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Fluctuation diagnostic of the nodal/antinodal dichotomy in the Hubbard model at weak coupling:
A parquet dual fermion approach
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We apply the boson exchange parquet solver for dual fermions to the half-filled Hubbard model on a square
lattice at small interaction. Our results establish that, in this regime, nonlocal vertex corrections play an important
role in the formation of the pseudogap. Namely, in comparison to the simpler ladder approximation, these
additional vertex corrections included in the parquet equations enhance the coupling of spin fluctuations with
the quasiparticles. The pseudogap thus opens already at a higher temperature, in quantitative agreement with
the numerically exact diagrammatic Monte Carlo. The representation of the parquet diagrams in terms of boson
exchange facilitates large lattice sizes and gives rise to an unbiased fluctuation diagnostic of the self-energy,
which does not rely on the Fierz ambiguity. The fluctuation diagnostic implies that nodal and antinodal fermions
are affected equally by spin fluctuations with the exact commensurate nesting vector (π, π ). However, the
antinode couples more efficiently to incommensurate fluctuations than the node, leading to the nodal/antinodal
dichotomy. We corroborate this finding in terms of a spin-fermion-like calculation.

DOI: 10.1103/PhysRevB.102.235133

I. INTRODUCTION

The half-filled Hubbard model on the simple square lat-
tice exhibits strong antiferromagnetic spin fluctuations at low
temperature, which lead to the opening of a spectral gap
for arbitrarily small interaction [1–6]. This can be seen as
an emergent strong-coupling regime where, in spite of a
weak Hubbard repulsion much smaller than the bandwidth, a
strong effective interaction between electrons is mediated by
spin fluctuations. The corresponding spin fluctuation theory
and the phenomenological spin-fermion model capture indeed
qualitatively the gap formation [2,6,7].

A crucial feature of the temperature-driven crossover from
metal to insulator is the nodal/antinodal dichotomy: Upon
lowering the temperature, the gap opens first at the antinode,
then spreads across the Fermi surface, until also the node
becomes insulating [3–6].

In the considered regime, thanks to recent improvements
of the diagrammatic Monte Carlo (DiagMC) method [8–10],
the gap formation at weak Hubbard interaction was recently
confirmed in a numerically exact framework [6]. However,
it remains interesting to apply approximate techniques to the
problem, which allow us either to simplify the picture, and
thus identify the minimal ingredients that describe the correct
physics, or to obtain a more complete picture by gather-
ing additional information about the fermionic and bosonic
excitations and their interaction. With regard to the first
route, the authors of Ref. [6] compared the DiagMC to the
spin fluctuation theory and to the ladder dynamical vertex
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approximation [7,11], which describe qualitatively the gap
formation and give access to quasiparticle parameters [2,12].

In this work, we proceed along the second route in the
spirit of the fluctuation diagnostic method for the self-energy
[13–16] which provides substantial information about the
feedback of collective bosonic fluctuations on the fermions.
We use this idea to determine the origin of the nodal/antinodal
dichotomy of the self-energy. We arrive at the conclusion that
incommensurate spin fluctuations precipitate the dichotomy,
whereas commensurate spin fluctuations with the exact nest-
ing vector (π, π ) lead to the same feedback on nodal and
antinodal fermions.

The authors of Ref. [6] also provided a detailed comparison
of the DiagMC with a variety of approximate techniques,
some of which capture qualitatively the pseudogap formation,
for example, the two-particle self-consistent approach [2], the
ladder dynamical vertex approximation, and the ladder dual
fermion approach (LDFA, [17,18]). On the other hand, the
quantitative deviations of these methods from DiagMC with
respect to crossover temperatures and/or magnitude of the
self-energy are sizable.

In fact, it is a common conception that spin fluctuations
are dominant at half-filling and that, hence, the ladder approx-
imations should be sufficient because the interplay between
various fluctuation channels can be neglected. However, this
argument is not very conclusive because in a more complete
theory of vertex corrections the strong spin fluctuations renor-
malize not only other one- and two-particle correlations, but
also themselves, via their feedback on the kernel of the Bethe-
Salpeter equation. This feedback is neglected in the ladder
approximations and we show here that the more complete
parquet summation of vertex diagrams [19,20] applied to dual
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fermions [21,22] improves the quantitative agreement with
DiagMC. The good agreement with the numerically exact ref-
erence result indicates that all relevant vertex corrections, also
beyond the ladder approximation, are taken into account in our
approach. Indeed, we observe a nodal/antinodal dichotomy of
the fermion-spinboson coupling, an effect which can not be
captured by the ladder approximation.

The methodological improvements which make the par-
quet formalism applicable to reasonably large lattices (in this
work up to 32 × 32 lattice sites) are described in Refs. [21,23–
26], where the accompanying paper [24] presents an efficient
boson exchange parquet solver (BEPS) for dual fermions,
which we use here. The method can be construed as a partial
bosonization with residual four-fermion interaction [27], com-
bined with a truncated unity approximation [23,28] that allows
a feasible solution of a set of parquet equations for the resid-
ual four-fermion vertex [24,29,30]. Similar to the dynamical
mean-field theory (DMFT, [31]), the dual fermion approach
relies on an auxiliary Anderson impurity model (AIM) as a
nontrivial starting point that provides the local correlations
[17]. We find that in the pseudogap regime the self-consistent
adjustment of the hybridization bath of the AIM achieves an
optimal agreement with DiagMC. Finally, as an addendum to
Ref. [24], we show here explicitly the decomposition of the
BEPS self-energy into contributions corresponding to single-
and multiboson exchange [29]. This decomposition implies
directly a fluctuation diagnostic of the self-energy which is un-
ambiguous, that is, it does not make use of the Fierz ambiguity
to rewrite the self-energy in a charge, spin, or particle-particle
picture [13].

The paper is structured as follows. In Sec. II we introduce
the Hubbard model and the key aspects of our method, which
is described in full detail in Ref. [24]. In Sec. III we define the
fluctuation diagnostic. The results are presented in Sec. IV,
we close with the conclusions in Sec. V.

II. MODEL AND METHOD

We consider the paramagnetic Hubbard model

H = − t
∑

〈i j〉σ
c†

iσ c jσ + U
∑

i

ni↑ni↓, (1)

on the square lattice, where t is the hopping between nearest-
neighbor lattice sites i, j which we use as energy unit (i.e.,
t = 1). c, c† are the annihilation and creation operators, σ =↑
,↓ is the spin index, which is suppressed where unambiguous.
U is the Hubbard repulsion between two electrons at the same
site. We consider here the weak coupling regime U/t = 2.

A. Anderson impurity model

The dual fermion approach, which we will use to solve
the model in Eq. (1), is based on an auxiliary AIM with the
imaginary time action,

SAIM = −
∑
νσ

c∗
νσ (ıν + μ − hν )cνσ + U

∑
ω

n↑ωn↓ω, (2)

where c∗, c are Grassmann numbers and ν and ω are fermionic
and bosonic Matsubara frequencies, respectively. Summations
over Matsubara frequencies ν, ω contain implicitly the factor

Σ = −1
4 F ch −3

4 F sp

= + Σ

FIG. 1. Top: Dual self-energy. Arrows denote the dual Green’s
function G, large boxes represent the vertex function F in parquet
approximation, small boxes the impurity vertex f . Bottom: Dyson
equation, thin arrows represent the bare dual Green’s function G0.

T = β−1, the temperature. We consider two different op-
tions to fix the hybridization function hν of the AIM, as we
will discuss in Sec. II C. To calculate the correlation func-
tions of the AIM (2) at particle-hole symmetry we employ
a continuous-time quantum Monte Carlo (CTQMC) solver
[32] with improved estimators [33]. We require several higher
(three- and four-point) correlation functions of the AIM,
and a decomposition of the four-point vertex introduced in
Ref. [29], called single-boson exchange (SBE) decomposi-
tion. The definitions correspond, precisely, to the ones of
Sec. II B of Ref. [24].

B. Dual fermions

In the dual fermion formalism [17] the Hubbard model (1)
is mapped to the dual action

S[d∗, d] = −
∑

kσ

G0,−1
k d∗

kσ dkσ

+ 1

4

∑

kk′q

∑
σi

f σ1σ2σ3σ4
νν ′ω d∗

kσ1
d∗

k′+q,σ2
dk′σ3 dk+q,σ4 . (3)

Here, k = (k, ν) and q = (q, ω) denote fermionic and
bosonic momentum-energy vectors, respectively. The Grass-
mann numbers d∗, d represent the dual fermions and the
dual bare propagator is the nonlocal DMFT Green’s function,
G0 = GDMFT − g, where

GDMFT
k = 1

ıν − εk + μ − �
imp
ν

. (4)

Here, εk denotes the dispersion of the square lattice. The local
Green’s function gσ (ν) = −〈cνσ c∗

νσ 〉 and the local self-energy
�

imp
ν are obtained from the AIM (2).
The dual action in Eq. (3) contains, in principle, also three-

and more-particle local interactions. Following the standard
dual fermion applications, we keep only the quartic interaction
between the dual fermions, given by the four-point vertex
fνν ′ω of the AIM (2).

In any approximation beyond DMFT the bare propagator
G0 is dressed with a dual self-energy

Gk = G0
k

1 − G0
k�k

. (5)
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The self-energy reads in the general case (see Fig. 1)

�k = �HF
ν − 1

4

∑

k′q

Gk+q
[
F ch

kk′qX 0
k′q f ch

ν ′νω + 3F sp
kk′qX 0

k′q f sp
ν ′νω

]
.

(6)

Here, X 0
kq = GkGk+q denotes the dual bubble and F is

the full vertex function in the parquet approximation [34]
for dual fermions [21]. The Hartree-Fock part is �HF

ν =∑
k′ Gk′ f ch

ν ′ν,ω=0. Labels “ch, sp” and, further below, “s, t”
denote the charge, spin, particle-particle singlet, and particle-
particle triplet channel, respectively. Summations over mo-
menta imply division by the number of lattice sites N [35].

We use the BEPS method described in Ref. [24] to obtain
a self-consistent solution for the dual vertex function F and
self-energy �. The lattice self-energy of the Hubbard model
(1) is given as [17]

�lat
k = �imp

ν + �k

1 + gν�k
. (7)

C. Self-consistency conditions

We consider two different choices for the hybridization
bath hν of the AIM in Eq. (2). The first corresponds to the
DMFT solution [31] for the Hubbard model (1), where the
local part of the DMFT lattice Green’s function is adjusted to
the Green’s function g of the AIM,

GDMFT
ii (ν) = g(ν). (8)

The second choice for the hybridization corresponds to an
outer self-consistency loop of the dual fermion method. The
hybridization hν is then fixed so that the local part of the dual
fermion propagator vanishes

Gii(ν) = 0. (9)

The effect of this prescription is that any diagram with a
local dual line vanishes. This prescription is superior to others
[36,37], as it indeed improves LDFA results in comparison
with numerically exact benchmarks [38]. One should note
that, when using Eq. (9), the Green’s function GDMFT in
Eq. (4) is no longer equal to the DMFT solution. However, we
keep the label “DMFT” also for this case since the functional
form is not changed by the outer self-consistency and the bare
dual Green’s function is still given as G0 = GDMFT − g.

III. FLUCTUATION DIAGNOSTIC

In this work, we employ the feasible reformulation of
the parquet approximation for dual fermions introduced in
Ref. [24], called a boson exchange parquet solver (BEPS).
The reader should keep in mind that this method employs a
double decomposition of the full vertex, first, with respect to
single-boson exchange (SBE, [29]), and second, in the sense
of the parquet equations [39,40]. We show in the following
that the two decompositions give rise to a fine-structured
fluctuation diagnostic of the self-energy in terms of single-
and multiboson exchange.

A. Vertex decomposition

In Ref. [24] the vertex F was expressed through single-
boson exchange 	 and a residual vertex 
Uirr,

Fα
kk′q =
Uirr,α

kk′q +	
ph,α

kk′q +	
ph,α

kk′q +	
pp,α
kk′,q+k+k′ −2U α, (10)

where α = ch, sp, s and U ch = U,U sp = −U,U s = 2U is
the bare interaction. The SBE vertices are given as

	
ph,α

kk′q = �α (k, q)W α (q)�α (k′, q), (11a)

	
pp,α
kk′q = �s (k, q)W s (q) �s (k′, q)

1 − 2δα,sp

2
, (11b)

where W denotes the screened interaction and � is the
fermion-boson coupling (also called the Hedin or proper ver-
tex [41,42]), for definitions see Refs. [24,29].

Further, the authors of Ref. [24] introduced a second de-
composition, a parquet decomposition of the residual vertex

Uirr,


Uirr,ch
kk′q = ϕUirr,ch

νν ′ω + M ph,ch
kk′q − 1

2
M ph,ch

k,k+q,k′−k − 3

2
M ph,sp

k,k+q,k′−k

+ 1

2
M pp,s

kk′,k+k′+q + 3

2
M pp,t

kk′,k+k′+q, (12a)



Uirr,sp
kk′q = ϕ

Uirr,sp
νν ′ω + M ph,sp

kk′q − 1

2
M ph,ch

k,k+q,k′−k + 1

2
M ph,sp

k,k+q,k′−k

− 1

2
M pp,s

kk′,k+k′+q + 1

2
M pp,t

kk′,k+k′+q, (12b)

where ϕUirr denotes the (local) residual vertex of the AIM
(2) [29,30]. Equations (12a) and (12b) are equivalent to the
parquet approximation for dual fermions [21].

The double decomposition certainly implies a complica-
tion, however, it amounts to the separation of high from low
energies [26], as well as of short-ranged from long-ranged
fluctuations [24,25]. In particular, the spatially long-ranged
components of the full vertex F are given by the SBE vertices
	 [25], which also capture the high-frequency asymptote of
F , whereas multiboson exchange represented by the vertices
M is more short-ranged compared to 	 and decays at high
frequencies. The short-ranged property of the vertices 
Uirr

and M invites a truncated unity approximation [23] at this
level. For a detailed description of the various vertices and
of the truncated unity approximation for 
Uirr the reader is
referred to Ref. [24].

B. Self-energy decomposition

In the BEPS method, vertex corrections are represented
in terms of bosonic fluctuations. This leads to an appealing
physical picture where correlations can be assigned to var-
ious channels, leading to a fluctuation diagnostic similar to
Refs. [13,14]. Using the SBE decomposition (10) we express
the dual self-energy (6) as

�k = �HF
ν + �Uirr

k + �ch
k + �

sp
k + �s

k + �bare
k . (13)

In a diagnostic of the lattice self-energy in Eq. (7) it is
convenient to decompose only the numerator of the term
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FIG. 2. Schematic single- and two-boson exchange diagrams for
the self-energy. At half-filling and weak coupling the direct contribu-
tion of multiboson exchange to the self-energy is negligible, however,
through the parquet equations the corresponding vertex corrections
enter also the fermion-boson coupling (triangles) and the screened
interaction (wiggly lines), leading to a sizable renormalization of the
left diagram.

�/(1 + g�) because each component is anyways divided by
the same denominator, see Ref. [16] and Sec. III B.

Equation (13) does not rely on the Fierz ambiguity, that
is, the components �ch, �sp, �s can be assigned to one and
only one fluctuation channel. More precisely, the use of a
renormalized/screened interaction can reduce the Fierz am-
biguity [27]. The dual fermions reduce the Fierz ambiguity as
much as possible because their bare interaction corresponds
to the full and, hence, renormalized vertex function f of the
AIM (2). However, there always remains some freedom in
the choice of a channel for the bare Hubbard interaction U ,
which plays a role also for the dual fermions as the leading
order of the impurity vertex f . Henceforth, we treat the bare
interaction as a separate component, �bare.

The last four components in Eq. (13) then read

�ch
k = −1

2

∑

k′q

Gk+q
(
	

ph,ch
kk′q − U ch

)
Gk′Gk′+q f ch

ν ′νω, (14a)

�
sp
k = −3

2

∑

k′q

Gk+q
(
	

ph,sp
kk′q − U sp

)
Gk′Gk′+q f sp

ν ′νω, (14b)

�s
k = −1

4

∑

k′q

Gq−k
(
	

pp,s
kk′q − U s)Gk′Gq−k′ f s

ν ′νω, (14c)

�bare
k = −1

4

∑

k′q

Gk+qUGk′Gk′+q
[

f ch
ν ′νω − 3 f sp

ν ′νω

]
. (14d)

In this way, the bare interaction is canceled from each
vertex 	 and arises only in the term in the last line [43]. A
self-energy diagram due to single-boson exchange is shown
on the left of Fig. 2.

We apply the second vertex decomposition, the parquet
Eqs. (12a) and (12b) for the residual vertex 
Uirr, which give
rise to the following self-energy components:

�Uirr
k = �Uirr,loc

k + �Uirr,ch
k + �

Uirr,sp
k + �Uirr,s

k + �Uirr,t
k ,

(15)

where the component �Uirr,loc denotes the contribution of the
local residual vertex ϕUirr

νν ′ω, the first term on the right-hand
sides of Eqs. (12a) and (12b). The other components are given
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ν
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Σ

la
t (
k

A
N
/k

N
,ν

)

DMFT

BEPS (DMFT bath) AN
BEPS (SC bath) AN

BEPS (DMFT bath) N
BEPS (SC bath) N

LDFA (DMFT bath) N

LDFA (DMFT bath) AN

FIG. 3. Self-energy of different methods at node (full symbols)
and antinode (open symbols) for T = 0.07.

explicitly as

�Uirr,ch
k = −1

2

∑

k′q

Gk+qM ph,ch
kk′q Gk′Gk′+q f ch

ν ′νω, (16a)

�
Uirr,sp
k = −3

2

∑

k′q

Gk+qM ph,sp
kk′q Gk′Gk′+q f sp

ν ′νω, (16b)

�Uirr,s
k = −1

4

∑

k′q

Gq−kM pp,s
kk′q Gk′Gq−k′ f s

ν ′νω, (16c)

�Uirr,t
k = −3

4

∑

k′q

Gq−kM pp,t
kk′qGk′Gq−k′ f t

ν ′νω. (16d)

The right diagram in Fig. 2 shows a two-boson exchange
taken into account by the vertex M ph [44].

In the spirit of the original fluctuation diagnostic [13], it
is possible to assign a bosonic argument to each self-energy
component, that is �kq, which allows to find the wave vector
and energy of the dominant bosonic contributions to the self-
energy. To do this, we can simply omit the summation over
the bosonic label q = (q, ω).

IV. NUMERICAL RESULTS

We present results for the self-energy from the boson ex-
change parquet solver (BEPS). The lattice size is fixed to
32 × 32 sites. For the truncated unity approximation [23] of
the residual vertex 
Uirr we use only one form factor. Thanks to
the fast convergence of BEPS with the number of form factors
[24], the higher form factors are irrelevant at half-filling and
U/t = 2.

A. Effect of self-consistency

First, we evaluate the BEPS self-energy at T/t = 0.07
and examine the effect of the bath self-consistency. Figure 3
shows that using the DMFT hybridization [i.e., applying the
prescription (8)] the antinode already shows a clear non-
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Fermi liquid signature at this temperature. This implies that
the non-self-consistent BEPS has a slightly stronger tendency
to the pseudogap formation than the numerically exact dia-
grammatic Monte Carlo (DiagMC), where the antinode turns
insulating near T/t = 0.065 [6]. For comparison we also
show the momentum-independent DMFT self-energy and the
self-energy from the ladder dual fermion approach (LDFA,
[18]), which does not show the nodal/antinodal differentiation
at this temperature.

It is plausible that a self-consistent adjustment of the
local impurity model can improve the result. Indeed, the
self-consistency condition (9) for the dual Green’s function,
Gloc = 0, relaxes the tendency of the BEPS self-energy to the
pseudogap formation and turns the self-energy at the lowest
Matsubara frequencies slightly back toward the metallic di-
rection (see Fig. 3). Apparently, the bath self-consistency has
a sizable effect in the pseudogap regime and should be applied
in a quantitative comparison with an exact benchmark. Hence-
forth, we use the prescription (9) (outer self-consistency).
Practically, we converge at low temperature via annealing,
using the self-consistent hybridization determined at a slightly
higher temperature. Note that the self-consistency implies that
the Hartree-Fock contribution to the self-energy vanishes

�HF
ν =

∑

ν ′
Gloc(ν ′) f ch

ν ′ν,ω=0 = 0. (17)

We apply the same prescription (9) also for our LDFA
calculations [45].

B. Quantitative comparison with DiagMC

For a quantitative comparison with the numerically exact
diagrammatic Monte Carlo results of Ref. [6] we calculate
the self-energy using BEPS for 0.1 � T/t � 0.065, see upper
panel of Fig. 4. The sequence shows that the nodal/antinodal
dichotomy develops in this temperature range. In the lower
panel we compare for T/t = 0.1 and T/t = 0.065(4) to
DiagMC. The BEPS self-energy is in good quantitative agree-
ment with DiagMC and shows a consistent nodal/antinodal
differentiation, overall in better agreement with DiagMC than
a variety of approximate methods benchmarked in Ref. [6].

C. Self-energy decomposition

We decompose the BEPS self-energy according to
Sec. III B. We begin with the SBE decomposition which gives
rise to the components of the dual self-energy in Eq. (13).
Inserting the decomposition into the expression (7) for the
lattice self-energy we arrive at

�lat
k = �imp

ν + �Uirr
k + �ch

k + �
sp
k + �s

k + �bare
k

1 + gν�k

= �imp
ν + �′Uirr

k + �′ch
k + �

′sp
k + �′s

k + �′bare
k , (18)

where we used that the Hartree-Fock self-energy vanishes
[Eq. (17)]. The lattice self-energy �lat is thus split into the
local impurity self-energy �imp and five nonlocal components,
each one divided by the same denominator 1 + gν�k , which
we absorbed in the second line of Eq. (18) into definition of
�′, e.g., �′ch

k = �ch
k /(1 + gν�k ).
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FIG. 4. Top: BEPS self-energy at node (full symbols) and antin-
ode (open symbols) for different temperatures. Bottom: Comparison
with the DiagMC result of Ref. [6].

In Fig. 5, the various components are drawn at the first Mat-
subara frequency along a high-symmetry path in momentum
space for T = 0.065. The leading nonlocal contributions to
the self-energy are the single-(spin)boson exchange, �′sp, and
the bare contribution �′bare, which have, in general, the same
sign. The next largest contributions are due to single-boson
exchange in the charge and singlet channels. Consistent with
the observation in Ref. [14] they have the opposite sign of
�′sp. At half filling, theses contributions are very small due to
the suppression of charge and particle-particle fluctuations in
this parameter regime.

The contribution �′Uirr due to multiboson exchange is neg-
ligible in the weak coupling regime considered here. We show
the decomposition of �′Uirr according to Eq. (15) in Appendix
A.

The bottom panel of Fig. 5 shows the difference be-
tween the self-energy at the first and the second Matsubara
frequency, 	Im�lat(k) = Im�lat(k, πT ) − Im�lat(k, 3πT ).
For a metal, 	Im�lat > 0 for momenta k at the Fermi level.
The crossover to the (insulating) non-Fermi-liquid regime
is then roughly indicated by 	Im�lat crossing 0 [3,6]. At
the chosen temperature T = 0.065, we find that the BEPS
self-energy features already a pseudogap behavior, i.e., a non-
Fermi-liquid-type self-energy at the antinode (	Im�lat < 0
at the X point) while the node (M/2) is still metallic. On the
contrary, the corresponding results for the LDFA (black sym-
bols, cf. Appendix B) indicate that we are still in the metallic
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FIG. 5. Fluctuation diagnostic of the real (top) and imaginary
(center) part of the BEPS lattice self-energy at the first Matsubara
frequency, along the high-symmetry path (T = 0.065). The solid
blue line shows the full self-energy, a dashed line the local self-
energy of the self-consistent AIM. The other lines indicate the
various components �′ defined in Eq. (18). The bottom panel shows
the non-Fermi-liquid marker 	Im�lat (see text), black symbols indi-
cate the LDFA.

regime and the pseudogap opens at a lower temperature than
in BEPS or DiagMC [6].

Nevertheless, in both dual fermion approximations the
non-Fermi-liquid behavior arises from the single-spinboson
exchange �′sp. We therefore discuss in the following only
the diagram on the left-hand side of Fig. 2 with the boson
flavor α = sp, that is, we can safely ignore the contributions
of (single) charge and singlet bosons as well as any sort of
multiboson exchange such as the right diagram in Fig. 2.

D. Fluctuation diagnostic

We perform a fluctuation diagnostic [13] of the single-
spinboson exchange, which reveals the origin of the
nodal/antinodal dichotomy in the pseudogap regime. To this
end, we omit the summation over q = (q, ω) in Eq. (14b),
that is,

�
sp
kq = −3

2

∑

k′
Gk+q

(
	

ph,sp
kk′q − U sp

)
Gk′Gk′+q f sp

ν ′νω.
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FIG. 6. q-resolved fluctuation diagnostic of �sp at T = 0.065.
Solid and dashed lines show BEPS (N = 322) and LDFA (N = 642),
respectively. For comparison the LDFA result is mapped to the
smaller lattice. The antinode is affected more strongly by incommen-
surate fluctuations than the node.

We draw the quantity

1

βN
Im�sp(k = kN/kAN , ν = πT, q = (qx, qy), ω = 0)

in Fig. 6 as a function of qy for fixed qx = π (top panel) and
qx = 15

16π (bottom panel). This allows us to analyze how much
spin fluctuations with a certain wave vector (qx, qy) contribute
to the nodal/antinodal self-energy at the first Matsubara fre-
quency [46]. Remarkably, our BEPS results show that spin
fluctuations with the exact commensurate nesting vector q =
(π, π ) contribute equally (or even slightly stronger) to the
node than to the antinode (see top panel of Fig. 6 at qy/π = 1).
The larger self-energy at the antinode then originates from
incommensurate momenta near (π, π ) which are weaker for
the node as can be seen in the lower panel of Fig. 6.

Remarkably, there is another interesting feature for qx =
15
16π = π − 1

16π : While for the antinode the dominant contri-
bution to the self-energy remains at qy = π , for the node we
observe the maximum at qy = 17

16π = π + 1
16π . Interestingly,

the same behavior is found already for the LDFA self-energy
albeit with overall smaller values since the LDFA predicts
a more metallic behavior at this temperature (and, hence, a
smaller self-energy).

The similarity between the parquet and the ladder results
suggests that the effects discussed above might be under-
stood by means of an even simpler approach. Indeed, as
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q

(a)

q

(b)

FIG. 7. Sketch of the nodal/antinodal dichotomy. The nesting
vector q = (π, π ) connects equivalent regions of the square lattice
dispersion εk ∝ cos(kx ) + cos(ky ) on the Fermi surface. (a) Finite
first derivative (e.g., nodes): Scatterings require a fine-tuning of |q|.
(b) Vanishing first derivative (antinodes): Scatterings are insensitive
to small changes in |q|.

it is discussed in detail in Appendix C, a spin-fermion-like
calculation of the self-energy shows that the different line
shapes for antinode and node in Fig. 6 originate in the van
Hove singularity of the square lattice. The actual mechanism
at work is illustrated in Fig. 7: The scattering between the
flat regions around the saddle points [47,48] of the dispersion
relation at the Fermi surface (corresponding to the antinode)
does not require a fine-tuning of the bosonic momentum to
the nesting vector q = (π, π ) [49] [see Fig. 7(b)]. On the
contrary, for momenta with a finite Fermi velocity [Fig. 7(a)]
a significantly enhanced scattering rate can be expected only
for the exact nesting vector. For the corresponding explicit
analytical justification of this argument we refer the reader to
Appendix C.

To get more insights into the origin of the nodal/antinodal
dichotomy of the self-energy, we integrate (sum) 1

βN �
sp
kq with
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FIG. 8. Self-energy component �
sp
kq, integrated over a circle with

radius rq centered at q = (π, π ) for different temperatures at ω = 0.
At the node (dashed lines) the integral is largely determined by the
value at rq = 0, at the antinode (solid lines) incommensurate spin
fluctuations contribute significantly. Black lines show LDFA for T =
0.065.
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FIG. 9. Main panels: Fermion-spinboson coupling as a function
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insulating. Dashed curves show the ladder approximation. Verti-
cal lines indicate (in)commensurate momenta in Fig. 10. Insets:
Dual screened interaction W sp(q, ω = 0) of BEPS (solid) and LDFA
(dashed) near (π, π ).

respect to q over the area covered by a circle with radius rq,
centered at (π, π ). The result is shown in Fig. 8 as a function
of rq for T = 0.065, 0.067, 0.07, 0.1. Since �

sp
kq is known

only at discrete momenta, the integral grows step-wise as rq is
increased. Indeed, at the nodal point the integral is determined
almost entirely by spin fluctuations with momentum (π, π ).
In contrast, at the antinode incommensurate momenta (π ±
εx, π ± εy) with sizable εx/y � 0.2π contribute significantly
to the integral. In fact, the incommensurate spin fluctuations
are responsible for the nodal/antinodal dichotomy. Also this
aspect is explained by the spin-fermion-like calculation in
Appendix C.

E. Fermion-boson coupling

To further investigate how the node and antinode respond
differently to spin fluctuations we examine the fermion-
spinboson coupling (Hedin vertex)

�sp(k = kN/kAN , ν = πT, q, ω = 0). (19)

In Fig. 9 we show this quantity as a function of q for T = 0.1
and T = 0.065, outside and inside the pseudogap regime,
respectively. In the latter case, this vertex also exhibits a
nodal/antinodal dichotomy where, interestingly, in the nodal
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FIG. 10. Coupling of fermions with Fermi vector kF , pointed in
direction of the angle φ, to commensurate (top) and incommensu-
rate (bottom) spin fluctuations. A strong nodal/antinodal dichotomy,
related to the pseudogap formation, develops only with respect to
incommensurate spin fluctuations. The antinode (φ = 0, π/2) is cou-
pled more strongly to these fluctuations than the node (φ = π/4).

direction it develops spikes directed upwards at commensu-
rate bosonic momenta, q = (0, 0), (π, 0), and (π, π ), which
connect the node with itself and other nodal points, respec-
tively. Due to the spike at (π, π ), the coupling of the node
and antinode to spin fluctuations with this wave vector is
comparable. This is shown, in more detail, in the upper panel
of Fig. 10, where �sp(kF (φ), ν = πT, q = (π, π ), ω = 0) is
drawn for points kF (φ) on the Fermi surface in the direction
of φ = arctan(ky/kx ). The coupling to the (π, π )-spin fluc-
tuations (upper panel) depends only weakly on φ and looks
qualitatively similar at high and low temperature. However,
changing the bosonic momentum by only one unit along the
Brillouin zone diagonal to 15

16 (π, π ) the result differs quali-
tatively (lower panel): Upon opening of the pseudogap (T �
0.07), the coupling of antinodal fermions (φ = 0, π/2) to in-
commensurate spin fluctuations is enhanced compared to the
node (φ = π/4). This dichotomy concerns only low-energetic
fermions with |ν| � πT .

Note that such a difference between the node and the antin-
ode can not be found in the LDFA calculations (dashed lines
in Fig. 9) as the fermion-spinboson coupling does not depend
on the momentum k (see, for example, Ref. [50]). One can
also see that the coupling to antiferromagnetic fluctuations (M
point) is weaker in the LDFA with respect to the BEPS results.
Together with the reduced strength of the spin fluctuations in
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FIG. 11. Coupling of fermions with Fermi vector kF pointed in
direction of the angle φ to charge fluctuations with commensurate
momentum q = (π, π ). In the pseudogap regime the fermions are
strongly screened from charge fluctuations.

LDFA [see W sp(q, ω=0) in the insets of Fig. 9], this results
in an overall smaller self-energy as has been discussed in the
previous section.

Let us turn our attention to the interesting spike at the X -
point q= (π, 0) for the fermion-spinboson coupling vertex at
the nodal momentum in the lower panel of Fig. 9. In principle,
this peak would indicate an enhanced coupling of spin stripe
fluctuations to the nodal fermions. However, such fluctuations
are suppressed at half-filling which suggests that this stronger
value of the coupling is irrelevant for the self-energy. How-
ever, the actual origin and the physical meaning of this feature
requires further investigations.

Finally, we briefly comment on the role of charge degrees
of freedom. Figure 11 shows the coupling �ch of fermions
to such charge fluctuations. In the pseudogap regime, this
vertex is considerably smaller than the corresponding cou-
pling to spin fluctuations. In combination with the already
strongly suppressed charge susceptibility, this further reduces
the impact of charge fluctuations on the self-energy (see also
Ref. [51]). Furthermore, at particle-hole symmetry singlet
fluctuations contribute to the self-energy exactly two times as
much as the charge fluctuations (see yellow and green lines
in Fig. 5). Therefore, in LDFA it would be more consistent to
neglect the charge and singlet fluctuations on equal footing.

V. CONCLUSION

We presented a fluctuation diagnostic of the
nodal/antinodal dichotomy in the half-filled Hubbard model
on the simple square lattice at weak coupling. To this end, we
employed a novel method, the boson exchange parquet solver
(BEPS) for dual fermions, presented in the accompanying
Ref. [24]. The self-energy calculated in this method is in
good quantitative agreement with the numerically exact
diagrammatic Monte Carlo (DiagMC) results of Ref. [6]
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and shows a consistent nodal/antinodal differentiation in the
pseudogap regime.

We demonstrated that the vertex decomposition used in the
BEPS method implies a fluctuation diagnostics [52] of the
self-energy that does not rely on the Fierz ambiguity, which is
the basis for the original fluctuation diagnostic introduced in
Ref. [13]. The key for removing the Fierz ambiguity is to rep-
resent vertex corrections in terms of the screened interaction,
which has a unique flavor [27,29]. Only the bare interaction
diagram is intrinsically ambiguous and can not be assigned
to a unique channel. For weak coupling the bare interaction
diagram is important and its contribution to the self-energy is
smooth as a function of momentum. At low temperature the
feedback of the spin fluctuations adds sharp features to the
self-energy.

We found that the nodal/antinodal dichotomy does not
originate in spin fluctuations with the commensurate wave
vector (π, π ). Rather, incommensurate spin fluctuations con-
tribute significantly to the antinodal self-energy but not to
the nodal one. In fact, the dichotomy is entirely the result of
slightly incommensurate fluctuations, which is confirmed by a
spin-fermion-like calculation (cf. Appendix C). It is intriguing
to consider the role of incommensurate fluctuations also in
the doped t-t ′-Hubbard model, see, e.g., Ref. [53]. A fluctua-
tion diagnostic based on the dynamical cluster approximation
(DCA, [13]) identified the (π, π )-fluctuations as the origin of
the momentum differentiation, however, the incommensura-
bility relevant at least in our study is smaller than the patch
size of 8-site DCA.

Finally, we showed that in our BEPS calculations the
nodal/antinodal dichotomy also becomes manifest in the
fermion-spinboson coupling, which develops a rich depen-
dence on the fermionic momentum k in the pseudogap regime.
Interestingly, nodal and antinodal fermions couple similarly
to commensurate spin fluctuations with wave vector (π, π ) at
high and low temperature, whereas the coupling to slightly in-
commensurate spin fluctuations exhibits the dichotomy. Such
features can not be captured by any kind of ladder approx-
imation since the corresponding fermion-spinboson vertex
becomes k-independent in this case.

Our calculations were simplified by the particle-hole sym-
metry of the half-filled Hubbard model. However, an exact
particle-hole symmetry is only rarely found in realistic ma-
terials. Hence, in spite of some technical difficulties such as
the difference in the lattice and impurity densities, we are
already working to extend our methods to the doped case
in order to study, e.g., the physics of the high-temperature
superconducting cuprates.
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APPENDIX A: MULTIBOSON EXCHANGE

We show in Fig. 12 the decomposition of �′Uirr
k via Eq. (15)

into charge, spin, singlet, and triplet components

�′Uirr
k = �′Uirr,loc

k + �′Uirr,ch
k + �

′Uirr,sp
k

+ �′Uirr,s
k + �′Uirr,t

k . (A1)

The contribution �′Uirr,loc is due to the local vertex ϕUirr, the
first term on the right-hand-sides of Eqs. (12a) and (12b).
Again, the prime indicates that each component of Eq. (15)
was divided by 1 + gν�k . As it was observed previously in re-
lated parquet decomposition calculations [14,54] and also for
the single-boson exchange contributions (see Sec. IV C), the
particle-particle and charge fluctuations screen the (otherwise
overestimated) spin fluctuations. However, for the small value
of U =2 considered here, all these terms are about three orders
of magnitude smaller than the corresponding single-boson
exchange contributions.

APPENDIX B: LADDER APPROXIMATION

In our comparison with the ladder dual fermion approach
(LDFA, [18]) we calculate the dual self-energy � consistent
with Ref. [55]. We impose the self-consistency condition (9).
The lattice size is fixed to 64 × 64.
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FIG. 12. Self-energy components due to multiboson exchange,
which are negligible compared to the single-boson exchange shown
in Fig. 5. The dashed line indicates the contribution of the local
residual vertex ϕUirr, other lines indicate the four channels of the
parquet equations.
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The LDFA self-energy is not usually expressed in terms
of boson exchange. However, we can obtain the Hedin vertex
�α (ν, q) and the screened interaction W α (q) for α = ch, sp
corresponding to the LDFA similar to Ref. [56] where this is
done for the DMFT approximation [7]. The only difference
is that the dual Green’s functions are now dressed with the
LDFA self-energy. Then, from � and W we form the SBE
vertex,

	
ph,α

νν ′q = �α (ν, q)W α (q)�α (ν ′, q), (B1)

which is thus independent of k, k′, and obtain the self-energy
component �sp analogous to Eq. (14b).

APPENDIX C: SPIN-FERMION-LIKE CALCULATIONS

In this section, we discuss the dichotomy between the
nodal and the antinodal momentum in the self-energy from
a simplified spin-fermion- (or a paramagnon-)like perspec-
tive. In particular, we will show how the saddle point in the
bare dispersion at the antinode, which is responsible for the
van Hove singularity in the noninteracting density of states,
leads to a momentum differentiation in the self-energy as
found in Fig. 6. In this Appendix we denote the Green’s
function and spin susceptibility of the lattice as G and χ sp,
respectively.

We start from a spin-fermion-like expression [7,57] for the
equation of motion [π = (π, π )],

�(k, ν) ∼=
∑

q

1

(q − π)2 + ξ−2
︸ ︷︷ ︸

χ sp(q,ω=0)

1

ζ (k + q, ν) − εk+q︸ ︷︷ ︸
G(k+q,ν)

, (C1)

which describes the scattering of an electron given by the
Green’s function G(k, ν) with an antiferromagnetic spin fluc-
tuation represented by χ sp(q, ω = 0) in the Ornstein-Zernike
form. In principle, the right-hand side of Eq. (C1) should be
also summed over ω but for finite temperatures the classi-
cal contribution ω=0 dominates. We defined ζ (k + q, ν)=
iν + μ − �(k + q, ν) where the form of �(k + q, ν) is not
important for our argument (and it could be also set to 0). Let
us point out that Eq. (C1) can be viewed in terms of the GW
theory [58] (cf. also Refs. [29,30]) where the Hedin vertex is
set to 1, W sp ∝ χ sp (and using the approximations for χ sp and
G mentioned above).

Obviously, momenta near q≈π yield the dominant contri-
bution to the summation in Eq. (C1). Hence, after a shift of
this integration variable, q→q+π, we expand the dispersion
relation around q = 0 for both the nodal kN = ( π

2 , π
2 ) and the

antinodal kAN = (π, 0) points:

kN : εk+q+π = − 2t (qx + qy) + O(q2), (C2)

kAN : εk+q+π = − t
(
q2

x − q2
y

) + O(q3). (C3)

Here, we can already notice a crucial difference between the
nodal (kN) and the antionodal (kAN) momentum: While the

first features a linear term the second one exhibits a saddle
point, i.e., the series expansion starts with the quadratic con-
tribution. We analyze the contributions to the sum in Eq. (C1)
for small q ≈ 0. For the nodal point we obtain

�(kN, ν) ∼=
∑

q

1

q2 + ξ−2

1

ζ + 2t (qx + qy)
. (C4)

In the spirit of a fluctuation diagnostic [13], we consider
contributions of individual momenta q to the sum.

At half-filling ζ is purely imaginary, therefore, the largest
contribution arises from the commensurate momentum qx =
qy =0 (corresponding to qx =qy =π before the shift of this
variable). However, for a slightly incommensurate momen-
tum, e.g., qx =− π

16 , the second factor under the sum has
its maximum at qy =+ π

16 . In fact, this reduces the contri-
bution of the first factor compared to qy =0. In the first
factor q enters quadratically, which is much smaller than the
linear contribution qx + qy in the second factor for q2 � 1.
Hence, for qx =− π

16 we expect the largest contribution
from qy =+ π

16 as it can be indeed seen in the lower panel of
Fig. 6.

As a result, the contribution of incommensurate momenta
to the nodal self-energy is suppressed compared to the com-
mensurate one q = 0.

On the contrary, for the antinodal point the expression for
the self-energy becomes

�(kAN, ν) ∼=
∑

q

1

q2 + ξ−2

1

ζ + t
(
q2

x − q2
y

) . (C5)

Again, the largest contribution arises from qx =qy =0 and
it is of the same size as for the nodal point (see upper
panel of Fig. 6). For qx =− π

16 the first factor is largest at
qy =0, while the maximum of the second factor is located at
qy =±qx =± π

16 .
Since now both factors depend quadratically on q, the com-

mensurate qy =0 and the incommensurate qy =± π
16 contribute

similarly to the antinodal self-energy.
Hence, for the antinodal point incommensurate wave vec-

tors near q = 0 (i.e., q=π before the shift) are more relevant
than for the node. The lower panels of Figs. 6 and 8 confirm
this. The calculation also explains why contributions from dif-
ferent q are symmetrical for the antinode, which is in general
not the case for the nodal point (cf. both panels of Fig. 6).

From a more physical perspective, our calculations show
that the nodal-antinodal dichotomy originates in the van Hove
singularity of the square lattice. Of course, the latter corre-
sponds to a flat band structure at the antinodal point, which
implies a vanishing first derivative. A more intuitive way to
understand the calculation is therefore that the scattering from
one antinodal point to another does not require a fine-tuning
of the connecting (bosonic) momentum because the associ-
ated single-particle energies vary only with the square of the
deviation from the nesting vector π. On the other hand, for
generic Fermi vectors, including the nodal points, the single-
particle energies vary linearly and hence scatterings do require
fine-tuning. See also Fig. 7.
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