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Ferromagnetism and its stability from the one-magnon spectrum in twisted bilayer graphene
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We study ferromagnetism and its stability in twisted bilayer graphene. We work with a Hubbard-like inter-
action that corresponds to the screened Coulomb interaction in a well-defined limit where the Thomas-Fermi
screening length lTF is much larger than monolayer graphene’s lattice spacing lg � lTF and much smaller than
the moiré superlattice’s spacing lTF � lmoiré. We show that in the perfectly flat band “chiral” limit and at filling
fractions ±3/4, the saturated ferromagnetic (spin- and valley-polarized) states are ideal ground-state candidates
in the large band-gap limit. By assuming a large enough substrate (hBN) induced sublattice potential, the same
argument can be applied to filling fractions ±1/4. We estimate the regime of stability of the ferromagnetic phase
around the chiral limit by studying the exactly calculated spectrum of one-magnon excitations. The instability of
the ferromagnetic state is signaled by a negative magnon excitation energy. This approach allows us to deform
the results of the idealized chiral model (by increasing the bandwidth and/or modified interactions) toward more
realistic systems. Furthermore, we use the low-energy part of the exact one-magnon spectrum to calculate the
spin-stiffness of the Goldstone modes throughout the ferromagnetic phase. The calculated value of spin-stiffness
can determine the excitation energy of charged skyrmions.

DOI: 10.1103/PhysRevB.102.235123

I. INTRODUCTION

Ferromagnetism is the most familiar form of magnetic
order. Despite the long history of ferromagnetism, most of
our current understanding is based on simple Hartree-Fock
(mean-field) calculations [1]. These calculations are known
to greatly overestimate the ferromagnetic tendency of elec-
tronic systems. Several improvements over the Hartree-Fock
method have been proposed [2,3]. Yet, the overall progress
in this direction has not led to a theory that provides reliable
diagnostics for which systems would be ferromagnetic.

A useful practical guide is provided by the Hund’s rule,
which predicts ferromagnetic spin polarization in partially
filled degenerate sets of energy states (orbitals). Specifically,
the exchange term in the Coulomb interaction reduces the
Coulomb repulsion between electrons of similar spin-favoring
spins to align with each other. Interestingly, the same general
principle appears to apply to quantum Hall ferromagnetism.
In both of these cases, the degeneracy of the noninteracting
energy eigenstates seems essential to enhance the effect of the
ferromagnetic exchange [4].

While a faithful treatment of magnetism in electronic sys-
tems is complicated, the limit of strong on-site Coulomb
interaction U , the so-called Hubbard interaction [5], has been
demonstrated to lead to antiferromagnetic Neél order on an
energy-scale proportional to Heisenberg superexchange [1].
The magnetic order has been shown to flip to ferromagnetism
in the limit of exactly one-hole and infinite on-site repul-
sion U [6–8]. These results were extended by Lieb to the
half-filled Hubbard model with an imbalance in the num-
ber of sublattices [9], establishing the possibility of itinerant

ferrimagnetism. These ideas of enhancement of magnetism
by local interaction and of ferromagnetism by degeneracy of
noninteracting states were later shown to reinforce each other
through the demonstration of ferromagnetism in half-filled
lattice models with Hubbard interactions that have a degener-
ate manifold of states in the form of a flatband [4,10–21]]. The
latter class of results constitute what is usually called “flatband
ferromagnetism.”

Despite the large variety of theoretical models demon-
strating spontaneous ferromagnetism as well as competing
magnetic and itinerant phases, solid-state realizations of such
models are not commonplace. Recent experimental break-
throughs in the area of multilayer graphene both in the
quantum Hall regime and without magnetic fields provide
hope for the realization of such systems. In the quantum
Hall regime, graphene provides the opportunity to break the
flatness of a Landau level by introducing a lattice potential
on the scale of a magnetic length that has been shown to
create a Hofstadter spectrum [22]. Based on arguments in
the previous paragraphs, one expects such a broadening of
the Landau levels to compete with quantum Hall ferromag-
netism in an interesting way. The latter case of multilayer
graphene without a magnetic field is a more unexpected direc-
tion and appears to have evidence for ferromagnetism. More
specifically, large peaks in the density of states associated
with nearly flatbands and the concomitant appearance of cor-
related phenomena have recently been observed in twisted
bilayer, twisted double-bilayer, and ABC trilayer graphene
[23–35]. Some of these systems have also shown evidence
for ferromagnetism [28,30–33,35] near the “flatband” limit.
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Additionally, the possibility of tuning these systems out of
the “flatband” regime suggests the fascinating possibility of
studying multiple phases and transitions between them of
insulating and itinerant magnetic systems.

In this work, we consider the particular example of twisted-
bilayer graphene (TBLG). We start by focusing on the
so-called “chiral” limit of the realistic models for TBLG,
where the spectrum supports a band that is exactly flat
[36–38]. We work with a particular form of Hubbard in-
teraction that we argue can emerge from Thomas-Fermi
screening of the Coulomb interaction. We then show that in
this limit and at filling fractions ±3/4, the saturated spin-
and valley-polarized states are ideal ground-state candidates
of the system. By assuming a large enough substrate (hBN)
induced sublattice potential, the same argument can be shown
to hold for filling fractions ±1/4. The topology of the TBLG
band structure guarantees that all the ferromagnetic states dis-
cussed above are also associated with a quantized anomalous
Hall response [39,40]. We study the local stability of the fer-
romagnetic phase around the chiral limit by studying the
exactly calculated spectrum of one-magnon excitations. The
instability of the ferromagnetic state is signaled by a negative
magnon excitation energy. This approach allows us to deform
the results from the idealized chiral model (by increasing
the bandwidth and/or modified interactions) toward results
for more realistic systems. We use the low-energy part of
the exact one-magnon spectrum to predict the spin stiffness
of the Goldstone modes in the ferromagnetic phase as the
realistic system is approached. The effect of spin stiffness can
be potentially determined from skyrmion-induced transport
phenomena.

II. BAND STRUCTURE OF TBLG

TBLG corresponds to two layers of graphene stacked on
top of each other with a relative twist angle θ . For small twist
angles θ , and within the leading harmonic approximation, this
system forms a periodic pattern called a moiré pattern. In this
limit, the noninteracting physics can be well approximated
by the Bistritzer and Macdonald continuum model [41,42].
Following the notation of Ref. [43], the dimensionless single
valley (ζ = ±1 is the valley index) Bistritzer and Macdonald
Hamiltonian can be written in the layer (1,2) and sublattice
(A, B) basis (A1, B1, A2, B2) as

H ζ
BM =

(
H1 U †(r)

U (r) H2

)
, (1)

where

Hl = −R(±θ/2)
(
k − Kl

ζ

)
(ζσx, σy) + �lσz (2)

and

U (r) =
(

α0 α1

α1 α0

)
+

(
α0 α1e−2π iζ/3

α1e2π iζ/3 α0

)
eiζG1r

+
(

α0 α1e2π iζ/3

α1e−2π iζ/3 α0

)
eiζ (G1+G2 )r . (3)

Here, G’s are the reciprocal-lattice vectors of the moiré lattice,
and Kl

ζ ’s are the location of monolayer Dirac points in the
Brillouin zone. �l ’s are the (hBN) induced sublattice poten-

tials. In monolayer graphene, � is known to be able to reach
around � ≈ 0.1–0.15 (in dimensionless units used here or
equivalently 15–30 meV) [44–46].

The dimensionless parameters α0, α1 are given by

α0 = 3wABa0

8πv0 sin(θ/2)
, α1 = α0

wAA

wAB
. (4)

a0 and v0 are, respectively, the monolayer graphene’s lattice
spacing and the Fermi velocity. wAA and wAB are roughly the
hopping amplitudes in the AA and AB/BA stacking regions. In
the realistic system, α0 is expected to be around α0 ≈ 0.586
and wAA

wAB
is expected to be around wAA

wAB
≈ 0.8 [43]. Many inter-

esting features related to this noninteracting model have been
studied extensively in the past year [47–57].

III. INTERACTION MODEL FOR TBLG

In this paper, we mostly work with a simple yet reasonable
model for interactions in TBLG. The effect of more general
interactions is discussed later.

We start by considering the RPA screened Coulomb in-
teraction V (q). The exact V (q) has been found to be rather
complicated [58]. An approximation for the small q behav-
ior of V (q) can be obtained from simple Thomas-Fermi
screening arguments. A rough estimate for the Thomas-
Fermi screening wave vector qTF can be obtained from the
monolayer-graphene results of Ref. [59] (by using a renormal-
ized Fermi velocity). This result suggest that Gmoiré � qTF �
Ggraphene. Since qTF � Ggraphene, in this regime the interac-
tion is independent of layer and sublattice separation (these
distances are much smaller than 1/qTF). Also the rotation
angle θ is small, therefore its effect on interparticle distance
can be dropped (interaction becomes layer-independent). Note
that the low-energy states included in the continuum model
of Bistritzer and Macdonald are only the states close to
Dirac points |k − K| < O(1)Gmoiré. Since Gmoiré � qTF, in
this regime V (q) is effectively constant. Similarly, because
qTF � Ggraphene, the intervalley scattering terms are strongly
suppressed and the valley index becomes an effective good
quantum number [approximate U (1)v symmetry]. Putting ev-
erything together leads to the following simplified form of the
interaction:

V = U
∑

q

∑
(σ ′,v′,s′,l ′ )�=(σ,v,s,l )

ρσ,v,s,l (q)ρσ ′,v′,s′,l ′ (−q). (5)

Here ρσ,v,s,l (q) = ∑
k c†

σ,v,s,l,k+qcσ,v,s,l,k is the density wave
operator. σ, v, s, l are the spin, valley, sublattice, and layer
indices, respectively. The term with all the indices equal is
dropped since it only renormalizes the chemical potential
(which is irrelevant at a fixed filling).

IV. FERROMAGNETISM IN THE PERFECTLY FLATBAND
LIMIT OF TBLG

Let us now consider the effect of the interaction Eq. (5) on
TBLG in the chiral limit [α0 = 0.586 and α1 = 0 in Eq. (3)].
In this limit, the flatband wave functions can be taken to be
sublattice polarized [36] so that the sublattice index s is a
good quantum number in addition to σ, v. We now have eight
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degenerate flatbands that can be labeled by spin, valley, and
sublattice indices σ, v, s.

Assuming the interaction parameter U is small compared
to the band gap W , we can consider an effective Hamiltonian,

Ht = U
∑

q,l,l ′, f �= f ′
P0ρ f ,l (q)P0ρ f ′,l ′ (−q)P0, (6)

where P0 is the projection operator into the flatbands, and f
refers to the collective σ, v, s. Note that working with this
projected Hamiltonian is tantamount to first-order degenerate
perturbation theory. This Hamiltonian (that we focus on here)
differs from Eq. (5) by “intraflavor interlayer” terms. These
terms are omitted here to allow for analytical progress. Later,
we will show numerically that these terms do not have a
significant effect on the ground state. The projected density
operators P0ρ f ,l (q)P0 in Ht commute with the kinetic en-
ergy term in the flatband limit, so that we can ignore the
kinetic energy. A spin, valley, and sublattice polarized state
corresponding to fully filling one of these bands labeled by
| f = f0〉 = ∏

k∈MBZ c†
f0,k

|0〉 is a null state (i.e., zero-energy
eigenstate) of Ht . To see this, note that

P0ρ f ,l (q)P0| f = f0〉 =
∑
Gmoiré

	l (Gmoiré)δ f , f0δq,Gmoiré | f = f0〉,

(7)

which implies that

Ht | f = f0〉 = U
∑

Gmoiré,G′
moiré,l,l

′, f �= f ′
,

	l (Gmoiré)	l ′ (G
′
moiré)δ f , f0δ f ′, f0 | f = f0〉 = 0. (8)

Note that the Hamiltonian in Ht in Eq. (6) is non-negative,
i.e., 〈Ht 〉 � 0. This becomes manifest if we Fourier transform
back into “real” space,

Ht = U
∫

d2r
∑

l,l ′, f �= f ′
[P0n f ,l (r)P0][P0n f ′,l ′ (r)P0], (9)

where n f ,l (r) is the real-space density operator. The two parts
of each product term commute as they are associated with
different values of f . They are also both non-negative as they
are projected non-negative operators.

Therefore, the null state | f = f0〉 in an exact ground
state of Ht at filling is −3/4 (one electron per unit cell) of
the flatband manifold. Since the chiral limit Hamiltonian is
particle-hole symmetric, the same results also hold for the
opposite filling fraction +3/4. That is, the fully polarized state
is an exact ground state at fillings ±3/4. By assuming a large
enough (substrate induced) sublattice potential �t = �b >

U , the same result can be easily generalized to filling frac-
tions ±1/4. Note that the band-structure properties of TBLG
guarantee that all of the ferromagnetic states discussed here
are also associated with a quantized anomalous Hall response
[39,40,60].

In principle, we can consider spin- or valley-polarized fer-
romagnetic states at ±1/2 or 0 (charge-neutrality) fillings.
The spin- or valley-polarized states at ±1/2 or 0 (charge-
neutrality) fillings are in fact energy eigenstates as they are the
unique maximally spin- or valley-polarized states at the cor-
responding filling fraction. However, note that for our choice

of interaction, their energy eigenvalues of these states, defined
as

Ht |σ = σ0〉 = Eσ |σ = σ0〉,
(10)

Ht |v = v0〉 = Ev|v = v0〉,

are positive, i.e., Eσ , Ev > 0, as intervalley (for spin-polarized
state) or interspin (for valley-polarized state) interaction terms
do not vanish in this case. This is in sharp contrast with
the flavor-polarized states at ±3/4, where this energy eigen-
value vanishes identically. Therefore, the flatband approach in
this paper does not offer significant insight over mean-field
theory at these fillings since it is difficult to rule out non-
Slater-determinant states that have lower energies compared
to the polarized states Eσ , Ev . However, the mean-field studies
of Refs. [61–64] find that the spin-/valley-polarized states
are good ground-state candidates even at ±1/2, 0 filling, but
mean field compares energy only between Slater-determinant
states and as a result is known to overestimate the prevalence
of ferromagnetism in many electronic systems. We further
remark that while mean field cannot establish polarized states
as ground states, it can certainly rule them out by just find-
ing competing Slater-determinant states with lower energy.
While our approach can provide more information about
±3/4 filling fractions, it cannot be used to make definite
statements about the ±1/2 or 0 (charge-neutrality) fillings
without further analysis of Ht . Specifically, further progress
can be made by finding a trial state ψ with energy expectation
value 〈ψ |Ht |ψ〉 < Eσ,v that would rule out polarized states as
ground states.

We note that while we did not establish the uniqueness
of the ferromagnetic ground state, in the flatband ferromag-
netism literature [which is focused on SU(2) ferromagnetism
as opposed to the flavor ferromagnetism discussed here] it
has been shown [4] that the uniqueness of the ferromagnetic
ground state can be established by studying the one-magnon
spectrum. A discussion of this point is provided in the Supple-
mental Material [65]. This puts additional context around the
usefulness of the one-magnon spectrum as used in this paper.

V. SPIN STIFFNESS AND THE STABILITY OF
FERROMAGNETISM IN TBLG

We now turn to discussing the stability of this ferromag-
netic state using the one-magnon spectrum. This is a crucial
step as it provides a nontrivial consistency check and allows
us to generalize the results of the idealized model [Eq. (6)] to
more realistic systems. If the system is truly ferromagnetic,
it is necessary but not sufficient for the q = 0 state to have
the minimum energy [since it is related to the fully polarized
state by an SU(2) rotation]. This establishes the ferromagnetic
state as the local energy minimum. We note that even though
in principle the local stability of the ferromagnetic state is
not enough to guarantee global stability, application of our
method to a few known examples (in the Supplemental Mate-
rial [65]) suggests that in practice the ferromagnetic region of
the phase diagram can be identified effectively. We can further
use the one-magnon band spectrum of the system to obtain
useful information such as spin stiffness.
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-11

FIG. 1. Lowest one-magnon band spectrum of the TBLG in the
chiral limit. Energies are measured with respect to the fully polarized
state. The gapless blue curve corresponds to the single-spin flip
branch associated with the SU(2) breaking Goldstone mode. The
gapped red curve corresponds to the single-valley flip branch associ-
ated with breaking the discrete time-reversal symmetry. Energies are
in units of 8πv0 sin(θ/2)

3a0
≈ 0.19 eV. kx and ky are in units of 8π sin(θ/2)

3a0
.

We have used the interaction form V [Eq. (5)].

A combination translation invariance and flavor conserva-
tion ensures that the one-magnon (single-spin or valley-flip)
Hilbert space is small enough to be accessible using exact
diagonalization. We use the exactly calculated one-magnon
spectrum to study the stability of the ferromagnetic state. The
exactly calculated band structure of the one-magnon excita-
tions using the interaction V [Eq. (5)] is shown in Fig. 1. The
blue curve corresponds to the single-spin flip branch of exci-
tations associated with the SU(2) breaking Goldstone mode.
The red curve corresponds to the single-valley flip branch of
excitations associated with breaking of the time-reversal sym-
metry. Importantly, note that since time-reversal symmetry
is discrete, the single-valley flip excitations are gapped. As
shown in Fig. 1, the ferromagnetic state is stable in this case.

The numerical stability of the ferromagnetic state shows
that the “intraflavor interlayer” terms

�Ht = 2U
∑

q

∑
f

P0ρ f ,l=1(q)P0ρ f ,l=2(−q)P0 (11)

that were ignored in the analytic arguments based on Eq. (6)
do not significantly affect the ferromagnetism (we have
checked that this term only causes small corrections to the
one-magnon spectrum). This term favors layer polarization.
However, even approximately layer-polarized states do not ex-
ist in the flatband subspace (layer polarization is largely fixed
by the noninteracting flatband wave functions). Additionally,
such terms constitute a combinatorially small fraction 1/28
of the total terms of Eq. (5). Adding this term to Eq. (6) can
be thought of as deviating from the ideal interaction form of
Eq. (6) toward the more realistic interaction in Eq. (5).

We now deviate from the chiral limit and proceed to
study the stability of the ferromagnetic state as the realis-
tic system is approached. For simplicity, here we assume

1

-0.02

-1

-0.01

0

0.01

-0.5 00 0.5 1-1

FIG. 2. Lowest one-magnon (single spin-flip) band spectrum of
the TBLG as the realistic system is approached. Energies are mea-
sured with respect to the fully polarized state in the chiral limit.
Energies are in units of 8πv0 sin(θ/2)

3a0
≈ 0.19 eV. Here �t = �b =

0.1 ≈ 18 meV. kx and ky are in units of 8π sin(θ/2)
3a0

.We have used the
interaction form V [Eq. (5)].

a substrate-induced sublattice potential �t = �b = 0.1 ≈
18 meV. This assumption gaps one of the flatbands and helps
with the computational complexity. We numerically calculate
the one-magnon (single spin-flip) spectrum as we approach
the realistic parameters wAA/wAB = 0.8 [43]. The instability
of the ferromagnetic state is identified by a sign change of the
spin stiffness, or more precisely by looking for one-magnon
states whose energy is lower than the ferromagnetic state.
Sample results are shown in Fig. 2. In Fig. 2 we have set
U = 0.005 ≈ 1 meV. As shown in the figure, as the realistic
parameters are approached, the ferromagnetic state becomes
unstable. To study this transition more carefully, we have
plotted the calculated value of spin stiffness ρs as a function
of wAA/wAB for three different values of U in Fig. 3. ρs is
extracted assuming E = ρs|k|2. Note that as the instability is
approached, the spectrum sometimes does not admit a good
quadratic fit. Still, the extracted value can be used to see the
general trend. As shown in Fig. 3, depending on the value
of U , the realistic system can be either ferromagnetic or not.
That is, for large enough U , in the realistic parameter regime,
the ferromagnetic state is stable. Within the parameter regime
used here, we estimate the critical value of Uc to be around
Uc ≈ 2 meV.

Before ending this section, we would like to emphasize that
our formalism can be applied to arbitrary interaction models,
and that the model considered here only provides an example
that can be generalized to more complicated models in future
work.

VI. DISCUSSION AND CONCLUSION

In this paper, we have shown that a simple variant of
the ideas related to flatband ferromagnetism can be used to
study TBLG. In particular, we discussed ferromagnetism in
the perfectly flatband “chiral” limit, and we used the exactly
calculated one-magnon spectrum to study the stability of the

235123-4



FERROMAGNETISM AND ITS STABILITY FROM THE … PHYSICAL REVIEW B 102, 235123 (2020)

0 0.2 0.4 0.6 0.8
-0.1
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FIG. 3. Spin stiffness associated with the one-magnon band
spectrum of the TBLG. A negative spin stiffness signals the insta-
bility of the ferromagnetic state. We have used a fit of the form
E = ρs|k|2. We have used the interaction form V [Eq. (5)].

ferromagnetic state as the realistic system is approached. The
same one-magnon spectrum is also used to extract the spin
stiffness of the ferromagnetic Goldstone modes. Note that our
formalism can be used to study ferromagnetism in other re-
cently discovered ferromagnetic phases in moiré superlattices.
In particular, the same exact method can be readily applied to
twisted double bilayer graphene where an analogous chiral flat
limit exists [38].

A particularly intriguing feature of the results presented
here is that (as opposed to the mean-field approach [61–63])
they manifestly predict ferromagnetism only at odd filling
fractions ±3/4, 1/4. Given that the experimentally observed
half-filled state seems to be spin-unpolarized [23–25], it
would be interesting to study the fate of the model presented
here at half-filling and to see if it also hosts a spin-unpolarized
ground state.

The exactly calculated one-magnon spectrum studied here
can be used to extract other interesting information about the
ferromagnetic state. In particular, the Chern insulating nature
of the ferromagnetic states means that the spin stiffness can
be used to calculate the energy of charged skyrmions [66–71].

The skyrmion energy in combination with the Hartree-Fock
particle hole excitation energy can then be used to determine
whether skyrmions are the lowest-lying charged excitations
(note that even in Landau levels, this is not always the
case). This result can be compared with experimentally mea-
sured charge gaps of Ref. [35]. We further remark that the
one-magnon spectrum can also be used to identify natural
candidates for the neighboring magnetic phases. Specifically,
when the ferromagnetic state becomes unstable, i.e., when the
minima of the one-magnon spectrum has finite momentum
q0 �= 0, the location of the new minima in the Brillouin zone
can be used to identify natural candidates for alternate types of
magnetic order (e.g., antiferromagnetism) that might replace
ferromagnetism in neighboring phases.

We finally mention that the formalism developed here pro-
vides an intuitive picture of how ferromagnets are favored
over competing Mott insulators in topologically nontrivial
bands. Traditionally, when short-range Hubbard interactions
are considered, Mott-insulating states are considered as can-
didate ground states. The idea is to restrict the electrons
to sharply localized nonoverlapping Wannier wave functions
to minimize the interaction energy. However, note that for
nonisolated or isolated and topologically nontrivial bands,
Wannier wave functions are not even approximately localized.
Therefore, in these cases (overlapping or topologically non-
trivial band), Mott-insulating states are not good ground-state
candidates, whereas the ferromagnetic states discussed above
are good candidates independent of the (topological) nature of
the underlying band. In continuation of these ideas, we men-
tion here that the recent experimental finding of Ref. [33] in
ABC trilayer graphene, where the Chern number of the band
can be electrically tuned, seems to suggest that the topology
of the underlying band might in fact play a role in favoring
ferromagnetism. Studying this case with the same formalism
provides another interesting line of future work.

Note added. During the final stages of preparing this
manuscript we became aware of Ref. [72], which also studies
ferromagnetism in flatband systems and has some overlap
with the present work.
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