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Magnetic phases of the triangular Kondo lattice
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The Kondo lattice model (KLM) on the 2-dimensional triangular lattice is studied by bond fermion theory.
Three-sublattice Néel order (AF) and partial Kondo screening (PKS) are considered as possible phases of the
model. We find that near half filling and at moderate interaction strength, AF and PKS are energetically close and
favored compared to the paramagnetic phase. We discuss the quasiparticle band structure and Fermi surface of
the different phases. As is the case for the KLM on the square lattice, both the AF and the PKS phase can be
further subdivided into phases with the same symmetry, but different Fermi surface topology.

DOI: 10.1103/PhysRevB.102.235125

I. INTRODUCTION

Heavy-fermion compounds have been an active topic of
research for the last decades. These systems are characterized
by an extraordinarily large effective electron mass, which has
been linked to strong electronic correlations in the partially
filled 4 f shells of rare-earth ions or the 5 f shell of uranium.

Among the many interesting experimental results in heavy-
fermion research, a large niche is dedicated to exotic magnetic
orderings. Generally, they are caused by two competing ef-
fects [1]. On one hand, the RKKY interaction (magnetic
correlations between the localized spins mediated through the
conduction band) drives the system to magnetic order [2]. On
the other hand, through the mechanism known as the Kondo
effect, conduction electrons can instead screen the magnetic
moments by forming singlet bonds with them [3]. Depending
on the strength of the interaction, these singlets may be bound
tightly enough so as to leave a gap in the energy spectrum and
enable the possibility of a Kondo insulator.

A simple model that captures the main features of this
arrangement is the Kondo lattice model (KLM), where each
site consists of a conducting c and a localized f orbital that
interact antiferromagnetically:

H = Ht + Hj, (1)

Ht = −t
∑

〈i, j〉,σ
c†

iσ c jσ , (2)

HJ = J
∑

i

Sc · S f , (3)

where c†
i,σ and f †

i,σ create an electron with z spin σ in the
respective orbital in unit cell i. Moreover, Sc/ f is the spin
operator for the c/ f electrons, and the angle brackets denote
pairs of nearest neighbors. The f orbital is constrained to
be occupied by exactly one electron, so that it is equivalent
to a spin-1/2 moment. This reflects that the KLM is the
strong-coupling limit of the more realistic periodic Anderson
model (PAM) [4]. It should be noted that Hamiltonian (1) as
it stands implicitly contains the full RKKY interaction and no

additional exchange terms between f spins are needed. We
consider a system with N unit cells; the number of conduction
electrons is Nc, so that the total number of electrons is Ne =
N + Nc. Densities are denoted by nc = Nc/N and ne = Ne/N ,
and t will be used as the unit of energy from here onward.

In the present paper we study this model on a two-
dimensional triangular lattice, which brings about the addi-
tional complication of geometric frustration. For the KLM
one can in fact envisage two different scenarios of how the
system resolves the frustration (see Fig. 1). The first one is
three-sublattice Néel order, where the magnetic moments on
the different sublattices form an angle of 120◦ with respect
to each other. This scenario is known to be realized in the
2d triangular Heisenberg antiferromagnet [5–7]. A second
possibility, which is available only to the Kondo lattice, is
partial Kondo screening [8–12]. Here, magnetic moments are
formed only on a subset of sites, whereas the remaining
sites remain nonmagnetic. For example, if one third of the
sites in the triangular lattice remain nonmagnetic, the re-
maining sites can form a honeycomb lattice which allows for
standard two-sublattice Néel order. In fact, for some geomet-
rically frustrated-heavy fermion compounds (such as UNi4B
[13–15], CePdAl [16,17], or Ce5Ni2Si3 [18]) experiments in-
dicate that part of the Ce or U ions remain paramagnetic even
in magnetically ordered phases, consistent with the notion of
partial Kondo screening.

A large number of mean-field studies [19–29] and numer-
ical calculations [30–44] have been devoted to the study of
the Kondo lattice and its possible ordering transitions. For
the two-dimensional square lattice in particular, numerical
studies such as quantum Monte Carlo (QMC) [35], variational
Monte Carlo (VMC) [38–40], the dynamical mean-field ap-
proximation (DMFT) [43], and bond fermion theory [45,46]
give a relatively consistent picture: for the case of the Kondo
insulator (conduction electron density nc = 1) the KLM has
a paramagnetic ground state for J/t > Jc/t ≈ 1.4. With de-
creasing J/t there is a 2nd-order phase transition at Jc/t and
Néel order sets in [35,45]. Upon hole doping, nc < 1 (i.e.,
going over to metallic systems), the 2nd-order transition is
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FIG. 1. Schematic view of the net magnetic moments in the 120◦

Néel (top) and partial Kondo screening (bottom) phases. The col-
ored numbers indicate the sublattice index; atoms with same-colored
arrows belong to the same sublattice. The atoms underlaid in gray
form a single unit cell of the ordered system. Note that sublattice 3
does not carry a net magnetic moment in the partial Kondo screening
phase.

rapidly shifted to smaller J/t and a 1st-order transition be-
tween two metallic antiferromagnetic phases with different
Fermi surface topology occurs [38–40,43,46]. For the KLM
or PAM on the 2d triangular lattice, on the other hand, fewer
results are available and the situation is less clear [50–58].

The qualitative behavior of the KLM on the 2d square
lattice has been reproduced by bond fermion theory [46,47].
Encouraged by this, we apply this formalism to explore the
phase diagram of the triangular lattice, whereby we con-
sider three-sublattice antiferromagnetism and partial Kondo
screening.

II. BOND FERMION THEORY

The model is solved using a generalization of the bond
fermion theory [46,47]. Let us consider the limit t/J � 1 and

a conduction electron density nc = 1. In this case hopping
between different sites will be suppressed. Consequently, the
wave function of the system can be approximately described
as a product of single-site wave functions, with each site
occupied by exactly two electrons. The most general such
state is given by

|�〉 =
N∏
j

g†
j |0〉 , (4)

g†
j = (u∗

j s†
j + v∗

j · t†
j ); (5)

s†
j and t†

j generate singlet and triplet configurations on site
j, respectively. In four-vector notation and introducing the
vector of Pauli matrices ∗τ , they can be written as

(s†
j , t†

j ) = 1√
2

∑
σ,σ ′

c†
jσ (iτy, ∗τ iτy)

σ,σ ′ f †
jσ ′ . (6)

u and v are (in general complex) coefficients. Normalization
of |�〉 requires

|uj |2 + |v j |2 = 1. (7)

Unlike in previous works [46,47] we must also consider
configurations with v j not parallel to the z axis to properly
describe the planar 120◦ antiferromagnetic order.

The expectation value of H in the state |�〉 is

E� = −
∑

j

e j, (8)

e j = J

(
3

4
|u j |2 − 1

4
|v j |2

)
. (9)

As is to be expected, in the absence of hopping, the ground
state will be paramagnetic (v j = 0). At finite t , the system
will experience charge fluctuations, where electrons are trans-
ferred from one site to another. This results in sites occupied
by one or three electrons, which can propagate through the
lattice by further hopping processes. As a result of this mech-
anism, a nonvanishing v j may be energetically favorable.

We describe the charge fluctuations as fermionic particles
a and b (referred to as “bond fermions”) and define the fol-
lowing mapping between states of the true Kondo lattice and
states of the bond fermions [47]:

∏
j∈Sa

f †
j,σ ( j)

∏
j∈Sb

c†
j,↑c†

j,↓ f †
j,σ ( j)

∏
j∈(Sa∪Sb)

g†
j |0〉 ≡

∏
j∈Sa

a†
j,σ ( j)

∏
j∈Sb

b†
j,σ ( j) |vac〉 . (10)

Thereby |vac〉 is the vacuum state of the bond particles, equiv-
alent to |�〉. Here σ ( j) is an arbitrary function of the site
index and as can be seen above, a†

j,σ (b†
j,σ ) stands for a con-

figuration with zero (two) conduction electrons on site j. The
sites in Sa (Sb) thus are occupied by hole-like (electron-like)
particles, whereas the remainder of sites, (Sa ∪ Sb), is “filled”
with mixed singlet-triplet states. The sets Sa and Sb obviously
must be disjoint for this mapping to make sense (a “hard-core”

constraint, meaning that every site can only be occupied by at
most a single bond fermion). Since exchanging any factors in
the first two products of the left-hand site creates a minus sign,
the bond particles must in fact be fermions. Equation (10)
also highlights the key advantage of the bond fermion calcu-
lation: all states on the left-hand side obey the constraint to
have precisely one f electron per site exactly. Bond fermion
theory thus trades the constraint on the f electrons (which
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form a dense system) for the hard-core constraint on the bond
fermions, which form a dilute system in many situations of
interest (see below).

We will now rewrite the Hamiltonian in terms of bond
fermions, by demanding that the matrix elements of the bond
fermion Hamiltonian between the states on the right-hand
side are equal to those of the true Kondo lattice between
the states on the left-hand side. This representation cannot
be completely faithful, as we have disregarded purely spin
excitations (where a site is occupied by two electrons, but in a
different spin state than |�〉). This corresponds to a truncation
of our Hilbert space.

The exchange energy of a site with zero or two conduc-
tion electrons vanishes, so we ascribe an energy of e j to the
creation of a bond fermion out of |�〉:

HJ ≡ H̃J = E� +
∑
j,σ

e j (a
†
j,σ a j,σ + b†

j,σ b j,σ ). (11)

The kinetic part of the Hamiltonian is constructed by trans-
lating the conduction electron operators into bond fermions.
Collecting the different species into a four-component vector

z j = (a†
j,↑ a†

j,↓ b j,↑ b j,↓)ᵀ, (12)

the representation reads [48]

c j,σ ≡ c̃ j,σ = (Wj )σα
(z j )α,

Wj = 1√
2

([u j + v j · ∗τ ]iτy [−u∗
j + v∗

j · ∗τ ]) (13)

with the 2 × 4-matrix Wj . In this way the hopping terms
becomes

Ht ≡ H̃t = −t
∑
〈i, j〉

z†
i W †

i Wjz j . (14)

The total number of electrons (including both conduction and
localized bands) can be calculated by noting that the state
|�〉 has two electrons per unit cell and each a (b) fermion
decreases (increases) this by 1:

Ne = 2N +
∑
j,σ

(b†
j,σ b j,σ − a†

j,σ a j,σ ) (15)

=
∑
j,σ

(a j,σ a†
j,σ + b†

j,σ b j,σ ) =
∑

j

z†
j z j . (16)

Alternatively, we can substitute the Fourier transform of (13)
into 〈c†

k,σ
ck,σ 〉 and sum over k and σ to obtain Nc, the num-

ber of conduction electrons. Numerical evaluation shows that
these two ways of calculating Nc do not give consistent results.
This is a consequence of the truncation of the Hilbert space:
part of the spectral weight of the electron operators has been
lost. We follow Ref. [46] and enforce the equivalence of both
expressions through a Lagrange multiplier λ. This was shown
to lead to “heavy” bands pinned near the Fermi energy of
the unhybridized conduction bands [49], which is the correct
physical picture. In addition we relax the hard-core constraint
on the bond fermions. This is reasonably justified as long as
the density of bond fermions is low, which is fulfilled [46] for
at least moderately large J/t and electron densities close to
half filling. The system can now be solved as a free fermion
gas by diagonalizing the Hamiltonian in momentum space.

Note that H̃t contains terms ∝ a†
i,σ b†

j,σ ′ , so that the excitations
of the system are Bogoliubov particles.

We have mentioned that the bond fermion theory implies a
truncation of the Hilbert space and necessitates the relaxation
of the hard-core constraint. Still, the previous success of the
bond fermion theory in reproducing the qualitatively correct
phase diagram and band structure of the square Kondo lattice
[46] gives us some confidence that these approximations are
justified also for the much less well studied triangular lattice.
However, two deficiencies of the bond fermion theory that
were uncovered during this study should be kept in mind.

First, it appears that bond fermion theory overestimates the
tendency toward magnetic ordering: for the square lattice at
nc = 1 (the Kondo insulator) bond fermion theory predicts
the critical interaction strength for the onset of antiferromag-
netic order as Jc/t = 2.2 [46], whereas the exact value is
Jc/t = 1.45 [35]. On the other hand, the correct value of Jc/t
is difficult to obtain even for numerical methods: VMC finds
Jc/t = 1.7 [38], DMFT finds Jc/t = 2.2 [43], and the dynam-
ical cluster approximation finds Jc/t = 2.1 [42]. However, the
phase diagram and the band structure’s behavior as a function
of J are reproduced quite well when J is instead measured
in units of Jc [46,47]. We thus expect that the overall scale
of the phase diagram for the triangular lattice will also be
somewhat off.

Second, we stress that the bond fermion theory cannot
reproduce the energy scale of the Kondo temperature ∝ e− 1

ρJ ,
expected to be relevant for J/t � 1. This should not be a
major limitation as we are mostly interested in the emergence
of magnetic order. For the square lattice, previous experience
shows [35,38,42,43] that magnetic transitions appear mostly
for J/t > 1, and this seems reasonable for the triangular lat-
tice as well (our results will support this). These magnetic
phases are stabilized through the RKKY interaction implicit
in the KLM of (1), which express themselves in the bond
fermion method as part of the kinetic energy (14). As W †

i and
Wj respectively depend on vi and v j , the hopping terms are
influenced by the strengths and relative orientations of both
magnetic moments.

III. CALCULATION

In addition to the paramagnetic state with v j = 0, we con-
sider three different kinds of magnetic ordering (see again
Fig. 1): ferromagnetic (F), 120◦ antiferromagnetic (AF), and
partially Kondo screened (PKS). The latter two break the
translational symmetry of the model and are implemented on
an enlarged, 3-site unit cell. The AF phase is a planar, non-
collinear ordering, and corresponds to the minimum-energy
configuration of classical, fixed-length spins. In the PKS
phase, only two of the three sites carry a net magnetic mo-
ment. This effectively turns the sublattice of magnetically
ordered sites into a (nonfrustrated) honeycomb lattice.

We take u j and v j to be real and homogeneous on each
of the three sublattices. Explicitly, we set (I = 1, 2, 3 is the
sublattice index)

F : uI = cos(�), (17)

vI = sin(�)êz, (18)
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AF : uI = cos(�), (19)

vI = sin(�)

[
êx cos

(
2π

3
I

)
+ êy sin

(
2π

3
I

)]
, (20)

PKS : u1 = u2 = cos(�), u3 = 1, (21)

v1 = −v2 = sin(�)êz, v3 = 0; (22)

� controls the degree of triplet (magnetic) admixture in |�〉.
Paramagnetism corresponds to � = 0. For sites which carry
a magnetic moment the exchange energy is given by e j =
e(�) = J/4[1 + 2 cos(2�)].

The phase diagram is found by minimizing the Helmholtz
free energy over the range 0 � � � π/3 = 1.05 for each type
of magnetic order.

Our approximations become inapplicable for π/3 < � be-
cause the bond fermions’ energy of formation e(�) becomes
negative in this region. Consequently, it is energetically favor-
able to create as many bond fermions as possible and due to
the presence of pair creation terms ∝ a†

i,σ b†
j,σ ′ the system is

filled with fermions. In fact, the ground states in this region of
� > π/3 have bond fermion densities of 2 to 3 per site, which
is entirely unphysical in view of the hard-core constraint.
In contrast, our solutions will have densities less than 0.8
(and decreasing with J), with the probability for a constraint
violation always below 20%.

We can already address one significant difference between
the AF and PKS phase, namely the different band degeneracy.
For the PKS phase spatial parity inversion (P) about a non-
magnetic lattice site exchanges the two magnetic sublattices
(compare Fig. 1, bottom). The original state of the lattice can
then be restored by flipping the magnetic moments through
a time reversal (T ), so that a PT operation is a remaining
(antiunitary) symmetry of the ordered system. When acting
with PT on a Bloch state ∝eikr, each of P and T involves
exchanging k → −k, so that the crystal momentum remains
unchanged. However, T does not commute with Sz, the bond
fermion spin in the z direction, which is conserved as the
system is spin rotation invariant about the z axis. Accordingly,
for every k, we must have degenerate states that can be dis-
tinguished by their spin direction; see Fig. 5. In contrast, P is
not a symmetry operation for the AF phases (see Fig. 1) and
the bands in these phases are nondegenerate.

As a final note, we performed all calculations at a small
positive temperature T = 0.0025t to avoid numerical prob-
lems arising from the zero-temperature Fermi function. We
have verified that changing the temperature in this range does
not have a noticeable influence on the phase diagram or band
structure. We have also checked that the results are converged
with respect to the density of k points in the Brillouin zone.

IV. RESULTS

A. 120◦ antiferromagnetic phases

For the sake of clarity we first present the results with
only AF order taken into account. We find four qualitatively
different phases, depicted in Fig. 2. For example, if we were to
reduce the ratio J/t starting from large values, with a constant
nc > 1, we would first encounter a 2nd-order transition from
the paramagnetic phase to the ordered AFI phase (with finite
�), followed by two successive 1st-order transitions to the

FIG. 2. Optimal mixing angle � when considering only AF or-
der. Colors indicate different phases: paramagnetic metal (white)
and insulator (red), AFI metal (cyan) and insulator (purple), AFII
(turquoise), AFIII (dark blue).

AFII and AFIII phases, respectively. While the symmetry of
all three ordered phases is the same, they are distinguished by
their band structures and Fermi surfaces (Fig. 3).

FIG. 3. Band structure of the AF phases on a path through the
symmetry points of the large BZ. Energies are given relative to the
Fermi energy and nc = 1.025. (a) J = 1.83t P, (b) J = 0 noninteract-
ing system (the f band is not shown; it is perfectly flat with E = 0),
(c) J = 1.25t AFIII, (d) J = 1.63t AFI, (e) J = 1.51t AFII, (f) full
(dashed) lines: large (small) BZ and the relevant symmetry points.
The hexagonal insets in (a)–(e) show the Fermi surface. (a) and
(b) depict irreducible bands in black; antiferromagnetic foldings are
shown in gray to help comparison with the other graphs. Note the rel-
ative similarity in the positions of Fermi pockets between (a) /(d) and
(b) /(c) /(e), respectively.
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AFI and AFII have � < 0.35 and are analogous to the anti-
ferromagnetic phases found for the square lattice by Watanabe
et al. [38] using VMC, Peters and Kawakami [43] using
DMFT, and through bond fermion theory [46]. The AFI Fermi
surface is almost the same as what would be found by a
paramagnetic calculation, consisting of a pocket at the 
 point
(more precisely, two slightly acircular pockets rotated 60◦
relative to each other), and its umklapp copies around the BZ
edges. These pockets are formed from the flat bands of the f
electrons (3) which have become itinerant. This is different in
the AFII phase. Here, the Fermi surface is derived from the
noninteracting one and the c electrons are the relevant charge
carriers.

The quasiparticle band structures in both AFI and AFII are
gapped. Approaching half filling from above, the jump in �

at the AFI-AFII transition vanishes continuously, so that no
transition between them occurs for nc � 1. The reason is that
the difference in behavior of AFI and AFII is caused by a
slight shift of the minima of the lowest band above the gap
(from 
 and K for AFI to M and halfway between 
 and K
for AFII) whereas the topmost band below the gap has the
same appearance in both cases. This means that below half
filling, when the Fermi surface cuts into the band below the
gap, the phases coalesce.

AFIII covers the region of J/t � 1.45 and all electron
densities considered. The optimal angle is large, � ∼ 0.5. As
a consequence of this, the hybridization between localized
and itinerant bands is rather weak: the determinants of the
two 2 × 2 matrices from which the 2 × 4 matrix Wj in (13)
is composed are u2

j − v2
j and its complex conjugate, respec-

tively. These matrices become singular for � = π/4 = 0.79,
at which point one is left with two effectively independent
systems: one set of bands that mimics the band structure
of a mean-field calculation, where the interaction with the
localized spins is replaced by a sublattice-dependent Zeeman
term, and one set of perfectly flat bands above and below
the Fermi surface separated by an energy of e j . The AFIII
phase is close enough to this special case that the residual
hybridization can be ignored for a qualitative description of
the dynamics near the Fermi energy (Fig. 3): the Fermi surface
is the result of folding the noninteracting electron bands to
the antiferromagnetic Brillouin zone (AFBZ) and hybridizing
them. Accordingly, this phase remains conducting even at half
filling, in contrast to the other magnetic phases.

For nc = 1, the Fermi energy is located inside the gap
and the system becomes insulating. Our calculation predicts
a critical value of J/t = 1.96 for the formation of magnetic
moments, and J/t = 1.45 for the transition to the metallic
AFIII phase. In the case of nc < 1, � vanishes much more
slowly and magnetic order survives to larger J/t : the “com-
bined” AFI/AFII phase (which we refer to as AFI because its
Fermi surface is the same as the AFI phase at nc > 1) extends
up to J/t ∼ 4 (not pictured).

B. Partial Kondo screening

We now repeat the above calculation, but for PKS-type
order. Phases of this type may be favored over AF order in
easy-axis anisotropic systems, where noncollinear order is
suppressed. On the other hand, since the PKS phase’s sub-

FIG. 4. Same as Fig. 2, but for PKS order: paramagnetic metal
(white) and insulator (red), PKSI metal (peach) and insulator
(brown), PKSII (orange), PKSIII (yellow).

lattices cannot all be related by symmetry transformations,
this could lead to a charge disproportionation and a higher
Coulomb energy that is unaccounted for in our model. As
was the case for the AF phase, we find three different ordered
phases (Fig. 4), PKSI–III, which are reached for nc > 1 by
lowering J . Somewhat surprisingly, the critical value of the
interaction at half filling is unchanged at J/t = 1.96.

To begin with, PKSI and PKSII are qualitatively very sim-
ilar to AFI and AFII, respectively (see Fig. 5). Fermi pockets
are found in the same spots as before. Note the relative de-
crease in area of the Fermi pockets between AFII and PKSII,
which is a consequence of the absence of spin degeneracy in
the AF phases: since for PKSII each band in a pocket can
accommodate two electrons instead of one, their sizes must be
halved for the total fermion number to stay the same. This is
not the case for AFI and PKSI because (as mentioned earlier)
the pocket for AFI actually consists of two slightly different
and rotated pockets.

PKSIII does not have an AF analog. Unlike AFIII, the band
structure is gapped and becomes insulating when approaching
nc = 1. In fact, it is most similar to AFII and PKSII: While
the Fermi surfaces of these phases consist of pockets along the
edges of the small BZ [Fig. 3(f)], they are now placed at the
corners. The bands below the gap are still unaffected, so that
no transition between PKS phases is found at all for nc < 1
and PKSI extends to lower J/t .

Figure 6 summarizes some physical properties along the
line of constant nc = 1, namely the angle � in (22), the
charge disproportionation n3 − nc between magnetic and non-
magnetic sites in the PKS phase, and the probabilities pI

for violation of the hard-core constraint on sublattice I . The
critical values are J/t = 1.96 for P to PKSI and J/t = 1.38
for PKSI to AFIII (see Sec. IV C). Note that � = 0 for the
paramagnetic phase and n3 − nc �= 0 only for the PKS phase,
whereas p3 = p1,2 for the paramagnetic and AFIII phases.
� shows square-root behavior directly below the PKS tran-
sition, while n3 − nc is linear. In addition, pI < 0.16 in the
whole range of the plot. In the PKS phase there is a sizable
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FIG. 5. Same as Fig. 3, but for the PKS phases. (a) J = 1.63t
PKSI, (b) J = 1.51t PKSII, (c) J = 1.25t PKSIII.

charge disproportionation n3 − nc: n3, the electron density on
the third (nonmagnetic) sublattice is found to be significantly
higher (in excess of 10% for some parameter regions) than on
the other (magnetic) sublattices. On-site Coulomb repulsion
will thus be a significant obstacle to PKS phases in more
realistic systems.

C. Full phase diagram

We now consider all phases simultaneously, resulting in the
combined phase diagram in Figs. 7 and 8. A large part of the
PKS region is replaced by AF phases: in particular, PKSIII is
completely covered by AFIII. However, PKS is still found in
a kite-shaped region around the (insulating) line of nc = 1 and
1.37 < J/t < 1.96 and a disconnected region for nc < 1 and
J/t ≈ 3.2.

The P metal is replaced by a weakly ferromagnetic phase
up to J/t ∼ 5. The magnetic moment is comparatively small,
with the angle � < 0.05. The band structure of the F phase
(Fig. 9) is very similar to P, but the magnetization results in a
spin splitting large enough to completely polarize the Fermi
pockets. Accordingly, the area of each Fermi pocket must
be doubled. The order parameter vanishes continuously when
approaching half filling, so that no insulating ferromagnetic
phase is observed.

FIG. 6. Details of the system at half filling. Pictured are the order
parameter (�), the excess electron density on sublattice 3 at half
filling (n3 − nc), and the probability for a constraint violation on the
different sublattices (p3 and p1/2). The background color indicates
the phase of the system: AFIII metal (blue), PKSI insulator (orange),
P insulator (white); compare Fig. 7.

D. Summary and discussion

In summary we have studied the phase diagram of the
Kondo lattice model on a two-dimensional triangular lattice,
which brings about the additional complication of geomet-
rical frustration. We investigated two ways for the ordered
moment to circumvent the frustration, three-sublattice Néel
order which is realized in Heisenberg antiferromagnets, and
partial Kondo screening where magnetic moments are formed
only on a subset of sites which form a honeycomb lattice.
Our calculations indicate that both types of magnetic order
become stable for smaller J/t and that they are in fact en-
ergetically very close to each other. For example, at half
filling the critical value of Jc/t where magnetic order sets

FIG. 7. Same as Figs. 2 and 4, but with all kinds of magnetic
order included. Phases appearing are as follows: paramagnetic in-
sulator (red), AFI metal (cyan), AFII (turquoise), AFIII (dark blue),
PKSI metal (peach) and insulator (brown), PKSII (orange), F (green).
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FIG. 8. Extended vertical view of Fig. 7.

in is practically the same for AF and PKS. As was the case
for the two-dimensional square lattice, the antiferromagnetic
phases themselves actually consist of several phases which
differ in their Fermi surface topology. For larger J/t < Jc/t
and for both types of magnetic order the band structure and
Fermi surface may be obtained by backfolding the paramag-
netic band structure, so that one has Fermi pockets formed
by the heavy part of the paramagnetic band. Accordingly, the
phase transition from paramagnetic to antiferromagnetic is of
second order. Upon further reducing J/t there is a 1st-order
transition to a phase whose band structure and Fermi surface
are consistent with that of the mere conduction band under the
influence of decoupled magnetic moments.

We will now try to relate our results to previous works
on PKS in the triangular lattice KLM. While some studies
have focused on chiral-type magnetic order and treated the
localized moments classically [50–52], Motome et al. inves-
tigated PKS at half filling using VMC [53]. In contrast to our
calculation, they do not find any indication that a PKS state
exists for nc = 1, unless it is stabilized by an Ising-like inter-
action between the localized moments. While VMC should
in principle yield more accurate results than the somewhat
hand-waving approach of the bond fermion theory, one has

FIG. 9. Same as Figs. 3 and 5, but for the F phase (J = 2.01t).
Note the slight band splitting.

to keep in mind that the precision of VMC is limited by its
restriction to considerably smaller finite systems. The energy
differences we find between the different phases are typically
very small (the bond fermion theory predicts a maximum
relative difference of 2% across the whole parameter region
under consideration), while Motome et al. estimate a rela-
tive accuracy of 3% for their calculation. Here it should be
noted that the VMC calculations of Watanabe and Ogata for
the square lattice indicate that such small energy differences
between paramagnetic and antiferromagnetic phases indeed
seem to be typical for the KLM [38]. In that sense the VMC
results may not a priori invalidate the results of the present
paper.

PKS has also been investigated in the context of the PAM
on a triangular lattice, which maps to the KLM in the strong-
coupling limit [4]. More precisely, for the symmetric PAM the
exchange coupling of the KLM is J ∼ 8V 2/U , where V is the
conduction-band– f -level hybridization and U the Coulomb
repulsion on the f level of the PAM. Hayami et al. [54,55],
have studied the PAM in mean-field approximation and found
a phase diagram qualitatively similar to ours for U = 2t [55].
Keeping in mind that we restrict ourselves to homogeneous
phases and are thus unable to reproduce the phase-separated
regions discussed by Hayami et al., both calculations predict
the same phases at half filling: paramagnetic Kondo insulator
for large J , antiferromagnetic metal for small J , and PKS
in an intermediate region. Additionally, their phase diagram
shows a similar tendency toward AF (F) order below (above)
half filling. However, the numerical values of J/t at the phase
transitions are considerably higher, ranging from 3 to 6. At
larger U , the PKS phase is replaced first by a collinear “up-
up-down” (UUD) antiferromagnetic phase and then by an
insulating 120◦ AF state [54]. While we did not investigate
UUD order, an insulating AF phase at intermediate coupling
qualitatively matches our results with PKS disregarded.

Aulbach et al. [56] considered the same problem using
DMFT. These authors took into account UUD, PKS, and
ferromagnetic phases whereas antiferromagnetic 120◦ order
was disregarded. They found magnetic order at less than half-
filling (corresponding to nc > 1 as they chose the opposite
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sign for the kinetic energy). There, ordered phases are found
in two disconnected parameter regions, one with PKS that
gives way to UUD order upon lowering J , and, at even further
reduced electron densities, one displaying ferromagnetism. In
particular, no PKS insulator is found. We have so far been
unable to explain this stark contrast to our results (where
magnetically ordered phases are favored compared to para-
magnetism in much larger regions of parameter space).

Additionally, there is theoretical evidence for PKS at other
commensurate fillings [57,58]. We cannot expect our approx-
imations to give sensible results so far away from half filling.
For example, Noda et al. predict a PKS state and a metal-
insulator transition for nc = 2/3, which in our formulation
of the bond fermion theory would consists of a state with
5 filled bands. However, the band degeneracy in the PKS
makes such a transition impossible, as insulating phases can
only exist for an even number of filled bands. To investigate
such commensurate fillings, one would have to “switch the
vacuum” and choose the ground state |�〉 and the excitations
corresponding to the bond particles such that they already
include entanglement between different sites of an enlarged
unit cell.

A somewhat puzzling results of the present calculation
is the appearance of a weakly ferromagnetic phase which

occupies substantial parts of the phase diagram, in particular
close to nc = 1. For the 1-dimensional Kondo lattice it can be
shown [59] that ferromagnetism occurs for large J/t and any
electron density other than nc = 1, whereby the ferromagnetic
polarization always takes its maximum value compatible with
the electron density. Our ferromagnetic phase would comply
with this in that there is complete spin polarization of the
Fermi surface. Due to the heavy bands already a very minor
admixture of triplets—i.e., a very small �—is sufficient to
split the bands sufficiently so as to induce complete ferro-
magnetic polarization. A weakly ferromagnetically polarized
Kondo-screened phase has been discussed by various authors
[60–62] although usually for electron densities nc significantly
smaller than 1. Moreover a number of ferromagnetic heavy-
fermion compounds, often with considerably reduced ordered
moment, are known experimentally [63–66].
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