculation of J is referred
to as the “matrix elements” problem, and in the following we
assume J ′ is a small constant.

For the case of neutrons interacting via (longitudinal) spin
interactions, the perturbation can be expressed as

V =J ′Sz
0(c†

s cd + H.c.), (7)

where the constraint is now Sz
s + Sz

d = 1/2. Note that the
scenario in which the probe particles are photons requires
more care because it involves the creation and annihilation of
particles [40].

We now have all the ingredients to measure the energy loss
of the particle after the scattering event.

At time t = 0, we consider the total wave function of the
system to be

|�(t = 0)〉 = |φ〉 ⊗ |ns = 1〉 ⊗ |nd = 0〉 , (8)

where |φ〉 is the state of the sample (in or away from equilib-
rium) and |ns〉 and |nd〉 describe the states for the source and
detector, respectively.

Then, the coupling J ′ is turned on, and the full Hamiltonian
including the scattering terms is evolved in time. The occupa-
tion of the detector 〈nd (t )〉 will be proportional to the spectral
density at energy ωd , as SO(ωd ) ∝ limt→∞ nd (t )/t . One can
easily show (see the Appendix) that, in the limit J ′ 	 J , one
recovers the same result as that obtained from perturbation
theory. As we shall discuss later, in the implementation, three
important details require special attention: (i) The full spec-
trum is recovered only after scanning ωd over an energy range.
(ii) In our scheme with just one source and probe orbitals, at
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FIG. 2. Possible geometries used in simulating a scattering event
of a single particle with a 1D sample: (a) chain geometry in real
space and (b) star in momentum space. The open circles represent the
sample orbitals, while red (blue) solid circles indicate the source (de-
tector) orbitals for the incident and scattered particles, respectively.
Orbitals connected by lines interact via the perturbation V .

sufficiently long times, the particle oscillates back and forth
between the two. Hence, the t → ∞ limit is not well defined.
(iii) Finally, since the treatment of the interaction does not
rely on perturbation theory, the measure 〈nd (t )〉 will contain
all contributions to all orders.

A. Momentum resolution

To adapt the previous ideas to translationally invariant
systems, we now model the source and detector to account
for the momentum of the incoming and outgoing particle.
For illustration and simplicity, we limit our discussion to the
one-dimensional case, but the same considerations can be gen-
eralized to any geometry. Below, we present two alternative,
but equivalent, forms that will yield similar results but will
differ in their implementation.

1. Chain geometry

We first describe what we refer to as the “chain geometry”
[37]: Both the source and detector are represented as two
parallel chains of orbitals with the same number of “sites” as
the system under study, represented by Hamiltonian H0, as
shown in in Fig. 2(a).

The Hamiltonian Hd is now given by

Hd = ωs

∑
�

ns� + ωd

∑
�

nd�, (9)

and the interaction between the system and the source is
written as

V = J ′ ∑
�

O�(c†
s�cd� + H.c.), (10)

where O� is some generic diagonal local operator acting on
site � (we consider O� = O†

� , but the formalism can be gener-
alized to other cases).

Since the source, probe, and system are extended in space
and the interaction term is invariant under translations, mo-
mentum conservation is ensured. In the present setup, the
initial state of the full system is given by

|�(t = 0)〉 = |φ〉 ⊗ |ns = 1, ks = k0〉 ⊗ |nd = 0〉 , (11)

where k0 is the momentum of the incident particle at the
source.

By measuring the momentum distribution at the detector
ndk (t ),

ndk (t ) = 1

L

∑
�,�′

eik(�−�′ )〈c†
d�

cd�′ (t )〉, (12)

we obtain the full spectrum of the system with both time and
momentum resolution.

2. Star geometry

The number of degrees of freedom can be reduced consid-
erably by accounting explicitly for the fact that the incident
particle can assume only one allowed value of momentum k0.
In this case, instead of representing the source by a chain, we
do it as a single orbital with energy ωs and momentum k0. In
our approach, we fix the source to have the same momentum
as the incident particle k0 = ks in the beginning of the calcu-
lation. Therefore, the Hamiltonian Hd becomes

Hd = ωsnsk0 + ωd

∑
�

nd�, (13)

and the interaction

V = J ′
√

L

∑
�

O�

(
eik0�c†

d,�
cs,k0 + H.c.

)
, (14)

with Ok = 1/L
∑

� eik�O�. The corresponding geometry is il-
lustrated in Fig. 2(b). Notice that while the complexity of
the problem has been greatly reduced, the Hamiltonian now
contains long-range terms.

Finally, we point out that, besides the two described ap-
proaches, there is yet a third possibility: a “double-star”
geometry in which the probe is “tuned” to detect only a
scattered particle with fixed momentum kd . In this case, we
find that the interaction would be written as

V = J ′

L

∑
�

O�

(
ei(k0−kd )�c†

d,kd
cs,k0 + H.c.

)
. (15)

When using this scheme, one needs to carry out one cal-
culation for each value of kd , increasing the computational
overhead by a factor of L.

B. DMRG implementation

In order to recast these ideas into a practical numerical
solver, we will describe implementation in the context of the
time-dependent DMRG method. For this purpose, we con-
sider a chain with L sites coupled to two auxiliary chains
s and d accounting for the source and detector or probe of
neutrons, electrons, or photons. The main advantage of this
setup, compared to the star geometries is that the Hamiltonian
remains local and allows for a straightforward Suzuki-Trotter
decomposition of the evolution operator (for details about
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TDMRG we direct the reader to [23,25,27]). As examples, we
shall present two cases for prototypical Hamiltonians H0: The
Hubbard chain is defined as

HHubbard = −J
L−1∑

i=1,σ

(c†
iσ ci+1σ + H.c.)

+U
L∑

i=1

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (16)

where U and J parametrize the on-site Coulomb interaction
and the hopping, respectively (the symbol t is reserved for the
time variable). In the large-U/J limit, the charge fluctuations
are suppressed, and only the spin degree of freedom remains.
In this regime, the low-energy physics is well described by the
one-dimensional Heisenberg model:

HHeis = JH

∑
i


Si · 
Si+1, (17)

where the operators 
S represent S = 1/2 spins and JH ∼
4J2/U .

Without loss of generality, we use a spinless fermion to
represent the incident and scattered particles.

For ground-state calculations, we use the conventional
DMRG method to initialize the system. To ensure that the
source particle is in a state with a well-defined momentum
and that the detector is empty, we include a projector Hk0 =
|k0〉〈k0| and a large positive potential term in the detector.
Alternatively, the chain can be in a state far from equilibrium,
resulting from a quench or a pump, for instance. In either case,
before the measurement starts, the scattering term is always
“turned off” with J ′ = 0. At t = 0 the source and probe are
connected, and one can start measuring the momentum distri-
bution on the detector chain. This procedure is carried out by
keeping enough DMRG states to ensure a truncation error of
the order of 10−6, corresponding to a block dimension up to
m = 400 in the worst cases. We typically run the simulations
to times of the order of tprobe = 50 (in units of J−1) for each
energy ωd . This represents hundreds of simulations, but they
are all carried out in parallel independently.

In our work we assume that J ′ is a small constant, thus
allowing us to recover the usual expressions in perturbation
theory, i.e., small enough such that we remain in the pertur-
bative regime. Otherwise, the incident particle can become
more than a probe, either by entangling with the system or
by inducing a physics in the sample different from the one we
intend to observe. In addition, a compromise must be reached
in order to obtain decent visibility in relatively accessible
simulations times. Unless otherwise stated, we use J ′ = 0.2
in the rest of the paper.

III. RESULTS

A. Heisenberg chain

As a control case study, we first calculate the spectrum
of a spin chain (17) with JH = 1 as our unit of energy. The
one-dimensional Heisenberg model does not realize long-
range order, and the antiferromagnetic correlations decay
algebraically. In additions, the model displays spinon exci-
tations (domain walls) that carry spin 1/2. The spectrum

FIG. 3. Momentum-resolved neutron scattering spectrum of
Heisenberg chains of size L = 32 at the final time tprobeJ = 50. Color
scales are (a) linear and (b) logarithmic. (c) Integrated weight.

is gapless and bounded from below by the des Cloizeaux–
Pearson dispersion πJ/2| sin k| [41], and the upper boundary
of the continuum is πJ| sin (k/2)| [42]. This physics is re-
alized in a number of quasi-one-dimensional magnets, and
the spinon excitations have been experimentally confirmed
[43–57]. Since spinons are not conventional Landau quasipar-
ticles, the spectrum exhibits singularities at the edges instead
of a coherent band or dispersion. We show results at time
t = 50 in Fig. 3; Figs. 3(a) and 3(b) display the momentum-
resolved spin dynamical spectral function obtained with our
approach in linear and log scales, respectively, while Fig. 3(c)
shows the integrated weight. The oscillations in Fig. 3(c) are
due to the high resolution of the measurement, which reveals
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finite-size effects since we are considering a finite chain of
length L = 32 (in finite systems the spectrum is a collection
of δ peaks). It is possible that the very faint spectral weight
at high energies seen in the log scale [Figs. 3(b) and 3(c)]
originates from multispinon excitations. However, since these
features are at the limit of our numerical resolution and are
orders of magnitude smaller than the two-spinon continuum,
we cannot support any claims in that direction.

Figure 3(c) illustrates the convergence of the spectrum
as time evolves. At short measuring times, the features are
broader and less resolved, a manifestations of the energy-time
uncertainty principle. At very long times, the scattering parti-
cle indeed will undergo “Rabi-like” oscillations between the
source and drain. Therefore, the measurement has to be car-
ried out during the first “tunneling” event, which describes the
actual impact with the sample. Any subsequent occurrences
are artifacts of the present setup. However, this behavior is
not observed in the simulation times considered in this work.
The optimal measuring time is determined ad hoc as the one
corresponding to maximum visibility, which translates into
maximum amplitude of the edges of the spectrum and smaller
broadening of the main features. As one can observe, the
resolution increases with time, as expected. As a matter of
fact, in most of the cases presented in this paper, the spectrum
just keeps getting sharper and sharper as time evolves. In
practice, one can stop the simulation when the resolution is
satisfactory.

B. Hubbard chain

The Hubbard chain at half filling is a Mott insulator with a
charge gap that increases with U/J . However, spin excitations
remain gapless and are also spinons, with a dispersion that
resembles the one for the spin chain, but with a renormalized
coupling JH ∼ 4J2/U [58]. The results of our calculations are
shown in Figs. 4 and 5 for U/J = 4 and 8, respectively. In both
cases, the hopping J = 1 is our unit of energy. We observe a
well-defined spinon spectrum with a bandwidth determined
by the renormalized value of JH . However, in the U/J = 4
case, an unexpected “bubble” of spectral weight is discerned
above the continuum at energies near ω ∼ 2.5. These fea-
tures are enhanced and clearly visible in the log-scale plot
[Fig. 4(b)]. Furthermore, the extra spectral weight can be
appreciated in the integrated spectral density [Fig. 4(c)]. By
paying further attention, we discover similar features in the
U/J = 8 results that, albeit being fainter than in the previous
case, become obvious also in log scale and occur at higher
energies. This high-energy bubble does not appear in calcu-
lations using linear response, Eq. (2), begging us to try to
understand its origin.

In order to identify the high-energy features, we resort
to exact diagonalization calculations for small systems. In
Fig. 6 we show the eigenvalues for a chain with L = 10 sites
with total spin S = 0 and U/J = 4 [Fig. 6(a)] and U/J = 8
[Fig. 6(b)]. We observe that, besides the low-energy manifold
describing the spin physics traditionally associated with the
Heisenberg limit, we also find a high-energy manifold sep-
arated by a gap (the Mott gap). These states correspond to
spin excitations in the upper Hubbard band. Why do they
appear in our spectrum? To answer this question we recall

FIG. 4. Neutron scattering spectrum of half-filled Hubbard
chains of size L=32 with Coulomb coupling U/J =4.0. Momentum-
resolved spectrum at final time tJ = 50 is plotted on (a) linear and
(b) logarithmic color scales. (c) Integrated weight.

that our formulation does not rely on perturbation theory, and
therefore, it contains all contributions to ndk to all orders.
Therefore, the appearance of the new features can be associ-
ated with high-order contributions that, we should emphasize,
are real in the sense that an idealized experimental setup with
high resolution and no noise should be able to resolve them,
particularly if the matrix elements (our J ′) are large. However,
despite this fact, this spectral weight is not associated with the
spectral function (a quantity that arises from linear response),
but to higher-order transitions.

It turns out that similar contributions can be observed in the
low-energy spectrum, as shown in Fig. 7. We here compare the
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FIG. 5. Same as Fig. 4, but for U/J = 8.

results obtained by means of our scattering approach and the
spectral function S(k, ω) obtained from equilibrium Green’s
functions using TDMRG [23,25,27]. While the spectral func-
tion S(k, ω) displays a sharp lower edge, the higher-order
contributions are evident in the inelastic scattering spectrum
with the appearance of a new “branch” in the middle of the
continuum and a drop in the spectral weight at the low-energy
edge of the spectrum between k = 0 and k ≈ 2/3π .

C. Hubbard chain after a quench

We now proceed to study the case of a Hubbard chain
far from equilibrium after a sudden quench in HHubbard from
U0/J = 0 to U/J = 8. At t = 0, the initial state is the ground
state of the noninteracting Hamiltonian. We then suddenly
change the value of the interactions to U/J = 8, and we

FIG. 6. Exact spectrum for a half-filled Hubbard chain with
L=10 sites in the Sz=0 subspace for (a) U/J = 4 and (b) U/J = 8.

measure the spectrum of the system in the resulting nonther-
mal state of the new interacting Hamiltonian. Much attention
has been paid to the problem of the “melting” of the Mott
insulator [37,59–71], mostly in the context of the photoemis-
sion response. By pumping energy into the system, one can
change the population of doublons and induce excitations into
the upper Hubbard band. The effects of the quench are similar
to photodoping: The chain is no longer insulating but will have
a finite density of holes and double-occupied sites that will
differ from that in equilibrium (essentially, the equivalent to
particle-hole excitations in a Mott insulator). As a result, the
chain will be gapless for both the spin and charge sectors. This

FIG. 7. Comparison between (a) the nonperturbative time-
dependent scattering approach introduced in this work and (b) equi-
librium Green’s function results for a Hubbard chain with U/J = 8
using TDMRG (in arbitrary units).
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FIG. 8. Neutron scattering spectrum of a Hubbard chain
quenched from U0/J = 0 to U/J = 8. Momentum-resolved spec-
trum on (a) linear and (b) logarithmic color scales. (c) Integrated
weight as a function of probing times.

will be reflected in the spectrum probed by neutron scattering,
which now will display a superposition of coexisting spin
excitations in the upper and Hubbard bands, as shown in our
results (Fig. 8). Interestingly, the high-energy bubble has also
melted, together with the Mott gap. Consequently, the mag-
netic order (or “quasiorder” in one dimension) has also been
modified: The signatures of “2kF ” singularities are no longer

well defined, and we see indications of gapless dispersive
branches shifted away from k = π , as expected from a doped
Mott insulator [71,72]. In a nonequilibrium, nonthermal state
such as the one realized in a quench, the concepts of bands and
dispersion are not well defined in the conventional sense. The
measured spectrum contains contributions from all allowed
transitions ωmn = Em − En and will typically appear as an
incoherent continuum.

IV. CONCLUSIONS

We have presented a numerical approach to calculate in-
elastic scattering spectra by directly simulating a scattering
event using the time-dependent Schrödinger equation. Un-
like conventional approaches that rely on evaluating Green’s
functions in the frequency or time domain, we directly ob-
tained the spectral density through the probability of detecting
an event after an incident particle is deflected from the
sample. The method not only reproduces the energy- and
momentum-resolved results from equilibrium Green’s func-
tions but includes contributions to all orders, revealing hidden
features that can potentially be observed experimentally.
These higher-order features correspond to transitions between
excited states. Their visibility depends on the magnitude of the
coupling between the incident particles and the sample (the
so-called matrix elements) and the intensity of the beam. For
weak interactions (smaller J ′) they will be rapidly suppressed
since the next correction enters with a J ′3 prefactor. In terms of
practicality in the context of numerical calculations, a smaller
J ′ implies a broadening in the spectral features for the same
tprobe, meaning that we need to increase the simulation time
to achieve the same resolution. The noteworthy aspect of this
method is that, by circumventing the direct explicit evaluation
of matrix elements between excited states, the approach can
be readily and seamlessly applied to nonequilibrium problems
that would otherwise be out of reach for conventional numer-
ical alternatives.
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APPENDIX: PERTURBATIVE ANALYSIS OF THE RESPONSE FUNCTIONS

1. Local probe

For simplicity, we first describe the local case in which a particle hits the sample at position 0 and interacts locally with the
electrons via a local Coulomb term (effectively describing an EELS event). The first contribution to the number of particles with
energy ωd in the detector can be calculated as

〈nd (t )〉 =
∫ t

0
dt1

∫ t

0
dt2〈ei(H0+Hd )t1Ve−i(H0+Hd )t1 nd ei(H0+Hd )t2Ve−i(H0+Hd )t2〉. (A1)
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The action of V on the initial state is very simple. Assuming that the system is initially in equilibrium in the ground state,

V |�(t = 0)〉 =J ′n0 |gs〉 |ns = 0, nd = 1〉 , (A2)

and Eq. (A1) becomes

〈nd (t )〉 = J ′2
∫ t

0
dt1

∫ t

0
dt2ei(E0+ωs )(t1−t2 ) 〈gs| 〈0, 1| n0e−i(H0+Hd )t1 nd ei(H0+Hd )t2 n0 |gs〉 |0, 1〉

= J ′2
∫ t

0
dt1

∫ t

0
dt2ei(E0+ωs )(t1−t2 )e−iωd (t1−t2 ) 〈gs| n0e−iH0(t1−t2 )n0 |gs〉

= J ′2
∫ t

0
dt1

∫ t

0
dt2

∑
| f 〉

ei(E0+ωs−ωd )(t1−t2 )e−iE f (t1−t2 )|〈gs| n0 | f 〉|2

= J ′2
∫ t

0
dt1

∫ t

0
dt2

∑
| f 〉

ei[(E0−E f )+(ωs−ωd )](t1−t2 )|〈gs| n0 | f 〉|2

= 4J ′2 ∑
| f 〉

sin2 {[ω − (E0 − E f )]t/2}
[ω − (E0 − E f )]2

|〈gs| n0 | f 〉|2, (A3)

where ω = ωs − ωd . In the limit of t → ∞ it can be written as

〈n(t )〉
t

→ 2π
∑
| f 〉

|〈gs| n0 | f 〉|2δ[ω − (E0 − E f )]. (A4)

Note that in the case of neutron scattering, we can replace the term n0(ns + nd ) in V by Sz
0(Sz

1 + Sz
2) = 1/2S2

0 , so that the
observable in the brackets in the last line of Eq. (A3) is given by Sz

0.

2. Extended probe: Momentum resolution

We generalize the previous case to an extended probe with momentum resolution and an arbitrary contact term in the potential
with an operator O. The signal at the detector is now the momentum distribution function, which can be obtained as

〈n2k (t )〉 =
∫ t

0
dt1

∫ t

0
dt2〈ei(H0+Hd )t1Ve−i(H0+Hd )t1 n2kei(H0+Hd )t2Ve−i(H0+Hd )t2〉. (A5)

We assume that at t = 0 the system is in equilibrium in the ground state; hence,

〈n2k (t )〉 =
∫ t

0
dt1

∫ t

0
dt2ei(E0+ωs )(t1−t2 ) 〈gs| 〈k0, 0|Ve−i(H0+Hd )t1 n2kei(H0+Hd )t2V |gs〉 |k0, 0〉 . (A6)

Applying V to �(t = 0) yields

V |gs〉 |k0, 0〉 = J ′

L

∑
�

O� |gs〉
∑
q,p

ei(p−q)�c†
2pc1q |k0, 0〉

= J ′

L

∑
�

∑
p

ei(p−k0 )�O� |gs〉 |0, p〉 . (A7)

In addition, n2k projects the state onto one with well-defined momentum:

n2kV |gs〉 |k0, 0〉 = J ′

L

∑
�

ei(k−k0 )�O� |gs〉 |0, k〉 = J ′Ok−k0 |gs〉 |0, k〉 . (A8)

Taking that into consideration, expression (A6) becomes

〈n2m(t )〉 = J ′2 ∑
f

∫ t

0
dt1

∫ t

0
dt2ei(E0−E f +ωs−ωd )(t1−t2 )|〈 f | Ok−k0 |gs〉|2. (A9)

In this expression we recognize the momentum-resolved spectral function for operator O, shifted by k0

〈n2m(t )〉 = 4J ′2 ∑
| f 〉

sin2 {[ω − (E0 − E f )]t/2}
[ω − (E0 − E f )]2

|〈gs| Ok−k0 | f 〉|2. (A10)
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