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Many-body localization is a striking mechanism that prevents interacting quantum systems from thermalizing.
The absence of thermalization behavior manifests itself, for example, in a remanence of local particle number
configurations, a quantity that is robust over a parameter range. Local particle numbers are directly accessible in
programmable quantum simulators, in systems of cold atoms, even in two spatial dimensions. Yet, the classical
simulation aimed at building trust in quantum simulations is highly challenging. In this work, we present a
comprehensive tensor network simulation of a many-body localized systems in two spatial dimensions using
a variant of an infinite projected entangled pair states algorithm. The required translational invariance can
be restored by implementing the disorder into an auxiliary spin system, providing an exact disorder average
under dynamics. We can quantitatively assess signatures of many-body localization for the infinite system: Our
methods are powerful enough to provide crude dynamical estimates for the transition between localized and
ergodic phases. Interestingly, in this setting of finitely many disorder values, which we also compare with
simulations involving noninteracting fermions and for which we discuss the emergent physics, localization
emerges in the interacting regime, for which we provide an intuitive argument, while Anderson localization is
absent.
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I. INTRODUCTION

While generic ergodic systems are expected to thermal-
ize under closed system evolution [1–3], constituting their
own heat bath, systems that exhibit many-body localization
(MBL) are a robust exception to this paradigm [3–6]. Such
systems do equilibrate, but they retain too much memory of
the initial condition so that the time-averaged states could be
described by a thermal ensemble, due to localization. The
localization gives rise to quasilocal constants of motion in
real space [6–8], which need to be included in an equilibrium
ensemble, leading to a nonthermal equilibrium state. MBL can
be seen as an intricate generalization of the well-known An-
derson localization in which disorder and interactions come
together. Since its discovery in the early years of this millen-
nium [4], a plethora of theoretical works followed elucidating
the rich and multifaceted phenomenology of MBL in one
spatial dimension, ranging from a logarithmic growth of en-
tanglement [9–12] over slow information propagation [13,14]
to an area law for the entanglement entropy [15] for highly
excited eigenstates [16,17]. Experimental realizations have
followed for MBL systems in one spatial dimension [18–21],
corroborating some of the phenomenology.

In two spatial dimensions, MBL is significantly less
understood. Experiments with ultracold atoms have been pur-
sued [18], showing localization under precisely controlled
conditions. Yet, much of the phenomenology is less clear—to
the extent that it has been suggested that MBL may be unsta-
ble altogether and that ergodicity could eventually be restored,

albeit on very long time scales [22,23]. Such assessments are
made difficult by numerical treatments being excessively chal-
lenging [24]. Steps have been taken in the numerical analysis:
Ref. [25] constructs a two-dimensional cellular automaton,
further seminal works discuss finite [26] and infinite [27] dis-
ordered systems numerically, while Ref. [28] targets weakly
interacting systems of finite sizes. Exact diagonalization limits
discussions to either noninteracting or extremely small sys-
tems. Tensor network approaches are immensely challenged
by the entanglement buildup, even if this is slower compared
to ergodic systems [9–11]. Still, given the unfavorable scal-
ings of bond dimensions to faithfully present quantum states
as tensor networks, this still gives rise to a challenging and
intricate state of affairs.

In this work, we present an alternative take on the prob-
lem of simulating time evolution of many-body localized
two-dimensional quantum systems. We discuss the physics of
infinite two-dimensional systems featuring discrete disorder
using infinite projected entangled pair states (iPEPS), building
upon a methodology recently introduced in Refs. [27,29],
in turn building upon Ref. [30]. The translational invariance
inherent in this ansatz will be restored here by exploiting
a quantum dilation that embodies the classical disorder in
giving rise to exact disorder averages, an ansatz suggested
some time ago [30] and recently implemented for disordered
two-dimensional systems [27] in a proof-of-principle method-
ological study, using a different iPEPS update from the one
simple update employed here. While the so-called full update
is known to be more accurate for ground-state simulations for
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the same bond dimension, whenever possible, it is an interest-
ing observation in its own right that simple updates—more
resource-efficient procedures—turn out to be significantly
more stable in time evolution algorithms, as experience with
numerical procedures has shown [27] and is convincingly
confirmed in this work, presumably for being better able to
reflect local changes in time evolution. That is to say, our
scheme that we employ here is more stable, resource-efficient,
and provides better control over the dynamics. For this reason,
we have been able to achieve the longest available times in 2D
dynamics following a global quench for strongly interacting
systems (t = 3J) to date in the thermodynamic limit, thanks
to the disorder present.

We argue that while disorder averages are comparably
feasible in one-dimensional studies, it is a two-dimensional
setting, for which quantum dilations capture classical disorder
averages, that is particularly practical and relevant. Intrigu-
ingly, the implementation of programmable discrete disorder
can avoid the issue of ergodic bubbles right from the out-
set [22,23], sidelining the issue of stability of many-body
localization in higher dimensions. Such an implementation
of discrete disorder gives rise to a situation that is already
intriguing in the noninteraction case reflecting Anderson lo-
calization. Building upon early work [31], there has been
a recent revitalized interest in rigorous studies of Anderson
localization for instances of discrete disorder in the absence
of interactions [31,32,32–35]. These rigorous results prove
the existence of localization in specific regimes of discrete
disorder discussed in more detail later. Interestingly, however,
within the settings considered here we do not find signa-
tures of dynamical localization on the time scales considered.
For this phenomenon, we provide an explanation in terms
of discrete disorder leading to an effective hopping prob-
lem on every level. We augment this argument by numerical
simulations of a finite noninteracting system using exact di-
agonalization, which are further supplemented by iPEPS. In
the presence of interactions, we find signatures of localization
in the local particle number and suitable Renyi entropies,
entering a highly exciting new physical regime, which we
discuss in great detail.

We will start by discussing the underlying paradigmatic
model that is at the heart of our analysis, and then turn to
discussing the numerical methods we make use of and develop
to study the disordered model (both the free fermions and
iPEPS). We present the results for the noninteracting as well
as the interacting instance of the Hamiltonian. In Sec. III,
we will specifically describe how the translationally invariant
iPEPS can be used to realize disorder by introducing dilations.
Section IV includes a discussion of the absence of Anderson
localization and numerical evidence supporting it from two
independent techniques. We then discuss the results for the
evidence of many-body localization in the interacting case.
Based on the particle imbalance I, which we compute for
different configurations of the parameters, we are able to
estimate a crude dynamical phase diagram of MBL in two
dimensions. The critical disorder strength is found to be h ≈ 6
with at least four levels of disorder. We close in Sec. V by
summarizing the results and giving an outlook for future work
including possible experimental realizations in state-of-the-art
analog quantum simulators.

II. MODEL AND LOCALIZATION MEASURE

The model we focus on is the spin-1/2 XXZ-Hamiltonian
on a square lattice with disordered fields

H =
∑

〈i, j〉

(
Sx

i Sx
j + Sy

i Sy
j + �Sz

i Sz
j

) +
∑

i

hiS
z
i , (1)

where Sx, Sy, and Sz are the different Pauli spin operators
associated with a particular site. � is the strength of the
anisotropy, which we choose to be either � = 0 or 1, which
toggles many-body interactions. The value of the magnetic
field at a particular site is given by hi. Usually hi are drawn
randomly from a continuous interval [−h, h] for each site in
the lattice, but we will soon turn to other discrete probability
measures.

The essence of MBL is the localization of its constituent
particles leading to a breakdown of conductance [4] and
thermalization [18] despite the presence of many-body inter-
actions. A proxy for these effects is the local particle number
dynamics following a quench from a particle imbalanced ini-
tial state. We consider a Néel state vector of the form

|ψ0〉p = | ↑,↓,↑,↓, . . . , 〉 . (2)

When subjected to the Hamiltonian evolution of a ther-
malizing Hamiltonian, the local particle imbalance quickly
evens out and evolves toward a homogeneous particle dis-
tribution [36]. However, if the Hamiltonian localizes the
constituent particles, the initial particle imbalance will be
measurable for very long times [18]. We stress that the ob-
servation of a remaining particle imbalance for a finite time
window does not give information about the “genuine” quan-
tum phase the system is actually in, as for long times the
system can still thermalize [22,37,38]. However, even lo-
calization for short times can be relevant for experimental
realizations [18] and practical applications such as quantum
memories [39].

III. SETTING

Usually, when working with disordered systems nu-
merically, in order to obtain disorder averaged quantities,
simulations need to be run multiple times, and the disorder
average of the expectation values of the local observables are
then calculated. In this case, a single realization of a system is
not translationally invariant and hence finite. There is another
technique of realizing disordered models that circumvents the
above finite-size effects and running the simulations multiple
times to obtain statistics for the disorder average. The method
makes use of additional auxiliary dilation spaces at every site
whose spin states are in superposition. Upon tracing out this
degree of freedom, one obtains the exact disorder averages, as
introduced in Ref. [30]. Since the combined system is trans-
lationally invariant, we can access the thermodynamic limit
using translationally invariant algorithms. This is the approach
we will be taking in this work. We will describe the algorithm
used in our setting in more detail in the subsequent sections.

A. Setup for iPEPS

Projected entangled pair states (PEPS) are the generaliza-
tion of matrix product states to higher dimensions [40,41].
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Similar to its one-dimensional counterpart, PEPS target the
physically relevant corner of the Hilbert space that is distin-
guished by its low entanglement content while representing
a quantum state in higher dimensions [42–44], which are
of physical interest. One of the many advantages of such
tensor network techniques is that they enable us to directly
study systems in the thermodynamic limit, thereby over-
coming finite-size effects, which one would often encounter
using techniques such as exact diagonalization. In this con-
text, the infinite projected entangled pair states (iPEPS) [45]
have become the state-of-the-art numerical tool in simulating
two-dimensional systems. They have been known to provide
excellent variational ground-state energies, in some instances
even outperforming the state-of-the-art quantum Monte Carlo
calculations [46]. The success of iPEPS lies beyond sim-
ulating two-dimensional simple cubic lattices. iPEPS have
found applications in finding ground states of frustrated sys-
tems [47–49] and realistic materials [50–52]. They have also
been used to describe thermal states in 2D [53–56] as well
as steady states of dissipative systems [57,58]. While most
of these works target the fixed points of the model, it is also
possible, in principle, to use iPEPS for studying the dynamics
of a system. This is limited to only short time scales due to
the fast growth of entanglement. The situation is true for all
Tensor networks and even more severe for two-dimensional
systems, further limiting the accessible time scales [27,59]. In
this work, we will use iPEPS to study the dynamics of the
XXZ-Hamiltonian [Eq. (1)] in the presence of disorder and
look for signatures of localization in different regimes of the
anisotropy �, as well as the number of discrete levels dA of
disorder.

In our setting, we exploit what can be called “quantum
parallelism” to realize disorder in our translationally invari-
ant system in the thermodynamic limit, as first proposed in
Ref. [30] and realized in one- [29,60] and two- [27] dimen-
sional disordered systems. In essence, the method implements
discrete disorder using auxiliary spin-S systems for otherwise
translationally invariant Hamiltonians. There is one of these
auxiliary spaces for each real space site, and they are prepared
in a superposition state of all their spin states. By adding
another term to the Hamiltonian that projects these values onto
the real space, we obtain discrete disorder landscapes. When
calculating expectation values of observables, the states of the
auxiliary space actually conveniently implement the disorder
average over all possible disorder realizations. We will now
break down this procedure into three important steps in order
to implement this type of disorder.

(i) Initialization: We initialize our physical state vector
|ψ0〉p as a product that is easy to prepare experimentally, more
specifically the Néel state, i.e.,

|ψ0〉p = | ↑ , ↓ , ↑ , ↓ , . . . 〉. (3)

For our simulations, we have chosen an iPEPS with a two-site
unit cell and a checkerboard pattern as shown in Fig. 1(a).
This is sufficient to realize the configurations of interest. We
also initialize the auxiliary state in a product state of equal
superposition state vector |+〉, i.e.,

|ψ0〉a = | + , + , + , . . . 〉. (4)

(a) (b)

(c)

|ψ0 p |ψ0 a

|Ψ0 = |ψ0 p ⊗ |ψ0 a

FIG. 1. Initial state expressed in terms of iPEPS for (a) the phys-
ical state vector |ψ0〉p, which is a Néel state; (b) the auxiliary state
vector |ψ0〉a, which is a product of equal superposition states; and
(c) the overall initial state vector |�0〉, which is the tensor product of
the previous two states. The red patterns correspond to the classical
interaction between the physical and the auxiliary states, which is
required for introducing the disorder. All three states are iPEPS with
bond dimension D = 1 and the lattice extends indefinitely in all
directions. A choice of a two-site unit cell in a checkerboard pattern
is enough to exactly represent this configuration.

For a spin-S system, this superposition is given by |+〉 =
(2S + 1)−1/2(

∑
s |s〉), where s are the allowed spin states.

Hence, the number of discrete values that our disordered field
takes is 2S + 1, where S is the spin of the auxiliary space.
Thus, the number of discrete levels of disorder, which we refer
to as dA, is two for a spin-1/2, three for a spin-1 auxiliary
system, and so on. We then take the tensor product of the
initial physical state vector and the initial auxiliary state vector
and define this to be our overall initial state from where we
start quenching, i.e.,

|�0〉 = |ψ0〉p ⊗ |ψ0〉a, (5)

where |�0〉 is a product state vector and hence an iPEPS
with bond dimension D = 1. This completes the initialization
protocol, which we also illustrate in Fig. 1.

(ii) Quench: Once our initial state has been prepared, we
perform the real-time evolution of our disordered Hamilto-
nian. For this, the original Hamiltonian in Eq. (1) needs to
be rewritten as

H =
∑

〈i, j〉

(
Sx

ip
Sx

jp
+ Sy

ip
Sy

jp
+ �Sz

ip
Sz

jp

) + h
∑

i

Sz
ip

Sz
ia
, (6)

where the first term of the Hamiltonian is the sum over all
the nearest-neighbor physical sites. The second term couples
each physical spin with its auxiliary spin, but there is no cou-
pling between different sites. This term projects the disorder
contained in the auxiliary space onto the physical state using
the local Sz

ipSz
ia coupling. Sz

ia is defined such that the values of
the disordered fields are taken from a fixed interval [h,−h]
with uniform distribution. Thus, for dA the values will be h
and −h, for dA = 3 they would be h, 0, and −h, and so on. We
will study the effect of disorder as we increase the dimension
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of the auxiliary system dA thereby allowing more levels of
disorder configurations. We use the simple update [61] to do a
real-time evolution of our modified Hamiltonian starting from
the initial state vector |�0〉,

|�(t )〉 = e−iHt |�0〉. (7)

This update scheme is not only efficient, but is also more
stable while dealing with such nonequilibrium problems [27].
This might be due to the fact that unlike the full update
technique, the simple update does not require us to compute
the ill-conditioned norm tensor at every step.

(iii) Readout: Once we have generated the state vector
|�(t )〉 using the procedure described above, we can com-
pute the expectation values of suitable local observables.
Such expectation values are already the exactly disorder av-
eraged expectation value of all the possible configurations
by construction. This can be easily seen from the following
calculation:

E〈Ô(t )〉 = 〈�(t )|Ô|�(t )〉
= 〈�0|eiHt Ôe−iHt |�0〉
= (a〈ψ0| ⊗ p〈ψ0|)eiHt Ôe−iHt (|ψ0〉p ⊗ |ψ0〉a). (8)

The on-site expectation value is calculated at the physical site
as the auxiliary sites are traced out. We use an instance of
a CTMRG algorithm [62,63] for this purpose. We also use
the same effective environment to compute the different Renyi
entropies of the reduced density matrices.

Thus, the above procedure circumvents the need to have
finite systems to realize disordered systems, at the same time
avoiding the need for multiple simulations for different disor-
der configuration and taking their average.

B. Setup for noninteracting fermions

In addition to the iPEPS simulations described above, we
have also run some free fermionic calculations reminiscent of
the noninteracting case � = 0 in a finite system (note that the
mapping is not exact due to the presence of Jordan-Wigner
strings in two spatial dimensions). Because the dynamics is
only governed by the single-particle sector, systems of size
40 × 40 are perfectly accessible. Moreover, we can imple-
ment continuous disorder for these simulations. In accordance
with our iPEPS simulation, we again consider a Néel initial
state and evolve it in time. We measure the particle number
on even and odd sites as a measure of localization [18] as
described above. Here, we are in principle not restricted to
any final time, but we since we are interested in compar-
ing the results to the iPEPS simulations, we evolve up to a
few tunneling times by integrating Schrödinger’s equation.
Additionally, we can access the single-particle eigenstates
and single-particle eigenenergies of these systems via exact
diagonalization, which we employ to calculate the inverse
participation ratio, another measure of localization.

IV. RESULTS

In this section, we present results for the noninteracting
case � = 0. In this regime, it is possible to solve larger two-
dimensional systems exactly in the single-particle space. It

has been rigorously established that one- and two-dimensional
systems localize for continuous disorder [64–66]. For discrete
disorder the situation is more subtle. In fact, seminal work has
solved the long-standing puzzle regarding whether localiza-
tion occurs in the first place in one spatial dimension, showing
that it does in fact occur [31]: Interestingly, for one spatial
dimension, any probability measure that has support for more
than a single point will lead to the Hamiltonian having a pure
point spectrum and exponentially decaying eigenfunctions
and hence localization, even though bounds to localization
lengths are implicit. These results are compatible with rigor-
ous insights into dynamical localization for suitable random
Schrödinger operators [33]. In higher dimensions, slightly
weaker statements are shown, basically for sufficiently large
disorder [31], for disorder with sufficiently large numbers
of discrete levels of disorder [32], or for parts of the spec-
trum [34,35]. These results apply equally well to our situation
of noninteracting fermionic systems.

The dynamics of the particle number for even and odd sites
in the noninteracting fermionic case is shown in Fig. 2. Here,
we present results for three disorder strengths (h = 4, 10, 100)
and two kinds of disorder: Continuous disorder is shown in red
shades and a three-level discrete (spin-1) disorder is shown in
blue shades. The two curves plotted depict the particle number
for odd and even sites, respectively. Furthermore, we plot data
obtained for the infinite system with the iPEPS code in black.
This serves a more qualitative purpose, however, since the
plots shown are for iPEPS with fixed bond dimension D = 4
and therefore we should be careful in making a one-to-one
comparison with the exact diagonalization results quantita-
tively. For h = 4, we find that the initial imbalance evens out
on the time scales considered. There is no apparent difference
for the two disorder models considered. This apparent lack
of localization is by no means incompatible with the above
proven localization: On the one hand, in two spatial dimen-
sions (unlike in one spatial dimension), the disorder has to
be sufficiently strong to encounter localization. More impor-
tantly, on the other hand, the figure of merit applied will only
encounter localization on the spatial extent of single lattice
sites. Hence, the absence of localization for the magnetization
is compatible with localization for longer localization lengths.
In fact, the machinery developed here gives rise to a tool to
explore this rich physics for discrete disorder in higher spatial
dimensions.

For h = 10, we find that a first signature of localization for
the time scales considered as a weak imbalance—signified by
a gap between the two curves—remains. When comparing the
two disorder models, we already see a hint toward an obser-
vation that will become more clear in the strongly disordered
case. The continuous disorder results in a slightly larger gap.
When we set h = 100, there is a large gap for the continuous
disorder model, but only a small one for the discrete disorder
model. The simulation for the infinite system agrees very well
with the finite calculations for t < 1. It furthermore suggests
that with increasing system size, the gap closes completely.
Moreover, we find that increasing the levels of the discrete
model results in a larger gap (data not shown).

To complement this analysis, we also look at the single-
particle energy spectrum to understand the influence of the
discrete disorder and why dynamical localization may not
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FIG. 2. Averaged local particle number for even and odd sites in a free fermionic model for system sizes L = 10, 20, 40 (markers).
Averages are taken over 100 realizations. Blue shades are for discrete disorder (spin-1) and red shades for continuous disorder. The black
dotted lines are iPEPS results for an infinite system. They are presented only to give a qualitative prediction of how the results using the free
fermion simulation will change in the thermodynamic limit. A one-to-one quantitative comparison should not be made with the iPEPS results,
since the plot shown is for D = 4. However, the agreement between the two techniques is striking for the large disorder case h = 100 since the
entanglement growth is much slower here and the bond dimension does not play much of a role within the time scale presented here.

occur for the observed times in the discrete disorder model.
In Fig. 3, we plot the spectra for both models at high disorder
h = 100. We find that the spectrum for the continuous disor-
der is apparently still continuous. When discrete disorder with
s many levels is used, the spectrum is decoupled in s blocks
that have a weak bending caused by the hopping terms. This
is compatible with the following intuitive explanation, which
is furthermore in line with the above rigorous findings: Since
the energy gaps between the levels are very large, the system
effectively largely decouples into sites of the same disorder
strength. Depending on the position of the next site with the
same disorder value, the hopping strength will change, but
essentially the physics boils down to a hopping problem with
a high coordination number and random hopping strengths.
This implies that for long times, the system will evolve toward
a homogeneous state.

To give more substance to this heuristics, we consider the
inverse participation ratio (IPR) defined as

I|Ek〉 =
∑

i

|〈i|Ek〉|4, (9)

where |i〉 is a lattice site vector and |Ek〉 is the eigenvector
with corresponding energy Ek . This provides an estimate of
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FIG. 3. Single-particle spectrum for the Anderson model with
discrete and continuous disorder for h = 100 averaged over 100
realizations.

the localization of the eigenvectors in the following sense. If
|Ek〉 only has support on a single lattice site, its IPR is unity.
If, in contrast, |Ek〉 has support on all lattice sites, the IPR will
be 1/L2. We consider a cumulative IPR for energy segments.
This means that we rescale the spectrum according to

ε(E ) = E − Emin

Emax − Emin
, (10)

such that 0 � ε � 1. We then sum the IPR for all states in
rescaled energy intervals of size 0.05. The results are dis-
played in Fig. 4. For low disorder h = 4 (squares), the IPR
is approximately the same for all three types of disorder. For
h = 10 (circles), we see that at the ends of the spectrum, the
IPR is lower for fewer levels of disorder. When considering
the case of high disorder h = 100, there is a strong qualitative
difference for the models. The continuous disorder results in
a very high IPR throughout the full spectrum. Not only is
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FIG. 4. Cumulative inverse participation ratio for the Anderson
model with discrete and continuous disorder for different disorder
strengths. Lines are guides to the eye. When the energy levels for a
certain value ε are not populated, no line is drawn.
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FIG. 5. Real-time evolution of the Heisenberg Hamiltonian starting from a Néel state. Left: Expectation value of the particle number as
a function of time for the two different sites for the case with no disorder h = 0. Big inset: Renyi entropies of the reduced density matrix
of one site as a function of time for α = 1 and 1/2. The entropies start saturating to their maximum value. Small inset: Accumulated local
truncation error of one site. Right: The same evolution as above, but now with a disorder strength h = 2 and for dA = 2. The simulation time
has been extended slightly compared to the clean case without disorder. One also notices a slow down in the growth of local Renyi entropies.
The simulations are done for δt = 0.1 and 0.01 for D = 4 and δt = 0.01 for D = 5. The results are consistent with different Trotter sizes as
well as different bond dimensions, building trust in our simulations.

the spectrum divided into blocks for the discrete disorder, the
resulting IPRs are also much smaller than in the continuous
case, indicating that these states are not localized. When in-
cluding many-body interactions, these can be interpreted as
additional on-site fields that depend on the particle configu-
ration. This renders the potential experienced by the particles
close to continuous restoring localization. We will explore this
in the following section.

Results for interacting � = 1 case

First, we will present the results for the clean case as well
as the simplest case of disorder we can incorporate in our
iPEPS simulations using the auxiliary method. The simplest
case is with binary disorder when the auxiliary system has
a local Hilbert space (dA) of two implying that our disorder
landscape has two levels locally. We start by computing the
expectation value of the particle number as a function of real
time. The expectation values are computed at the two different
physical sites of the tensor network. Since the initial physical
state is a Néel state, its expectation values are 1 for the occu-
pied site and 0 at the empty site at t = 0. As we initiate the
quench, we want to analyze how the particle number changes
with time. This is closely related to the experimentally used
imbalance [18,36,67], which measures the difference of parti-
cle occupation between even and odd sites. In the absence of
any disorder, this imbalance will eventually drop to zero, or
in other words, the particles will spread leading to a homoge-
neous particle distribution. This is shown in the left panel of
Fig. 5, although the time scale has been cut off early to avoid
errors, according to criteria specified below.

For the calculations, we have used an iPEPS with a fixed
bond dimension D = 4, 5 and Trotter step of 0.1 and 0.01.

The reason for the comparably small bond dimension is that
the physical dimension needs to be comparably large. The
results for both the Trotter steps as well as different bond
dimensions are depicted in Figs. 5 and 6. As with all other ten-
sor network approaches, iPEPS cannot be used for long time
simulations due to the rapid growth of entanglement [68,69],
which can only be accounted for by (in time exponentially)
large bond dimensions. This is a fundamental challenge that
ultimately cannot be overcome for any universal classical
simulation method, as Hamiltonian evolution is in principle
as powerful as a quantum computer (is BQP complete in
technical terms [70]), and hence a universal classical effi-
cient method of local Hamiltonian evolution for all times is
unlikely to exist [71]. Using large bond dimensions in two
dimensions is significantly more challenging compared to the
one-dimensional case and comes along with significant com-
putational effort. As a consequence, the error measures must
necessarily be less stringent here compared to the situation in
one spatial dimension.

The main criterion that we make use of for stopping the
time evolution is a disagreement of the two largest available
PEPS bond dimensions (which would here be D = 4 and 5),
reflecting a convergence in bond dimension: This convergence
builds trust in the expectation that higher bond dimensions
provide compatible results. This is shown in Figs. 5 and 6.
Some further intuition is also provided by monitoring the
growth of the local Renyi entropies in time starting from the
initial product state. We compute the Renyi entropies S(ρ1)
of order α = 1 and 1/2 for the reduced density matrix of
one site. The scaling of Renyi entropies can be precisely
related to tensor network state approximations in one spatial
dimension [72]. Here, the issue at hand is more subtle, as we
operate in two spatial dimensions, and observing entropies of
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FIG. 6. Similar to Fig. 5 but for stronger disorder and more
disorder levels. Top: Relatively strong disorder h = 6 but only two
levels of disorder dA = 2. Middle: More levels of disorder dA = 5
but weak disorder strength h = 2. Bottom: Many disorder levels
dA = 5 as well as relatively strong disorder h = 6. In all the plots,
we show simulations with bond dimensions D = 4 and 5 up to good
agreement. This is also consistent with the growth of Renyi entropies,
which are shown in the insets.

arbitrarily large reduced states is excessively challenging.
Still, the deviation from a saturated value Smax = ln(dp),
where dp is the dimension of the local Hilbert space of the
physical spins, can be seen as an indication that the tensor
network approximation is still meaningful. We provide these
numbers in the inset of Figs. 5 and 6. Furthermore, we show
that our time evolution is stable against different Trotter steps
δt = 0.1 and 0.01, which is a key insight in favor of the update
scheme used here, as Ref. [27] convincingly discussed issues
with stability with full updates. Along the way, we have also
monitored the local truncation error to see that it is not signifi-
cant for our purposes, again shown in the insets of Fig. 5. The
local truncation error ε is the sum of the squares of discarded
weights during the evolution for one site. For the case with-
out disorder, we plot the results for up to t = 0.8, although
S(ρ1) attains its maximal value at t = 1 hopping strength.
The local truncation error is of the order of 10−4 until this
time.

We now introduce disorder to our system. For a disorder
strength of h = 2, we can see that the growth of entropy
for a single site reduced density matrix slows down already,
thereby allowing us to do time evolution to longer times.
This is shown in the big inset of the right panel of Fig. 5.
Just like the previous case, S(ρ1) in this case also becomes
saturated after a few more time steps. The truncation error up
to this time scale is of the order of 10−3 (shown in the small
inset). Based on the particle number, there is still no strong
indication of localization with such a weak disorder strength
h = 2 and low levels of disorder dA = 2. Increasing the bond
dimension of the iPEPS will improve the simulation by a few
time steps, but this is numerically very demanding. Similarly
to the noninteracting case, we will investigate the influence of
increasing the size of the local Hilbert space of the auxiliary
system, thereby allowing more levels of disorder locally as
well as the disorder strength.

We first increase the disorder strength for the binary disor-
der case reflected by dA = 2. This is shown in the top panel
of Fig. 6. There is no significant change compared to the case
of h = 2 and dA = 2. We now increase the number of levels
of disorder in our system by increasing the local dimension
of the Hilbert space of the auxiliary spins. We investigate
this for dA = 3, 4, 5, 6 and for different values of the disorder
strengths h = 2, 4, 6. dA −→ ∞ corresponds to the case of con-
tinuous disorder. In Fig. 6, we only show the plots for dA = 2,
h = 6 (top); dA = 5, h = 2 (middle); and dA = 5, h = 6 (bot-
tom). What we see from Fig. 6 is that merely increasing the
disorder strength h or the number of disorder levels dA alone is
not sufficient to see signatures of localization, and ergodicity
seems to be preserved, judging from dynamical data. Only
in the case with relatively strong disorder h = 6 and many
levels of disorder dA = 5 available are clear signatures of
localization encountered. As a consequence, we are able to
go to much longer times in our simulation, t = 3J . We would
like to note here that to the best of our knowledge, this is
the longest time achieved in time evolution with 2D tensor
networks in the thermodynamic limit, facilitated by features
of localization. Signatures of localization are also reflected
by the considerable slowdown of the growth of local Renyi
entropies (as shown in the inset of the plots).
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FIG. 7. Particle imbalance I for various configurations of disor-
der dimensions dA and strengths h. We show the dynamics of the
longest available times for the localized case (blue circles, h = 6
and dA = 5), which is up to three hoppings. Also shown are the
cases in which the particles do not localize (yellow circles with
h = 6, dA = 2, red circles with h = 2, dA = 5, and green circles with
h = 4, dA = 5). The dynamics can be extrapolated using different
polynomials such as linear, quadratic, fourth, and fifth degree fit, and
one can notice the imbalance dropping to zero in all these cases. Also
shown are the residuals corresponding to each fit (dashed lines). The
linear fit has the largest error, while the fifth degree polynomial fits
in this sense most accurately.

To be more comprehensive and systematic, we now con-
sider different configurations of the disorder strength h and
disorder levels dA, and we plot the particle imbalance I,
defined as the difference in the occupation number of the
two different sites. This is shown in Fig. 7 for the configura-
tions (dA = 2, h = 6), (dA = 5, h = 2), (dA = 5, h = 4), and
(dA = 5, h = 6). As we see, only in the last configuration can
one go as far as achieving the longest time evolution, because
only then does the system undergo localization reflected by
slow dynamics up to this time. For the other situations, one
has to be content with the available short time dynamics. To
make predictions with a reliably statistical basis, we have
nonetheless extrapolated these available times using different
polynomial fits such as linear, quadratic, fourth, and fifth de-
gree polynomial least-squares fits. This procedure allows for
crude predictive statements on future behavior, and indeed, the
particle imbalance in all these cases conveniently and convinc-
ingly drops to zero (reflecting no remaining imbalance). These
are shown by dashed lines in Fig. 7 along with the residuals
of their fit to be precise.

Based on the available information within the achievable
times, we are now able to go a step further: Building on
dynamical data, we can arrive at crude estimates of the phase
diagram of many-body localization in 2D based on the dis-
order strength h and the levels of disorder dA, judged from
dynamical data. Even though these estimates are necessarily
coarse-grained, it is still exciting to see that the approach

FIG. 8. Crude estimate of the phase diagram as being assessed
from dynamical localization as a function of the disorder dimension
dA and the disorder strength h. The criterion to assign an ergodic
or localized phase is whether the achievable simulation in time or
the polynomial interpolation exhibits a localization of the imbalance
in time. A disorder strength of h = 6J with at least four levels of
disorder seems necessary to give rise to many-body localization in
2D.

taken allows us to draw conclusions along these lines, in a
regime that is very little studied using analytical and numer-
ical state-of-the-art techniques. The results of this endeavor
are shown in Fig. 8. Pink boxes indicate that the system is
likely to thermalize and is therefore ergodic, while blue boxes
indicate that the system localizes for the available time scales
and is therefore in the MBL phase. This is a dynamical phase
diagram available for 2D dynamics with discrete disorder. Our
dynamical phase indicates that in order to achieve MBL in
two spatial dimensions, one needs a critical disorder strength
of h = 6 and disorder levels dA = 4. The experimental work
of Ref. [18] had found a critical disorder strength of h =
5.5 for continuous disorder in an Aubrey-Andre model, even
though it is important to stress that the underlying Hamilto-
nian model is that of a two-dimensional Bose Hubbard model.
A complementing theoretical work based on constructing cel-
lular automata had found a critical disorder strength of h =
19, aimed again at exploring the disordered Bose-Hubbard
model [25].

We have been able to find that while discrete disorder
landscapes lead to no noticeable localization for the two-
dimensional noninteracting systems we consider, they appear
to be capable of localizing interacting systems. This is con-
sistent with the argument given above that the interaction can
be viewed as an additional source of randomness that depends
on the adjacent particle configuration. It is also compatible
with the rigorous findings [31–35] (as the disorder can be too
small and the magnetization does not detect a finite correlation
length), but it adds scope to this, as we discuss the impact of
specific small auxiliary dimensions. Before all, our findings
can be seen as an invitation to study in depth the rich physics
of discrete disorder beyond one spatial dimension.

V. CONCLUSION AND OUTLOOK

We have studied the effect of disorder in two-dimensional
systems using two independent techniques: a free fermionic
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simulation for the noninteracting regime of the XXZ-
Hamiltonian, and an iPEPS algorithm for the interacting
regime. By implementing discrete levels of disorder in the
latter case as well as continuous disorder for the free fermionic
case, we have found strong numerical evidence for the many-
body localization in infinite two-dimensional systems when
using a sufficient number of disorder levels as well as disorder
strength. Based on the dynamics of the particle imbalance for
the available times, we have estimated a crude phase diagram
of MBL in 2D, finding the critical disorder strength to h = 6
and at least four levels of disorder dA = 4. Surprisingly, we
do not find any evidence of localization for the infinite two-
dimensional system for the noninteracting case using discrete
levels of disorder, despite the mathematical proof of Anderson
localization in two spatial dimensions with continuous disor-
der. We have provided an intuitive argument for why this is
the case based on a decoupling of potential levels, which leads
to an effective hopping problem, one that is also compatible
with the findings of Ref. [31]. Our argument is supported
by strong numerical evidence based on two independent
techniques.

We argue that the significance of our work is fourfold: We
present a stable numerical machinery that is able to explore a
regime of disordered lattice models in higher dimensions that
has formerly been significantly less accessible. Our machinery
is more resource-efficient, stable, and provides better control
over the dynamics. For this reason, we have been able to go to
the longest available time scale of t = 3J in 2D, thanks to the
disorder. This is a technical, algorithmic improvement.

Then, we are able to freshly explore the physics of discrete
disorder [31], a regime that we think has received less atten-
tion in the literature than it deserves, giving the rich interplay
of discreteness of disorder and interactions, and only very
recently has moved into the focus of attention in the Anderson,
i.e., noninteracting, case [32–35]. It would be very interesting
to understand the interplay of discrete disorder also in view of
the stability of MBL and Griffiths effects.

Excitingly, our tools are powerful enough to provide some
estimates of the phase diagram of many-body localization
assessed by investigating dynamical properties, even though
these estimates are necessarily crude for the time scales avail-
able. In light of the enormous difficulty of achieving such
estimates, for example with quantum cellular automata [25],
we think that our dynamical method provides some handle
on studying the precise interplay and a phase diagram of the
disorder strength and the number of levels of disorder with the
system. The tools laid out here can be seen as an invitation to
quantitatively study this interesting regime more thoroughly.

Finally, and maybe most importantly in the medium to
long term, we are able to provide benchmarks for quantum
simulators [73,74] that are increasingly becoming available
in a number of physical platforms. With the advent of
programmable randomness, this work can actually be probed
directly in experiments as well. As mentioned before, the
programmable nature allows us to avoid rare events of small
local disorder and ergodic bubbles leading to a potential in-
stability [22,23] as a design principle for choosing disorder
patterns. For example, the programmable, reconfigurable ar-
rays of individually trapped cold atoms with strong, coherent
interactions realized by excitation to Rydberg states [75] give

rise to such a platform. In systems of trapped ions [76] and in
superconducting devices [20], large degrees of flexibility arise
in programming potentials in one spatial dimension, settings
in which discrete disorder can be explored. Even beyond pro-
grammability, the presence of one—say, fermionic—atomic
species constituting discrete disorder for another atomic
species [77,78] opens up interesting perspectives.

Our work constitutes a basis on which a compelling con-
clusion can be drawn for the perspective of realizing such
programmable quantum simulators from a complementing
perspective: By further developing and applying tensor net-
work techniques, we have entered an unprecedented regime
for classical simulation techniques concerning the dimension-
ality of the system, the way disorder is realized, and at the
same time concerning the times reached. This information
can be made use of to build trust in the correctness of an
eventual programmable quantum simulation in the sense of
a partial certification [79] of the quantum simulation. This
will work for comparably short times—for long times, no
classical efficient computation will be able to keep track of
the quantum dynamics [70,71]. To access such long times,
one actually has to perform the quantum simulation in the
laboratory, based on and guided by the insight provided by
the classical simulation. In this sense, our work can be viewed
as a blueprint for a programmable quantum simulation using
near-term quantum devices that accesses an intricate quantum
phase of matter. It is our hope that the present work will
stimulate such endeavors.
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APPENDIX

In this work, we use exact diagonalization (ED) and tensor
network methods. For the case of a noninteracting system, we
use ED up to system size 40 × 40. For the interacting system,
we use infinite projected entangled paired states combined
with the quantum dilation technique discussed in the main
text, directly in the thermodynamic limit. For optimizing the
tensors, we use the simple update scheme originally intro-
duced for ground-state calculations [61]. The reasoning for
choosing this scheme over the full update has been discussed
in the main text already. For the update procedure, we use
iPEPS with bond dimensions D = 4 and 5 with Trotter steps
δt = 0.1 and 0.01. The combined dimensions of the physical
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and the auxiliary spins used in these simulations are d =
dp × dA = 4, 6, 8, and 10.

Once the tensors are optimized, we use the CTMRG tech-
nique [62,63,80,81] to contract the full environment of the
tensors, thus targeting the thermodynamic limit. The CTMRG
algorithm computes the effective environment of a particular
site by contracting the whole infinite 2D lattice except the site
at which we want to compute the observables. For this, one

needs to obtain a set of fixed point tensors that makes up this
effective environment. Details on how we do this can be found
in Refs. [62,63,82]. The bond dimensions of the environment
used are at least the square of the bond dimension of the iPEPS
(χ � D2) and are sufficiently well-converged. The agreement
between the expectation values of the highest available bond
dimensions is used as one of the criteria for stopping our time
evolution.
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