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Transport properties of the organic Dirac electron system α-(BEDT-TSeF)2I3
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Motivated by the insulating behavior of α-(BEDT-TSeF)2I3 at low temperatures (T ’s), we first performed first-
principles calculations based on the crystal structural data at 30 K under ambient pressure, and we constructed
a two-dimensional effective model using maximally localized Wannier functions. As possible causes of the
insulating behavior, we studied the effects of the on-site Coulomb interaction U and spin-orbit interaction (SOI)
by investigating the electronic state and the transport coefficient using the Hartree approximation and the T -
matrix approximation. The calculations at a finite T demonstrated that a spin-ordered massive Dirac electron
(SMD) appeared due to the on-site Coulomb interaction. We had an interest in the anomalous competitive effect
with U and SOI when the SMD phase is present in α-(BETS)2I3, and we investigated these contributions to
the electronic state and conductivity. The SMD is not a conventional spin order, but it exhibits the spin-valley
Hall effect. Direct current resistivity in the presence of a spin order gap increased divergently and exhibited
negative magnetoresistance in the low T region with decreasing T . The charge density hardly changed below
and above the T at which this insulating behavior appeared. However, when considering the SOI alone, the state
changed to a topological insulator phase, and the electrical resistivity is saturated by edge conduction at quite
low T . When considering both the SMD and the SOI, the spin order gap was suppressed by the SOI, and gaps
with different sizes opened in the left and right Dirac cones. This phase transition leads to distinct changes in
microwave conductivity, such as a discontinuous jump and a peak structure.

DOI: 10.1103/PhysRevB.102.235116

I. INTRODUCTION

Quasiparticles that have properties similar to those of rela-
tivistic particles in solids have been found in various materials,
such as graphene [1,2], bismuth [3,4], and several organic con-
ductors [5–12]. They are called Dirac electrons in solids, and
they exhibit exotic physical properties such as quantum trans-
port [13]. For Dirac electrons in organic conductors such as
α-(BEDT-TTF)2I3 and α-(BEDT-TSeF)2I3 [α-(BETS)2I3],
which are the main focus in this study, the Coulomb inter-
action is relatively large due to the narrow bandwidth. The
relationship between the Dirac electron and the electron cor-
relation effect has been discussed.

In α-(BEDT-TTF)2I3, it is suggested that the phase transi-
tion between the Dirac electron phase and the charge-ordered
insulator phase is induced by the nearest-neighbor Coulomb
interaction [14–16], and anomalous behaviors associated with
the electron correlation effect such as the pressure depen-
dence of the spin gap [17,18] and transport phenomena at
low temperatures (T ’s) [19–21] have been observed. It has
also been shown that a long-range component of the Coulomb
interaction induces reshaping of the Dirac cone [22,23], and
it enhances spin-triplet excitonic fluctuations in the massless
Dirac electron phase under high pressure and in-plane mag-
netic field [24].

*dohki@s.phys.nagoya-u.ac.jp

α-(BETS)2I3 is a related substance of α-(BEDT-TTF)2I3.
In the composition of the BETS molecule, the sulfur (S) atom
in the BEDT-TTF molecule is replaced with a selenium (Se)
atom, and its relationship with the high-pressure phase of
α-(BEDT-TTF)2I3 has been discussed. Direct current (dc)
electrical resistivity measurements showed that the properties
of the Dirac electron appear at T > 50 K [25]. On the other
hand, at T < 50 K the dc resistivity increases divergently.
Nuclear magnetic resonance (NMR) measurements indicated
that an energy gap ∼300 K is opened at low T [26]. How-
ever, unlike in α-(BEDT-TTF)2I3, inversion symmetry is not
broken and the charge density at each site hardly changes
in 30 < T < 80 K, which has been revealed recently by the
synchrotron x-ray diffraction experiment [27]. Thus, the insu-
lation mechanism of α-(BETS)2I3 is not related to the charge
order, and the electronic state at low T has not been clarified.

Under hydrostatic pressure, the energy band with elec-
tron and hole pockets is obtained by band calculations using
the extended Hückel method or first-principles calculation
[28,29]. A mean-field calculation using the extended Hubbard
model based on the extended Hückel method suggests that
the insulating state at low T is a band insulator due to merg-
ing of the Dirac cones [30]. However, high-accuracy x-ray
diffraction data at 30 K under ambient pressure have recently
been obtained, and using first-principles calculation it has
been demonstrated that a type-I Dirac electron, which has no
Fermi pockets, can be realized under ambient pressure [27].
The calculation considering spin-orbit interaction (SOI) by
second-order perturbation indicated that SOI also contributed

2469-9950/2020/102(23)/235116(12) 235116-1 ©2020 American Physical Society

https://orcid.org/0000-0003-2170-1562
https://orcid.org/0000-0002-6249-6844
https://orcid.org/0000-0001-9997-8532
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.235116&domain=pdf&date_stamp=2020-12-07
https://doi.org/10.1103/PhysRevB.102.235116


D. OHKI, K. YOSHIMI, AND A. KOBAYASHI PHYSICAL REVIEW B 102, 235116 (2020)

to the electronic state in α-(BETS)2I3 due to the presence
of Se, and its magnitude was 5–10 meV [31]. The results
of a recent first-principles calculation with the generalized
gradient approximation (GGA) also showed that the SOI had
a value of approximately 2 meV, and its effect could not be
neglected [32].

In this study, we investigate the effects of the Coulomb
interaction and SOI as possible causes of the hidden phase
transition and insulating behavior at low T ’s. We investigate
the electronic state and calculate several transport coefficients
in α-(BETS)2I3. The remainder of this paper is organized as
follows. In Sec. II, first-principles calculations based on x-ray
data are performed to derive the transfer integrals at 30 K
under ambient pressure. We obtain the on-site Coulomb inter-
action by the constrained random phase approximation. Using
the obtained data, we construct a two-dimensional effective
Hubbard model. In addition, we describe a method to calculate
the dc and optical conductivities using the Nakano-Kubo for-
mula. In Sec. III, we demonstrate the obtained electronic state
at finite T and a candidate low T insulator phase. Moreover, a
calculation considering SOI is performed, and its contribution
to the electronic state near the phase transition is estimated.
Next, we calculate the T -dependence of the dc and optical
conductivities [13,33–36]. The T - and in-plane magnetic field
B-dependence of the dc resistivity are also calculated and
compared with the experimental results. The findings of our
study are summarized in Sec. IV.

II. MODEL AND FORMULATION

A. Effective model based on first-principles calculations

First, we performed first-principles calculations based on
the x-ray crystal structural data of α-(BETS)2I3 at 30 K under
ambient pressure [27] using the QUANTUM ESPRESSO (QE)
package [37]. In our calculation, the GGA was used as the
exchange-correlation function [38]. As the pseudopotentials,
we used the SG15 Optimized Norm-Conserving Vanderbilt
(ONCV) pseudopotentials [39]. The cutoff kinetic energies
for wave functions and charge densities were set as 80 and
320 Ry, respectively. The mesh of the wave numbers was set
as 4 × 4 × 2. After the first-principles calculation, the max-
imally localized Wannier functions (MLWFs) were obtained
using RESPACK [40]. To construct the MLWFs, four bands
near the Fermi energy were selected. Initial coordinates of the
MLWFs were located at the center of each BETS molecule
in the unit cell. Figure 1(a) shows the crystal structure of
α-(BETS)2I3 at 30 K under ambient pressure (left side) and
the real space structure of the MLWFs at each site (right side).
There are four BETS molecules labeled by A, A′, B, and C in
the unit cell. They are distinguished by the arrangement and
the orientation. A and A′ are crystallographically equivalent
sites. The center positions of the MLWFs are located at the
center of each BETS molecule, and as shown in Fig. 1(a),
pz-like orbitals are spreading in the direction perpendicular
to the surface of the molecule. Figure 1(b) shows the energy
bands near the Fermi energy (the energy origin is set as the
Fermi energy) obtained by QE and the Wannier interpolation.

Next, we constructed the effective model using the transfer
integrals and the on-site Coulomb interactions. The on-site

FIG. 1. (a) Crystal structure of α-(BETS)2I3 at 30 K under
ambient pressure (left) and real space distribution of the MLWFs
(right) drawn by VESTA [41]. (b) Energy bands derived from the
first-principles calculation (solid red line) and Wannier interpolation
(empty circle). The chemical potential is set as the energy origin.

Coulomb interactions are evaluated by the constrained ran-
dom phase approximation (cRPA) method using RESPACK.
The energy cutoff for the dielectric function was set as 5.0
Ry.

Figure 2 shows a schematic lattice structure of
α-(BETS)2I3. The transfer integrals are considered up to al-
most the next-nearest-neighbor bonds shown in the center fig-
ure and table of Fig. 2. The values of the transfer integrals t δ

α,β

are listed in the table shown on the right side of Fig. 2. Here,
δ = (δb, δa) indicates the relative lattice vector, and α and β

indicate the site indexes in the unit cell, i.e., A, A′, B, and C.
The cutoff energy of the transfer integrals is taken as tcut = 5.0
(meV). The on-site Coulomb interactions are given as
UA = UA′ = 1.383 (eV), UB = 1.396 (eV), and UC = 1.359
(eV). Since the transfer integrals between the interplanes
are significantly smaller than those in the intraplane [42],
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FIG. 2. Schematic lattice structure of α-(BETS)2I3. The area of the original unit cell is shown by the shaded blue region. The dotted red
arrows in the left figure indicate the relative lattice vectors δ = (δb, δa ) for δ = (1, 0) and (0,1) as examples. The center figure shows the
transfer integrals between nearest neighbor sites from the original unit cell.

this system can be considered as a two-dimensional electron
system.

In this study, we investigated the two-dimensional Hubbard
model with SOI [43,44]:

H =
∑
R,δ

∑
α,β

∑
σ

t δ
α,βc†

R,α,σ cR+δ,β,σ +
∑
R,α

λUUαnR,α,↑nR,α,↓

+ HSOI − μBB
∑
α,σ,R

sgn(σ )nR,α,σ , (1)

where R is the coordinate of the unit cell, and α, β indicate
the indexes of the inner sites in the unit cell (A, A′, B, and C).
σ =↑ (+),↓ (−) indicates the index of spin. t δ

α,β indicates
the transfer integral between α and β sites separated by the
relative lattice vector δ, and Uα indicates the on-site Coulomb
interaction evaluated using the cRPA method. Here, the site
potentials t0

α are t0
A = t0

A′ = 4.467 (eV), t0
B = 4.462 (eV), and

t0
C = 4.475 (eV). We ignored these terms in Eq. (1) because

their contribution to the energy band obtained in our model is
insignificant. The creation (annihilation) operator at the α-site
in the unit cell located at R is defined as cR,α,σ (c†

R,α,σ ), and

the number operator is defined as nR,α,σ = c†
R,α,σ cR,α,σ . λU

(0 < λU < 1) is a tuning parameter that controls the values
of the on-site Coulomb interaction. HSOI is the SOI term,
which is generally proportional to [p × ∇U (r)] · σ, where p
is the momentum, U (r) is the potential energy, and σ indicates
the spin angular momentum. The specific formula of HSOI is
detailed in the following section. The fourth term of Eq. (1)
represents the in-plane Zeeman magnetic field, where μB is
the Bohr magneton. In the following, the lattice constants,
Boltzmann constant kB, and the Planck constant h̄ are taken
as unity. Note that the electronvolt (eV) is used as the unit of
energy throughout this paper.

B. Electronic state in the wave-number space

In this study, we investigate the electronic state us-
ing the Hartree approximation. To obtain the Hamiltonian
in the wave-number representation, the Fourier inverse

transformation is performed on the Hamiltonian defined in
Eq. (1). Then, the Hamiltonian is given as

Hα,β,σ (k) =
∑

δ

t (δ)
α,βeik·δc†

k,α,σ ck,β,σ

+ δαβλUUα〈nα,−σ 〉c†
k,α,σ ck,α,σ

+ HSOI
α,β,σ (k)

−μBB
∑
α,σ,k

sgn(σ )c†
k,α,σ ck,α,σ , (2)

where k = (kb, ka) indicates the wave-number vector. Here,
HSOI

αβσ (k) is the Hamiltonian of the SOI and is given as the
following formulas [45]:

HSOI
B,A,σ (k) = iλSOISz

(−t (0,0)
B,A + t (1,0)

B,A eikb
)
c†

k,B,σ ck,A,σ ,

HSOI
B,A′,σ (k) = iλSOISz

(
t (0,0)
B,A′ − t (1,0)

B,A′ eikb
)
c†

k,B,σ ck,A′,σ ,

HSOI
C,A,σ (k) = iλSOISz

(−t (0,0)
C,A + t (1,0)

C,A eikb
)
c†

k,C,σ ck,A,σ ,

HSOI
C,A′,σ (k) = iλSOISz

(
t (0,1)
C,A′ eikb − t (1,1)

C,A′ ei(kb+ka )
)

×c†
k,C,σ ck,A′,σ ,

where the spin Sz = sgn(σ )/2, and λSOI is the control param-
eter of the strength of the SOI.

Hα,β,σ (k) is diagonalized by using the eigenvector
dα,ν,σ (k) about each k, and the energy eigenvalues
Ẽν,σ (k) = 〈∑α,β d∗

α,ν,σ (k)Hα,β,σ (k)dβ,ν,σ (k)〉 [Ẽ1,σ (k) >

Ẽ2,σ (k) > Ẽ3,σ (k) > Ẽ4,σ (k)] are obtained. In the following,
for convenience, we define Eν,σ (k) as

Eν,σ (k) =
〈∑

α,β

d∗
α,ν,σ (k)Hα,β,σ (k)dβ,ν,σ (k)

〉
− μ, (3)

where the chemical potential μ is determined to satisfy the
3/4-filling. The charge density 〈nα,σ 〉 for site α and spin σ is
calculated as 〈nα,σ 〉 = ∑

k,ν |dα,ν,σ (k)|2 f (Eν,σ (k)) using the
Fermi distribution function f (ξ ) = [1 + exp(ξ/T )]−1. The
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Berry curvature Bν,σ (k) in band ν and spin σ is obtained by

Bν,σ (k) =
∑
ν ′ 	=ν

vb
ν,ν ′,σ (k)va

ν ′,ν,σ (k)

i[Eν,σ (k) − Eν ′,σ (k)]2
+ c.c., (4)

where

v
γ

ν,ν ′,σ (k) =
∑
α,β

d∗
α,ν,σ (k)

∂Hα,β,σ (k)

∂kγ

dβ,ν ′,σ (k), (5)

and the Chern number is given as

Ch =
∑

σ

Chσ = 1

2π

∑
σ

∫
BZ

dkBν,σ (k). (6)

Here,
∫

BZ indicates that the integration is performed through-
out the Brillouin zone.

C. Conductivity

The optical conductivity in the clean limit is calculated
using the Nakano-Kubo formula [13,33–36] given as follows:

σ (ω, θ ) = 1

iω
[QR(ω, θ ) − QR(0, θ )], (7)

QR(ω, θ ) = e2

NL

∑
k,ν,ν ′,σ

|vν,ν ′,σ (k, θ )|2

×χ0
ν,ν ′,σ (k, ω), (8)

χ0
ν,ν ′,σ (k, ω) = − f (Eν,σ (k)) − f (Eν ′,σ (k))

Eν,σ (k) − Eν ′,σ (k) + h̄ω + i0+ , (9)

where 0+ = 5.0 × 10−4, and the angle θ is measured from
the b-axis direction and the projection in the θ -direction of
the velocity vν,ν ′,σ (k, θ ) indicating the interband transition
written as

vν,ν ′,σ (k, θ ) =
∑
α,β

d∗
α,ν,σ (k)vα,β,σ (k, θ )dβ,ν ′,σ (k). (10)

Here, vα,β,σ (k, θ ) is defined as

vα,β,σ (k, θ ) = 1

h̄

(
∂Hα,β,σ (k)

∂kx
cos θ

+∂Hα,β,σ (k)

∂ky
sin θ

)
. (11)

In the limit of ω → 0 in Eq. (7), the dc conductivity is
represented by the following equations:

σ (θ ) =
∫

dω

(
− df

dω

)
�(ω, θ ), (12)

�(ω, θ ) = 2e2

NL

∑
k,ν,σ

|vν,σ (k, θ )|2τν,σ (ω, k)

×δ(h̄ω − Eν,σ (k)), (13)

where the relaxation time τν,σ (ω, k) is calculated within the
T -matrix approximation using the perturbation theory for the
Green function. We only treat an elastic scattering between
electrons and impurities, which originates from a lack and
disorder of anion I−3 molecules. The impurity potential term

is considered as

Himp = V0

NL

imp∑
k,q,α,σ

∑
i

e−iq·ri c†
k+q,α,σ ck,α,σ , (14)

where V0 is the intensity of the impurity potential and ri

is the coordinate of impurities. The imaginary part of the
retarded self-energy Im�R

ν,σ (ω, k) gives the damping constant
γν,σ (ω, k), and the τν,σ (ω, k) is obtained as follows:

γν,σ (ω, k) = h̄

2τν,σ (ω, k)
= −Im�R

ν,σ (ω, k)

= cimp
|dα,ν,σ (k)|2{πV 2

0 Nσ (ω)
}

1 + {πV0Nσ (ω)}2 . (15)

Here, cimp � 1 is the density of impurities, and

Nσ (ω) =
∑
k,α,ν

|dα,ν,σ (k)|2δ(h̄ω − Eν,σ (k))

indicates the total density of states. In the following, the unit
of conductivity is the universal conductivity σ0 = 4e2/πh,
and the Drude term is subtracted from the optical conductivity.

III. NUMERICAL RESULTS

A. Electronic state at finite temperature

In this subsection, the electronic state at finite T is investi-
gated under the condition of λSOI = 0. Figure 3(a) shows the
energy eigenvalues Eν,σ (k) near the Fermi energy calculated
using the tight-binding model (λU = 0). The conduction band
(ν = 1) and valence band (ν = 2) form the Dirac point, and a
type-I Dirac electron system that appears in the high-pressure
phase of α-(BEDT-TTF)2I3 is expected to be realized under
ambient pressure in α-(BETS)2I3.

Figure 3(b) displays the density of states Nα (ω) in the en-
ergy range |h̄ω| < 0.1. The order of Nα (ω) magnitudes near
the Fermi energy (approximately |h̄ω| < 0.05) is NC(ω) >

NA(ω) = NA′ (ω) > NB(ω). The presence or absence of
peaks of the van Hove singularity at each site is related to
the property of the eigenvector dα,ν,σ (k). Note that the lines
of NA(ω) and NA′ (ω) have the same value due to the inver-
sion symmetry and they overlap each other. Figures 3(c) and
3(d) show the square of the absolute value of the eigenvector
|dα,ν=1,σ=↑(k)|2 in α = B and C, respectively. The zero line
appears in |dα,ν=1,σ=↑(k)|2, which has almost the same wave-
number dependence as α-(BEDT-TTF)2I3 [46]. Accordingly,
the electronic state of α-(BETS)2I3 in the high-T phase un-
der ambient pressure is similar to this, as demonstrated by
α-(BEDT-TTF)2I3 in the high-pressure phase.

Hereafter, we set λU as 0.344, so that the phase transition
T matches to that observed in the experiments, and we inves-
tigate the effects of the on-site Coulomb interaction within
the Hartree approximation. Figures 4(a) and 4(b) show the
T -dependence of the charge density 〈nα〉 and magnetization
density 〈mα〉 at each site in the unit cell. It is observed
that with decreasing T from T = 0.006, the charge densities
hardly change, whereas the spin densities at A and A′ sites
change rapidly at the temperature TC1 � 0.0032. Here, 〈nB〉
and 〈nC〉 have different values due to the charge dispropor-
tionation originating from the anisotropy of transfer integrals,
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FIG. 3. (a) Energy eigenvalues Eν,σ=↑(k) (ν = 1, 2) calculated
on the basis of the tight-binding model, (b) Nα (ω), and square of
the absolute value of eigenvectors |dα,ν=1,σ=↑(k)|2 at (c) α = B and
(d) α = C. The symbols of X, Y, and M in (b) indicate the sym-
metric points in the Brillouin zone corresponding to the van Hove
singularity.

FIG. 4. T -dependence of (a) charge densities 〈nα〉, (b) magneti-
zation densities 〈mα〉, and (c) energy gap � at λU = 0.344. The black
dotted line is plotted as a guide to show the temperature T = TC1 =
0.0032 where the spin-order phase transition occurs. Schematic di-
agrams of the magnetization density in the unit cell at T > TC1 and
T < TC1 are shown in the inset of (c). The energy gap at T = 0.0005
(�U ) is shown by a red solid line.

which is not related to the charge order. These results indicate
that the system does not break the charge inversion symmetry,
but it breaks the spin inversion symmetry below TC1. Such a
magnetic phase transition has not been observed so far, but
the divergent increase of spin susceptibility associated with
this spin order in T < TC1 is probably canceled out due to
the nature of the wave function in Dirac electron systems.
In a previous theoretical study [43,44], antiferromagnetism
in the unit cell with vertical-stripe charge order was pointed
out. However, the structure analysis in the experiments shows
that the charge inversion symmetry is not broken, and charge
density at each site is hardly changed as T is decreased [27].
This fact is consistent with our results. In the remainder of this
paper, we theoretically investigate the anomalous competitive
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FIG. 5. Energy eigenvalues Eν,σ (k) for ν = 1, 2 at (a) T =
0.005 (> TC1 = 0.0032) and (b) T = 0.001 (< TC1), respectively.
Berry curvatures B1,σ (k) at (c) T = 0.005 (> TC1) and (d) T =
0.001 (< TC1), respectively.

effect with U and SOI whether a magnetic transition actually
occurs or not, when such a spin order exists in α-(BETS)2I3.
Figure 4(c) shows the T -dependence of the energy gap �. �

has a finite value at T < TC1 due to the occurrence of the spin-
order phase transition. Figures 5(a) and 5(b) show the energy
bands at T = 0.005 (> TC1) and T = 0.001 (< TC1), respec-
tively. In the spin-ordered state, � opens at the Dirac point,
but the spin components of the energy bands do not split. On
the other hand, Figs. 5(c) and 5(d) show the Berry curvatures
B1,σ (k) at σ =↑ and ↓. As shown in Figs. 5(c) and 5(d), the
sign of B1,σ (k) inverts according to the degrees of freedom
about spin σ =↑ (+),↓ (−) and valley indices τ = +1(−1),
where the right (left) Dirac cone corresponds to τ = +1 (−1),
respectively. Therefore, when such a spin-ordered massive
Dirac electron (SMD) phase exists, it is expected that a unique
spin-valley Hall effect appears. The intrinsic and side-jump
terms of the valley-spin Hall conductivity on the νth band can
be written in the form

σ H,int
ν,σ,τ = e2

h

∫
dk f (Eν,σ,τ (k))Bν,σ,τ (k)

and

σ H,side
ν,σ,τ = −e2

h

∫
dkBν,σ,τ (k)

∂ f (Eν,σ,τ (k))
∂Eν,σ,τ (k)

∂ f (Eν,σ,τ (k))
∂k

,

where Eν,σ,τ (k) is the energy band at the wave number around
the left (τ = −1) or right (τ = +1) Dirac point [47–49]. The
Hall conductivity σ H is defined by σ H

ν,σ,τ = σ H,int
ν,σ,τ + σ H,side

ν,σ,τ .
The spin and valley Hall conductivities are calculated by
σ S

ν,τ = ∑
σ sgn(σ )σ H

ν,σ,τ and σ V
ν,σ = ∑

τ sgn(τ )σ H
ν,σ,τ , respec-

tively. Subsequently, the spin-valley Hall conductivity σ SV
ν

is obtained by σ SV
ν = ∑

σ,τ sgn(στ )σ H
ν,σ,τ and this value be-

comes finite in the SMD phase. It is expected that the spin

FIG. 6. (a) λSOI-T phase diagram. SMD and a topological in-
sulator (TI) indicate the SMD and topological insulator phases,
respectively. Below TC2, the spin Chern becomes zero, so the energy
gap � closes once. The blue dashed line shows the points at � = 0
in the SMD phase. The inset of (a) shows the λSOI-dependence of the
SOI gap �SOI at �U = 0.008. (b) T -dependence of the energy gap �

at several values of �SOI at �U = 0.008.

(valley) Hall effect depending on the degrees of freedom about
the valley (spin) appears [50].

B. Effects of SOI on the electronic state

In this subsection, the contribution of SOI to the electronic
state at a finite T is examined. When only SOI is considered,
i.e., λU = 0, a metallic band appears due to the edge state,
as shown in Appendix. In this case, the insulating behavior at
low T of α-(BETS)2I3 cannot be explained. In the following,
we investigate the effects of SOI in the presence of on-site
Coulomb interactions Uα . For simplicity, we set λSOI 	= 0 and
λU = 0.344 as in the previous subsection. Figures 6(a) and
6(b) show the T -λSOI phase diagram and the T -dependence
of the energy gap � at several λSOI values, respectively.
Note that the value of the transfer integrals has the order of
10−1 eV (see Fig. 2), therefore the magnitude of the SOI for
λSOI = 0.01 is approximately 1 meV. Hereafter, for conve-
nience, we introduce two energy scales: SMD gap �U and
SOI gap �SOI. �U = 0.008 is defined as the value of the
energy gap � at (λU , λSOI) = (0.344, 0) for T = 0.0005 [red
solid arrow in Figs. 4(c) and 6(b)]. �SOI is the value of �
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FIG. 7. Energy eigenvalues Eν,σ (k) near the Fermi energy and Berry curvature B1,σ (k) at (�U , �SOI ) = (0.008, 0.0027) for the following
three cases: (a) and (d) T = 0.0050 > TC1 = 0.0032, (b) and (e) T = TC2 = 0.0028, and (c) and (f) T = 0.0010 < TC2.

in T > TC1, which is associated with the energy scale of the
SOI [magenta to orange solid arrows in Fig. 6(b)]. The inset
of Fig. 6(a) shows the λSOI-dependence of the SOI gap �SOI

at �U = 0.008. When λSOI > 0 and T > TC1, the value of
�SOI is finite, and the system becomes a topological insulator
(TI) as described below. It should be noted that for �SOI > 0
(λSOI > 0), � exhibits a V-shaped T -dependence at T < TC1;
i.e., � decreases to zero in TC2 < T < TC1, becomes zero at
T = TC2, and is finite again in T < TC2. As λSOI (�SOI) is in-
creased, TC1 gradually decreases and reaches zero. The SMD
phase vanishes in λSOI > 0.07 (�SOI � 0.005) and a quantum
phase transition can occur when such a large SOI exists.
However, this value is more than twice the SOI value esti-
mated by first-principles calculation [32]. Figure 7 shows the
energy band Eν,σ (k) near the Fermi energy and Berry curva-
ture B1,σ (k) at (�U ,�SOI) = (0.008, 0.0027) [(λU , λSOI) =
(0.344, 0.04)] in the following three cases: T = 0.005 > TC1

[Figs. 7(a) and 7(d)], T = TC2 = 0.0028 [Figs. 7(b) and 7(e)],
and T = 0.001 < TC2 [Figs. 7(c) and 7(f)]. First, when T =
0.005 > TC1, the time-reversal symmetry exists, and the SOI
gap opens at the Dirac point [Fig. 7(a)]. In this case, the
sign of B1,σ (k) is inverted according to the spin components,
as illustrated in Fig. 7(d), and the system becomes the TI
because the spin Chern number defined by ChS ≡ Ch↑ − Ch↓
becomes 1.

Thereafter, in TC2 < T < TC1 [Figs. 7(b) and 7(e)], the
time-reversal symmetry is broken. Hence, B1,σ (k) has peaks
with different magnitudes according to the left and right val-
leys, and the spin Chern number has a real finite value. At
T = TC2, the sign of B1,σ (k) in one valley is inverted corre-
sponding to � = 0 at one valley. Finally, for T < TC2, gaps of
different sizes are opened [Fig. 7(c)]. These behaviors in T <

TC1 originate from the competition between the contributions

of the spin order and SOI [51–58]. Moreover, as the sign of the
B1,σ (k) in one valley has been already inverted at T = TC2, the
spin Chern number is zero in this region [Figs. 7(c) and 7(f)].

C. dc and optical conductivities

In this subsection, �U is fixed at 0.008 as in the previous
section, and the T and SOI effects on the dc and optical
conductivities are investigated.

The T -dependence of the a-axial dc resistivity ρ(θ =
π/2)/ρ0 for (�U ,�SOI) = (0, 0), (0, 0.0027), (0.008, 0), and
(0.008, 0.0027) is plotted in Fig. 8(a) as solid lines. When
only the SOI is considered [(�U ,�SOI) = (0, 0.0027)], the
system becomes the TI, in which the SOI gap �SOI is opened
at the Dirac point and ρ(θ = π/2)/ρ0 increases at quite low
T as T is decreased. Moreover, when considering the on-
site Coulomb interaction, ρ(θ = π/2)/ρ0 increases below the
phase transition temperature due to the spin-order gap. How-
ever, as a result of the finite energy width due to −df /dω

and the gentle function, such as
√

T of the energy gap � [see
Eq. (12) and Fig. 4(c)], ρ(θ = π/2)/ρ0 does not increase sud-
denly near the SMD phase transition temperature TC1. When
both the on-site Coulomb interaction U and SOI are taken into
account, the spin order gap is suppressed by the SOI. Thus,
ρ(θ = π/2)/ρ0 is suppressed at low T .

Here, note that in Fig. 8(a) we also plot the T -dependence
of ρ(θ = π/2)/ρ0 at (�U ,�SOI) = (0, 0.0056) (dashed line)
and (0, 0.011) (dotted chain line) obtained by the calculation
using the cylindrical boundary condition. When only the SOI
exists in the system with an edge, the helical edge state ap-
pears, and ρ(θ = π/2)/ρ0 saturates, as shown by these lines.
Due to the edge conduction, the value of ρ(θ = π/2)/ρ0

has no significant change even when we consider large SOI.
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FIG. 8. (a) T -dependence of the a-axial dc resistivity ρ(θ =
π/2)/ρ0 in units of the reciprocal of the universal conductivity
ρ0 ≡ 1/σ0 = (4e2/πh)−1 (solid lines). The results at (�U , �SOI ) =
(0, 0.0056) (dashed line) and (0, 0.011) (dotted chain line) under
the cylinder boundary condition are also plotted. Here, note that
the slight increase in the resistivity at (�U ,�SOI ) = (0, 0) near the
lowest-T originates from the artificial gap by the accuracy limit
of the numerical calculation. (b),(c) The in-plane magnetic-field B
dependence of (b) the energy gap � and (c) ρ(θ = π/2)/ρ0 at
T = 0.001 for several parameter sets of (�U , �SOI ). The inset shows
the B-dependence of ρ(θ = π/2)/ρ0 for (�U ,�SOI ) = (0, 0.0056)
(dashed line) and (�U , �SOI ) = (0.008, 0.011) (dotted chain
line).

FIG. 9. Real part of the optical conductivity along the b-axis
(θ = 0) direction Re[σ (ω, θ = 0)]/σ0 in units of the universal con-
ductivity σ0 = 4e2/πh for (a) �SOI = 0 and (b) �SOI = 0.0027.
T is fixed at T = 0.005 > TC1 = 0.0032 (dotted chain line), T =
0.0028 < TC1 (broken line), and T = 0.001 (solid line).

Therefore, we cannot explain the divergent increase of the dc
resistivity observed in the experiment of α-(BETS)2I3 when
considering the SOI alone, and the edge state is robust (see
Appendix for details).

Figures 8(b) and 8(c) represent the in-plane magnetic field
B-dependence of the energy gap � and ρ(θ = π/2)/ρ0 for
several values of (�U ,�SOI). The energy band is split by
−sgn(σ )μBB [see Eq. (1)]. Thus, �(B) monotonically de-
creases as B is increased when calculating without edges.
As a result, as shown in Fig. 8(c) and the solid line in its
inset, ρ(θ = π/2)/ρ0 decreases as B is increased. This result
is consistent with the negative magnetoresistance observed in
α-(BETS)2I3 [59]. However, when considering the edge in the
system, as shown by the dashed line and dotted chain line in
the inset, ρ(θ = π/2)/ρ0 is almost constant, due to the edge
conduction. Hence, we cannot explain the negative magne-
toresistance when considering the SOI alone. Figures 9(a) and
9(b) show the real part of the optical conductivity along the
b-axis (θ = 0) direction Re[σ (ω, θ = 0)]/σ0 for λSOI = 0 and
�SOI = 0.0027 (λSOI = 0.04) around T = TC1. Re[σ (ω, θ =
0)]/σ0 shows clear differences depending on the presence or
absence of the SOI. In T = 0.005 > TC1, Re[σ (ω, θ = 0)]/σ0
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without the SOI has a finite value at frequency ω = 0, whereas
that with the SOI remains zero until ω reaches approxi-
mately 960 GHz because of the finite SOI gap. In T < TC1,
Re[σ (ω, θ = 0)]/σ0 without the SOI becomes zero when
the value of ω is smaller than the spin-order gap �, and
it increases abruptly in ω > �. However, when the SOI
is considered, � exhibits a V-shaped T -dependence due to
the competition between the SMD and SOI, as indicated in
Fig. 6(b). As a result, Re[σ (ω, θ = 0)]/σ0 increases abruptly
by two times corresponding to the different �’s in the left and
right valleys. Furthermore, at T = TC2, Re[σ (ω, θ = 0)]/σ0

with the SOI has a finite value because � in the right valley
is closed. Figure 10(a) shows the T -dependence of the dc
conductivity σ (θ ) along the b-axis (θ = 0) and a-axis (θ =
π/2) directions. σ (θ ) decreases exponentially in T < TC1,
but a clear discontinuous jump does not appear at T = TC1

because σ (θ ) is influenced by the energy width of −df /dω,
as indicated in Eq. (12). The T -dependence of σ (θ )/σ0 at
θ = π/2, �SOI = 0 for several values of the strength of im-
purity potential V0 [see Eq. (14)] is plotted in the inset of
Fig. 10(a). The absolute value of σ (θ = π/2)/σ0 increases
as V0 is decreased from V0 = 1 to V0 = 0.01(= 1e − 2), but
no discontinuous change appears at T = TC1 for any V0 value
when the conductivity is calculated based on Eqs. (12)–(15).

Figure 10(b) shows the real part of the optical conduc-
tivity Re[σ (ω = 24 GHz, θ )] in the absence of the SOI.
As T is decreased, in contrast to the dc conductivity,
Re[σ (ω = 24 GHz, θ )] increases gradually toward T = TC1

and decreases suddenly in T < TC1. The optical conductivity
calculated by Eqs. (7)–(9) is considered as a direct transition
in the interband at the same wave number and frequency
ω. Therefore, when � is finite in T < TC1, the possible di-
rect transition at the energy ω = 24 GHz � 1 eV disappears
and Re[σ (ω = 24 GHz, θ )] decreases sharply. Finally, the
T -dependence of Re[σ (ω, θ )] in the presence of the SOI for
several frequencies is plotted in Fig. 10(c). Re[σ (ω, θ )] with
the SOI has a peak at T = TC2, where the gap of the right
valley is closed.

IV. SUMMARY AND DISCUSSION

In this study, first a Hubbard model was constructed as an
effective model in the two-dimensional conduction plane of
α-(BETS)2I3 based on synchrotron x-ray diffraction data at
30 K under ambient pressure. We investigated the effects of
the on-site Coulomb interaction U and SOI at a finite tem-
perature T within the Hartree and T -matrix approximations
to clarify the insulating behavior observed in α-(BETS)2I3 in
the low T region.

We found the phase transition between the weak TI
phase and the SMD phase. In the SMD phase, time-reversal
symmetry is broken but spatial inversion and translational
symmetries are conserved. The SMD phase is not a conven-
tional spin-ordered state, but it exhibits physical properties
that reflect the wave functions of Dirac electrons. It is ex-
pected that the spin-valley Hall effect occurs because the sign
of the Berry curvature is reversed depending on the freedoms
of the spin and valley. The SMD has an energy gap at the Dirac
points, whereas the energy band in the bulk does not split
in the spin degrees of freedom. The energy gaps of different

FIG. 10. T -dependence of (a) the dc conductivity σ (θ )/σ0,
(b) real part of the optical conductivity Re[σ (ω = 24 GHz, θ )]/σ0 at
�SOI = 0, and (c) real part of the optical conductivity Re[σ (ω, θ =
0)]/σ0 at �SOI = 0.0027 in units of the universal conductivity σ0 =
4e2/πh for fixed ω = 24, 960, 2400 GHz. The inset of (a) shows the
T -dependence of σ (θ )/σ0 at θ = π/2, �SOI = 0 for several values
of the strength of impurity potential V0.

sizes open in the left and right valleys due to the competition
between the SMD and SOI, as shown in the honeycomb lattice
system in previous studies [51–58]. Next, we calculated the
T - and B-dependences of the dc resistivity. When considering
the SOI alone and the system’s edges, the helical edge state
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appears in the energy gap, and the dc resistivity saturates to-
ward low T . The negative magnetoresistance does not appear
in this case. On the other hand, in the SMD phase the dc resis-
tivity increases divergently as T is decreased, and there is no
noticeable change near the SMD phase transition temperature
TC1. The dc resistivity exhibits negative magnetoresistance
due to the Zeeman splitting of the energy band. Finally, it
was shown that the T -dependence of the microwave (about
10−4 eV) conductivity shows clear changes at the vicinity of
T = TC1.

In recent magnetoresistivity measurements, a positive
magnetoresistance and a negative magnetoresistance were
observed at T > 50 K under in-plane and perpendicular
magnetic fields, respectively. This is a characteristic of the
two-dimensional Dirac electron system [59]. On the other
hand, negative magnetoresistance appeared at T < 50 K un-
der both in-plane and perpendicular magnetic fields [59].
Furthermore, it was also pointed out that at T < 50 K, the
Seebeck coefficient exhibits a nonmonotonic T -dependence
[59]. Those experimental results indicate that the electronic
states change around 50 K. The TI-SMD transition shown
in the present paper is consistent with the electric transport
properties and the structure analysis observed in α-(BETS)2I3

[25,27,59]. The existence of the TI-SMD transition can be
directly confirmed by microwave conductivity.

In the present study, the control parameter of SOI λSOI

and spin Sz are treated as constants for simplicity. When we
only discuss the qualitative behavior, the results shown in
the present study (e.g., the difference of the size in energy
gaps between two Dirac cones in TC1 > T > TC2, and the TI
phase in T > TC1) can be explained well in the range of this
approximation and are robust for any other treatment of SOI
because these behaviors originate from the effects of on-site
U [51–58]. Time-reversal symmetry (TRS) is conserved in
the TI phase, but antiferromagnetism induced by U breaks
the TRS [55] and causes the different size of the energy gap
between the left and right cones. Therefore, the main result in
this study is due to the effect of U , regardless of the detailed
handling about SOI, so the approximation used in this study
is sufficient to show the main results in our study. However,
more precisely, it is necessary to treat λSOI and spin Sz as
vector quantities in consideration of the anisotropy of SOI
[31] in order to have a quantitative discussion.

When spin order such as the SMD phase appears, a clear
change is expected to appear in the spin susceptibility. In
the NMR experiment for α-(BETS)2I3 [26], no signs of a
magnetic transition have been observed near the insulating
phase. However, clear changes in the physical quantities in
NMR (Knight shift and 1/T1T ) originating from the SMD
phase transition may be canceled out due to the nature of
the phase of the wave function in the Dirac electron systems.
This behavior can also be shown in a Dirac electron system
such as an anisotropic square lattice model [8]. A detailed
analysis of the SMD phase and the physical quantities of
NMR in α-(BETS)2I3 is currently in progress and will be
reported in another paper. The nonmonotonic T -dependence
on the Seebeck coefficient of α-(BETS)2I3 will also be in-
vestigated in the future. When the time-reversal symmetry is
broken by the SMD phase, the helical edge state due to the
SOI is not protected, and the energy gap can open [60–62].

Transport properties in the presence of impurities on the edges
are planned to be investigated in the SMD phase with the SOI.

The SMD phase is expected to be affected by the long-
range Coulomb interaction and the spin fluctuation enhanced
near the SMD phase transition. To address these effects, cal-
culations using the extended Hubbard model and the vertex
correction [63,64] should be performed in future work.
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APPENDIX: ELECTRICAL RESISTIVITY IF ONLY
SPIN-ORBIT INTERACTION IS CONSIDERED

In this Appendix, we show the results of the analysis of
the dc resistivity of α-(BETS)2I3 when only the SOI is con-
sidered. To investigate the effects of the edge state on the dc
resistivity, we impose the cylindrical boundary condition on
the system, as illustrated in Fig. 11(a), and we consider the
term of SOI introduced in the main text and Ref. [45]. The
Fourier inverse transform is performed in the a-axial direction
and is represented by the wave number ka, whereas the real
space structure in the b-axial direction is labeled by the coordi-
nates of the unit cell ib. The system size along the b-axis is set

to Nb = 60, as illustrated in Fig. 11(a), and thus the Hamilto-
nian becomes a 4Nb × 4Nb Hermitian matrix about each spin,
which includes the information of the sublattice α (= A, A′,
B, and C) and the unit cell coordinate ib (= 1, . . . , Nb = 60).

As a result of the numerical diagonalization, we ob-
tain 240 energy eigenvalues Eν,σ (ka) [E1,σ (ka) < E2,σ (ka) <

· · · < E240,σ (ka)] and the unitary matrix dib,α,ν,σ (ka). Here, we
introduce the spectral weight in each unit cell defined as

ρS (ib, ka, ω) =
∑
ν,σ

|dıb,α,ν,σ (ka)|2

×δ(h̄ω − Eν,σ (ka)). (A1)

Figures 11(b) and 11(c) describe the ρS (ib, ka, ω) for ib =
30 (bulk) and ib = 1 (left edge) for the parameters of
(T,�U ,�SOI) = (0, 0, 0.0056) (when considering the SOI
alone). Although ρS (30, ka, ω) in Fig. 11(b) is spread weakly
over the whole energy range, ρS (1, ka, ω) is quite large near
the Fermi energy, as shown in Fig. 11(c), due to the existence
of a helical edge state protected by the time-reversal symme-
try in the system. Therefore, the conduction channel of this
edge state becomes dominant at T = 0. Figure 12 shows the
T -dependence of the dc resistivity for (�U ,�SOI) = (0, 0),
(0, 0.0027), (0, 0.0056), and (0, 0.011). When the SOI is
considered in the bulk, as calculated in the main text, the
energy gap opens at the Dirac point, and the system becomes
an insulator. However, when considering the SOI in a system
with edges, the helical edge state appears in the vicinity of
the Fermi energy due to the band crossing between the up
and down spin bands, so that it does not actually become
an insulator. Note that the slight increase in the resistivity
at �SOI = 0 near the lowest T results from the energy gap
associated with the finite-size effect. The edge state caused by
SOI is topologically protected. On the other hand, an edge
state that is not protected and depends on the edge setting
also appears in some cases. For instance, in the α-type or-
ganic conductors, it is suggested that when the edge setting is
symmetric, the edge state appears in the gapless band [21,36].
Therefore, when such an edge state exists and the spin order
by U occurs, it is expected that the edge state associated with
the AF at the edge appears in the gapless band, and edge
conduction occurs.
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