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Determining non-Abelian topological order from infinite projected entangled pair states
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We generalize the method introduced in Phys. Rev. B 101, 041108 (2020) of extracting information about
topological order from the ground state of a strongly correlated two-dimensional system represented by an
infinite projected entangled pair state (iPEPS) to non-Abelian topological order. When wrapped on a torus
the unique iPEPS becomes a superposition of degenerate and locally indistinguishable ground states. We find
numerical symmetries of the iPEPS, represented by infinite matrix product operators (MPO) and their fusion
rules. The rules tell us how to combine the symmetries into projectors onto states with well defined anyon
flux. A linear structure of the MPO projectors allows for efficient determination for each state its second Renyi
topological entanglement entropy on an infinitely long cylinder directly in the limit of infinite cylinder’s width.
The same projectors are used to compute topological S and T matrices encoding mutual and self-statistics of
emergent anyons. The algorithm is illustrated by examples of Fibonacci and Ising non-Abelian string net models.
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I. INTRODUCTION

Topologically ordered phases [1] support anyonic quasi-
particles. They open the possibility of realizing fault-tolerant
quantum computation [2] based on braiding of non-Abelian
anyons. Apart from a number of exactly solvable mod-
els [2–4], verifying whether a given microscopic Hamiltonian
realizes a topologically ordered phase has traditionally been
regarded as an extremely hard task. Recently, observation
of quantized Hall effect in Kitaev-like ruthenium chloride
α-RuCl3 in magnetic field [5] granted the problem with urgent
experimental relevance.

A leading numerical method is to use density matrix renor-
malization group (DMRG) [6,7] on a long cylinder [8–23].
In the limit of infinitely long cylinders, DMRG naturally
produces ground states with well-defined anyonic flux, from
which one can obtain full characterization of a topological
order, via so-called topological S and T matrices [24]. Since
the proposal of Ref. [24], this approach has become a common
practice [25–42].

Unfortunately, the cost of a DMRG simulation grows ex-
ponentially with the circumference of cylinder, limiting this
approach to thin cylinders (up to a width of �14 sites) and
short correlation lengths (up to 1–2 sites). Instead, infinite
projected entangled pair states (iPEPS) in principle allow for
much longer correlation lengths [43–45]. A unique ground
state on an infinite lattice can be represented by an iPEPS
that is either a variational ansatz [46] or a result of numerical
optimization [47,48]. When wrapped on a cylinder the iPEPS
becomes a superposition of degenerate ground states with
definite anyonic fluxes. Here we generalize the approach of
Ref. [48] to non-Abelian topological order and show how to
produce a PEPS-like tensor network for each ground state
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with well-defined flux. Such tensor networks are suitable for
extracting topological S and T matrices by computing over-
laps between ground states. Furthermore, we show that they
allow for computation of topological second Renyi entropy
directly in the limit of infinite cylinder’s width. The approach
of Ref. [48] does not assume clean realization of certain
symmetries on the bond indices, in contrast to Refs. [49–52].
This has been demonstrated in Ref. [48] by examples of toric
code and double semions perturbed away from a fixed point
towards a ferromagnetic phase as well as for the numerical
iPEPS representing the ground state of the Kitaev model in
the gapped phase. The last example shows that the method
does not require restoring the symmetries by suitable gauge
transformations of a numerical iPEPS, a feat that was accom-
plished in Ref. [53] for the toric code with a perturbation.
Finally, it also has much lower cost than methods based on
the tensor renormalization group [54].

The ferromagnetic Kitaev model in a weak (1,1,1)
magnetic field supports non-Abelian chiral topological or-
der [3,23] and Ref. [5] is believed to provide the first
experimental realization of this universality class. However,
as the magnetic field is a tiny perturbation of a critical state,
the correlation length should be long [46]. This drives the
problem beyond accurate DMRG simulation on a thin cylinder
and, therefore, the non-Abelian phase observed in the experi-
ment [5] may require iPEPS for its accurate description.

In this work we consider mainly string-net models. The key
elements of the method introduced in Ref. [48] are shown in
Fig. 1. Virtual indices of iPEPS on a torus or cylinder can
be inserted with horizontal/vertical matrix product operator
(MPO) symmetries. Their action on iPEPS is the same as flux
operators(Wilson loops) winding around the torus in the same
horizontal/vertical direction. However, the MPO symmetries
are much easier to find than the nonlocal operators that—in
interacting systems—become complicated operator ribbons
rather than simple strings. Just as projectors on definite anyon
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FIG. 1. General picture. From the unique ground state on an infi-
nite lattice represented by an iPEPS |�〉, we construct various states
inserted with MPO symmetries. Their linear combinations, whose
coefficients are determined by fusion rules of the MPO symmetries
Zh,v (corresponding to anyonic fusion rules), become a basis of states
with well defined anyonic flux. Here physical indices are not drawn
for simplicity.

fluxes could be in principle constructed as linear combinations
of flux operators, virtual projectors can be made as combina-
tions of the MPO symmetries.

The paper is organized in Secs. II–VIII where we gradually
introduce subsequent elements of the algorithm. Most sections
open with a general part introducing a new concept. Then a
series of subsections follows illustrating the general concept
with a series of examples: the Abelian toric code (to make
contact with Ref. [48]), Fibonacci string net, and Ising string
net. In the end the algorithm is summarized in Sec. IX. Addi-
tionally, in Appendix E we apply some of the same tools to a
variational ansatz proposed for the Kitaev model in magnetic
field [46]. A detailed plan is as follows.

In Sec. II we define fixed points of the iPEPS transfer ma-
trix in the form of MPS and introduce MPO symmetries that
map between different fixed points. We also identify fusion
rules of the MPO symmetries that are isomorfic with anyonic
fusion rules. In Sec. III we consider an iPEPS wrapped on an
infinite cylinder—that we visualize as horizontal without loss
of generality—and use the fusion rules to construct vertical
projectors on states with definite anyon flux along the horizon-
tal cylinder. In Sec. IV we consider again an iPEPS wrapped
on an infinite cylinder but this time the iPEPS is inserted with
a horizontal MPO symmetry that alters boundary conditions
in the vertical direction. We construct its vertical MPO sym-
metries that we call impurity MPO (IMPO) symmetries. We
also identify their fusion rules. In Sec. V the fusion rules are
used to construct vertical projectors as linear combinations of
the IMPO symmetries. The impurity projectors select states
with definite horizontal anyon flux in the iPEPS inserted with
the horizontal MPO symmetry. In Sec. VI we show how the
structure of vertical projectors enables efficient evaluation of

(c)

(b)

(a)

FIG. 2. Transfer matrix. In (a), graphical representation of a dou-
ble tensor A. In (b), leading left eigenvector (vL

i | of vertical transfer
matrix �v takes an MPO form vL

i . The uniform vL
i is made of tensors

ML
i with bond dimension χ that can be obtained with the VUMPS

algorithm [55,56]. In (c), up eigenvector vU
i of horizontal TM �h.

the topological second Renyi entanglement entropy directly
in the limit of infinite cylinder’s width. In Sec. VII the same
is done with impurity projectors. Finally, in Sec. VIII we
show how to obtain the topological S and T matrices from
overlaps between states with definite anyon flux. In the case
of string net models they provide full characterization of the
topological order. The paper is closed with a brief summary in
Sec. IX.

II. GENERATORS OF SYMMETRIES

Uniform iPEPS on a honeycomb lattice can be character-
ized by a tensor A with elements Ai

abc. Here, i is a physical
index and a, b, c are bond indices. Let A denote a double ten-
sor A = ∑

i Ai ⊗ (Ai )∗ with double bond indices α = (a, a′),
etc., see Fig. 2(a) and Appendix B. iPEPS transfer matrix
(TM) � is defined by a line of double tensors A contracted
via their bond indices along the line as shown in Figs. 2(b)
and 2(c). These figures show vertical TM �v and horizontal
TM �h, respectively. Their leading eigenvectors are TM fixed
points. In the thermodynamic limit only the leading eigenvec-
tors survive in TM’s spectral decomposition:

�v ≈ ω

n∑
i=1

∣∣vR
i

)(
vL

i

∣∣, �h ≈ ω

n∑
i=1

∣∣vU
i

)(
vD

i

∣∣. (1)

The leading eigenvalue ω is the same for both vertical and
horizontal TM. The leading eigenvectors are biorthonormal:

δi j = (
vL

i

∣∣vR
j

) = Tr
(
vL

i

)T
vR

j , (2)

δi j = (
vU

i

∣∣vD
j

) = Tr
(
vU

i

)T
vD

j . (3)

Here we use both the MPS |vi ) and MPO vi forms. MPS |vi )
is MPO vi between bra and ket indices of the double iPEPS
TM. The ansatz for a fixed point boundary vX

i is a pure MPO
with spectral radius 1 [57] made out of tensors MX

i .
Different fixed points are connected by symmetries whose

existence is a distinctive feature of topologically ordered
states encoded in iPEPS. In contrast, in the trivial ferro-
magnetic phase the two boundary fixed points, v↑ and v↓,
corresponding to two different magnetizations have orthog-
onal support spaces and, therefore, the operator mapping
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between them does not exist. The symmetries act on virtual
indices of the tensor network. They are called MPO symme-
tries and, apart from a few exactly solvable models for which
they can be found analytically [49], they have to be found
numerically as described in Ref. [48]. The MPO symmetries
Za are operators which form certain algebra under their multi-
plication:

ZaZb =
∑

c

Nc
ab Zc, (4)

where the possible values of Nc
ab are 0,1. Each MPO symmetry

Za (including the trivial identity Z1 ≡ 1) corresponds to a
certain anyon type a in a sense that their algebra is the same
as the fusion rules of the anyons, see Appendix A. Once all
boundary fixed points vi are found numerically, the MPO
symmetries zi j are obtained as MPO’s mapping between the
boundaries:

vi · zi j = v j . (5)

The same set of symmetries exists for L/R and U/D boundary
fixed points. We completed these numerical procedures in the
following models.

A. Toric code

We begin with this basic example to make contact with
Ref. [48] where the Abelian version of the present method was
applied to this model and its realistic implementation with the
Kitaev model [3]. Each TM has two boundary fixed points. To
be more specific, for vertical transfer matrix �v in addition
to Zv

1 = 1 we find numerically one nontrivial MPO symmetry
zv

12 = zv
21 ≡ Zv

2 that satisfies

vL
1 · Zv

2 = vL
2 , vL

2 · Zv
2 = vL

1 . (6)

These equations imply Z2 algebra:

Zv
2 · Zv

2 = 1. (7)

It has to be strongly emphasized that in general the numerical
solution Zv

2 of equation (6) has zero modes that make the
algebra valid only in the sense that vL

i · Z2 · Z2 = vL
i for any

i. The same reservation applies to all fusion rules (4) to be
identified numerically in the rest of this paper. This is also why
all (numerically obtained) MPO symmetries throughout the
paper are used only in iPEPS embedding: The zero modes do
not matter when inserted between columns/rows of an iPEPS.
Keeping this in mind, for all fixed point tensors considered in
this paper the algebra (4) is satisfied with close to machine
precision.

B. Fibonacci string net

Here we employed the iPEPS tensors for a fixed point
Fibonacci string net model presented in Appendix B. For each
TM we found numerically two boundary fixed points and one
nontrivial MPO symmetry Z2 satisfying, e.g.,

vL
1 · Zv

2 = vL
2 . (8)

The same MPO was found to satisfy also

vL
2 · Zv

2 = vL
1 + vL

2 . (9)

These two equations imply the Fibonacci fusion rule

Zv
2 · Zv

2 = 1v + Zv
2 . (10)

Again, due to zero modes, the rule holds only when applied to
iPEPS boundaries. Similar MPO symmetries were also found
for the horizontal boundary fixed points.

C. Ising string net

Here we employed the iPEPS tensors for a fixed point Ising
string net model presented in Appendix B. This time each
TM has three boundary fixed points. We found two nontrivial
MPO symmetries, labeled as Zσ and Zψ , as numerical solu-
tions to equations, e.g.,

vL
1 · Zv

σ = vL
2 , vL

1 · Zv
ψ = vL

3 . (11)

Furthermore, we found that the solutions satisfy

vL
2 · Zv

σ = vL
1 + vL

3 , vL
3 · Zv

ψ = vL
1 ,

vL
2 · Zv

ψ = vL
2 , vL

3 · Zv
σ = vL

2 . (12)

These six equations imply nontrivial fusion rules:

Zv
σ · Zv

σ = 1v + Zv
ψ,

Zv
σ · Zv

ψ = Zv
σ = Zv

ψ · Zv
σ , (13)

Zv
ψ · Zv

ψ = 1v,

which justify the labeling. For our numerical Zv
ψ and Zv

σ the
rules hold only when applied to vL

i . Similar MPO symmetries
were also found for the horizontal boundary fixed points.

III. VERTICAL PROJECTORS

The MPO symmetries alone are enough to construct some
of the projectors on states with definite anyon fluxes. Let us
consider vertical MPO symmetries Zv

a for definiteness. Their
linear combinations

P =
∑

a

caZv
a , (14)

which satisfy P · P = P, make vertical projectors. When these
projectors are inserted into iPEPS wrapped on an infinite
horizontal cylinder, they yield states with definite anyon fluxes
along that cylinder. The remaining projectors that can be ap-
plied when the iPEPS is inserted with a line of Zh are the
subject of the following section.

A. Toric code

The Z2 algebra (7) allows for two projectors,

P± = 1
2

(
1 ± Zv

2

)
, (15)

that satisfy P± · P± = P± and P+ · P− = 0 = P− · P+. Later on
they will be identified as P+ ≡ Pvac and P− ≡ Pe, i.e., projec-
tors on the vacuum and the electric flux, respectively.

B. Fibonacci string net

The fusion rules (10) determine two projectors:

P± = 1√
5

(
φ±11 ∓ Zv

2

)
. (16)
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(a) (b)

FIG. 3. Impurity transfer matrix. In (a), with Zh inserted into
both bra and ket layers of the iPEPS the transfer matrix �v becomes
impurity transfer matrix �̃v . Its leading left eigenvectors (xL| are
obtained from MPOs from vL by inserting additional tensors XL .
Here double lines are dropped to improve clarity. In (b), graphical
illustration of Eq. (22).

Here φ = (
√

5 + 1)/2. They will be identified as P+ ≡ Pvac

and P− ≡ Pτ τ̄ , i.e., projectors on the vacuum and the sector
with both Fibonacci anyons: τ and τ̄ .

C. Ising string net

The fusion rules (13) allow for six projectors:

P1,2 = 1

2

(
1v ± Zv

ψ

)
, (17)

P3,4 = 1

4

(
3 1v − Zv

ψ

) ± 1√
8

Zv
σ , (18)

P5,6 = 1

4

(
1v + Zv

ψ

) ± 1√
8

Zv
σ . (19)

Not all of them are the minimal projectors on definite anyon
flux. It is easy to check that P3 · P4 = P2 and, therefore, out
of the three it is enough to keep only P2. Furthermore, we
can see that P5 + P6 = P1 hence we can skip P1. After this
selection we are left with three minimal projectors P2,5,6 that
satisfy Pa · Pb = Paδab. They will be identified as P5 ≡ Pvac,
P6 ≡ Pψψ̄ , and P2 ≡ Pσ σ̄ .

IV. IMPURITY MPO SYMMETRIES

In order to construct the remaining projectors that are to
be applied to an iPEPS inserted with a nontrivial horizontal
MPO symmetry Zh, we need to introduce an impurity transfer
matrix (ITM), see Fig. 3(a). In general ITM has a number
of leading left and right eigenvectors, respectively (xL

i | and
|xR

j ), that are biorthonormal: (xL
i |xR

j ) = δi j . The eigenvectors
are constructed by inserting the eigenvectors of the vertical
TM, respectively vL and vR, with additional tensors XL

i and
XR

j , see Fig. 3(a). The same figure shows equations that need
to be satisfied by the additional tensors. They are efficiently
obtained from a generalized eigenvalue problem:(

xL
i

∣∣�̃v

∣∣xR
j

) = λ
(
xL

i

∣∣xR
j

)
. (20)

Here λ = 1 is the maximal generalized eigenvalue. The prob-
lem is to be understood as(

XL
i

)T · M · XR
j = λ

(
XL

i

)T · N · XR
j , (21)

where XL
i and XR

j are vectorized and matrices M and N are
tensor environments of XL

i and XR
j in (xL

i |�̃v|xR
j ) and (xL

i |xR
j ),

respectively.

Furthermore, as shown in Fig. 3(b), the left eigenvector
(xL

i | can be acted on by any vertical MPO symmetry Zv ,
including the trivial identity Zv

1 = 1v . In order to make the
action possible, Zv has to be inserted with additional tensor
F that acts on Zh. With the appropriate choice of Fi j their
combination gives rise to impurity MPO-symmetry z̃v

i j such
that

xL
i z̃i j = xL

j . (22)

A necessary condition for symmetry z̃v
i j to exist is that vL in

xL
i , here denoted by vL(i), and vL in xL

j , here denoted by vL( j),
are related by vL(i) · Zv = vL( j).

A straightforward but essential observation is that, in anal-
ogy to MPO symmetries, the IMPO symmetries also satisfy
their own fusion rules:

Z̃v
a · Z̃v

b =
∑

c

Ñc
abZ̃v

c . (23)

Here we keep only the minimal set of independent IMPO
symmetries denoted by a capital Z̃ and labeled with a single
index a, b, c. In general the coefficients Ñc

ab do not need to be
integers as they depend on normalization of the eigenvectors
(xL

i | and |xR
j ).

V. IMPURITY PROJECTORS

In analogy to the vertical MPO symmetries and vertical
projectors, as a product of two IMPO symmetries is a linear
combination of IMPO symmetries, see Eq. (23), we can find
projectors as linear combinations of IMPO symmetries,

P̃ =
∑

a

c̃aZ̃v
a . (24)

The condition P̃ · P̃ = P̃ is equivalent to a set of quadratic
equations for coefficients c̃a. Numerically it seems more ef-
ficient to find the coefficients by repeated Lanczos iterations:

P̃′ ∝ P̃ · P̃. (25)

In each iteration the IMPO fusion rules (23) are used to
express the product P̃ · P̃ as a new linear combination P̃′ =∑

a c̃′
aZ̃v

a and then new coefficients c̃′
a are normalized so

that the maximal magnitude of the eigenvalues of P̃′ is 1.
Therefore, each iteration is a map {ca} → {c′

a} which is re-
peated until the coefficients converge. These computations
are performed in the biorthonormal eigenbasis of impurity
eigenvectors, (xL

a | and |xR
a ), where all involved MPO’s become

small matrices like, e.g., (xL
a |Z̃v

c |xR
b ) ≡ [Zv

c ]ab. Repeating the
Lanczos scheme with random initial coefficients we obtain all
impurity projectors.

A. Toric code

There is one ITM with Zh = Zh
2 . It has two eigenvectors

(xL
a |, one for each TM eigenvector vL

a . In addition to an iden-
tity, 1̃v , there is one nontrivial IMPO symmetry z̃v

12 = z̃v
21 ≡

Z̃v
2 . A nontrivial fusion Z2 algebra, Z̃v · Z̃v = 1v , implies two

projectors:

P̃± = 1
2

(̃
1v ± Z̃v

2

)
. (26)
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They will be identified as magnetic and fermionic projectors,
P̃+ ≡ P̃m and P̃− ≡ P̃ε , respectively.

B. Fibonacci string net

There is one ITM with Zh = Zh
2 . It has one eigenvector

(xL
1 | embedded in vL

1 and two eigenvectors (xL
2,3| embedded in

vL
2 . We choose the two to be Hermitian and orthonormal but

this still leaves (gauge) freedom of their rotation. In addition
to the trivial identity, 1̃v , there are two ITM symmetries: z̃v

12
and z̃v

13. Their fusion rules do depend on the gauge but inde-
pendently of the gauge we find numerically three projectors
P̃1,2,3. Only two of them project on states that are orthogonal
to the states obtained with vertical projectors, as can be veri-
fied by calculating overlaps between their respective projected
iPEPS on infinite torus. The new projectors will be identified
as P̃1 ≡ P̃τ and P̃2 ≡ P̃τ̄ .

Interestingly, the third one, P̃3, projects on the same hor-
izontal anyon flux as vertical projector P− and both will be
identified as P̃τ τ̄ and Pτ τ̄ , respectively. This way we have two
equivalent ways to obtain τ τ̄ flux: one with and one without
Zh

2 MPO symmetry. In other words, with or without inserted
Zh

2 symmetry the iPEPS wrapped on an infinite cylinder has a
nonzero overlap with the ground state with τ τ̄ flux.

C. Ising string net

There are two ITM with Zh
σ and Zh

ψ . For each of them
independently we construct impurity projectors. In case of Zh

σ

we find four projectors to be identified later as P̃σ , P̃σ̄ , P̃σψ̄ ,
and P̃ψσ̄ . In the case of Zh

ψ we find three projectors to be
identified as P̃ψ , P̃ψ̄ , and P̃σ σ̄ . The last one provides a new way
to obtain σ σ̄ flux in addition to vertical projector P2 ≡ Pσ σ̄ .
This is similar redundancy as in the Fibonacci model.

VI. TOPOLOGICAL ENTROPY: VERTICAL PROJECTORS

The topological entanglement entropy (TEE) [58] is not
full characterization of topological order but it may provide
quick and numerically stable diagnostic for an iPEPS obtained
by numerical minimization. Studies of von Neumann TEE of
PEPS wave functions have long tradition [59] but they require
finding full entanglement spectrum of an infinite half-cylinder
and extrapolation to the limit of its infinite width, a task that
may be hard to accomplish for a long correlation length. In
contrast, the projector formalism is naturally compatible with
the second Renyi entropy allowing for its efficient evaluation
directly in the thermodynamic limit. What is more, in the
realm of string net models the Renyi and von Neumann TEE
were shown to be the same [60].

Here we consider a vertical cut in an iPEPS wrapped on an
infinite horizontal cylinder of width Lv . Its right/left boundary
fixed point on the left/right half-cylinder is σL/σR. A reduced
density matrix for a half cylinder is isomorfic to [59]

ρ ∝
√

σ T
L σR

√
σ T

L (27)

and its second Renyi entropy is

S2 = − log Tr ρ2 = − log Tr σ T
L σRσ T

L σR. (28)

(a) (b)

FIG. 4. Topological entropy. In (a), tensor network representing
(vL

1 )T
vR

1 (vL
1 )T

vR
b on a vertical cut in an infinite horizontal cylinder of

vertical width Lv . The network is Lvth power of a transfer matrix.
In (b), tensor network representing (xL

1 )T xR
1 (xL

1 )T xR
b . The network

is Lvth power of the same transfer matrix inserted with a layer of
impurities XL,R

b .

We want the entropy in a state with a definite anyon flux a
along the cylinder.

Towards this end, we begin with σL,R ∝ vL,R
1 that is a com-

bination of all anyon fluxes. After inserting projector Pa into
the vertical cut we obtain

ρa = Na

√(
vL

1

)T (
vR

1 · PT
a

)√(
vL

1

)T
. (29)

Here the projector was applied to σR ∝ vR
1 without loss of

generality and normalization Na is such that Trρa = 1. The
entropy becomes

S2(a) = − log Tr ρ2
a

= − logN 2
a Tr

(
vL

1

)T (
vR

1 · PT
a

)(
vL

1

)T (
vR

1 · PT
a

)
= − logN 2

a Tr
(
vL

1

)T
vR

1

(
vL

1

)T
P∗

a vR
1 · PT

a

= − logN 2
a Tr

(
vL

1

)T
vR

1

(
vL

1

)T
vR

1 PT
a PT

a

= − logN 2
a Tr

(
vL

1

)T
vR

1

(
vL

1

)T (
vR

1 · PT
a

)
. (30)

Here we used PT
a (vL

1 )T = (vL
1 )T P∗

a and P∗
a vR

1 = vR
1 PT

a that fol-
low from the fact that v’s are edges of a double-layer iPEPS
with bra and ket layers. In this way we are left with only one
projector that yields a linear combination,

vR
1 · PT

a =
∑

b

sa
bv

R
b , (31)

with coefficients sa
b that follow from the properties of the MPO

symmetries whose linear combination is Pa.
The normalization Tr ρa = 1 and the biorthonormality,

Tr(vL
1 )T

vR
b = δ1b, fix Na = 1/sa

1. The entropy becomes

S2(a) = − log
∑

b

sa
b(

sa
1

)2 Tr
(
vL

1

)T
vR

1

(
vL

1

)T
vR

b . (32)

The trace is a tensor network in Fig. 4(a). It is equal to a trace
of Lvth power of a transfer matrix. For large enough Lv the
network becomes

Tr
(
vL

1

)T
vR

1

(
vL

1

)T
vR

b = Gb �
Lv

b . (33)

Here �b is the leading eigenvalue of the transfer matrix and Gb

its degeneracy. For large enough Lv the entropy is dominated
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by terms with the maximal leading eigenvalue,

� = Maxb �b, (34)

and becomes

S2(a) = − log �Lv

∑̃
b

Gbsa
b(

sa
1

)2 ≡ αLv − γa. (35)

Here the sum is restricted to indices b with �b = �. The area
law has a coefficient

α = − log � (36)

that does not depend on anyon flux a and the TEE is

γa = log
∑̃

b

Gbsa
b(

sa
1

)2 . (37)

We evaluate this expression in several examples.

A. Toric code

The projector yields vR
1 · PT

± = (vR
1 ± vR

2 )/2, hence
s±

1 = 1/2 and s±
2 = ±1/2. Furthermore, we obtain

Tr(vL
1 )T

vR
1 (vL

1 )T
vR

b = �Lv when b = 1 and zero otherwise.
There is no degeneracy, G1 = 1. Therefore,

γ± = log
∑̃

b

4s±
b = log 4s±

1 = log 2. (38)

This number is consistent with the anticipated identification
P+ ≡ Pvac and P− ≡ Pe.

B. Fibonacci string net

The projector yields vR
1 · PT

± = (φ±1vR
1 ∓ vR

2 )/
√

5, hence
s±

1 = φ±1/
√

5 and s±
2 = ∓1/

√
5. We obtain with numerical

precision:

γ+ = logD, γ− = log
D

dτ dτ̄

, (39)

where D = 2 + φ is the total quantum dimension and dτ =
dτ̄ = φ. These numbers are consistent with the identification
P+ ≡ Pvac and P− ≡ Pτ τ̄ .

C. Ising string net

Following similar lines for the double Fibonacci string net
we obtain

γ5 = logD, γ6 = log
D

dψdψ̄

, γ2 = log
D

dσ dσ̄

(40)

with numerical precision. Here the total quantum dimension
D = 4, dσ = dσ̄ = √

2, and dψ = dψ̄ = 1. They are consis-
tent with the identifications: P5 ≡ Pvac, P6 ≡ Pψψ̄ , and P2 ≡
Pσ σ̄ .

VII. TOPOLOGICAL ENTROPY: IMPURITY PROJECTORS

For impurity projectors that act on an iPEPS that is in-
serted with Zh calculation of entropy goes along similar lines
but with modifications accounting for Zh. Accordingly, we
begin with σ L,R = xL,R

1 . Here xL
i and xR

j are MPO forms of
impurity eigenstates (xL

i | and |xR
j ), respectively. As usual, their

left/right indices correspond to the bra/ket layer. The action
of P̃a yields

xR
1 · P̃T

a =
∑

b

s̃a
bxR

b . (41)

Here coefficients s̃a
b are real because xR

b are Hermitian. Taking
into account normalization that follows from their biorthonor-
mality, δi1i2 = (xL

i1 |xR
i2 ) = Tr (xL

i1 )T xR
i2 , the entropy in sector a

becomes

S2(a) = − log
∑

b

s̃a
b(

s̃a
1

)2 Tr
(
xL

1

)T
xR

1

(
xL

1

)T
xR

b . (42)

The trace is a trace of the tensor network in Fig. 4(b). It is
a trace of Lvth power of a transfer matrix times a layer of
impurities XL,R

b . The transfer matrix is the same as in Fig. 4(a).
For large enough cylinder width Lv the sum is dominated by
indices b such that �b = �, where � is the same maximal
leading eigenvalue of the transfer matrices:

S2(a) = αLv − γ̃a. (43)

Here α = − log � is the same as for vertical projectors and
independent of anyon flux a. The topological entropy is

γ̃a = log
∑̃

b

s̃a
b(

s̃a
1

)2

Gb∑
m=1

X a
b,m. (44)

Here

X a
b,m = (

Ub,m

∣∣Tr
(
XL

1

)T
XR

1

(
XL

1

)T
XR

1

∣∣D{bi},m
)

(45)

is a form factor where (U1,m| and |D1,m) are the up and
down leading eigenvectors of the transfer matrix in Fig. 4(b),
numbered by m = 1...Gb where Gb is the degeneracy of the
leading eigenvalue, and Tr(XL

1 )T
XR

1 (XL
1 )T

XR
b is the MPO

equal to the horizontal layer of impurities XL,R
b in the same

figure. The numerical procedure was applied in the following
examples.

A. Toric code

The impurity projectors P̃± together with IMPO fusion
rules (23) determine the coefficients s̃±1 = 1/2 and s̃±2 =
±1/2. As for vertical projectors, the truncated sum runs
over b = 1 only with degeneracy G1 = 1. The topological
entropies are

γ̃± = log 2X a
1,1 = log 2 (46)

within numerical precision. This number is obtained after
numerical evaluation of the form factors and is consistent with
the identification P̃+ = P̃m and P̃− = P̃ε .

B. Fibonacci string net

Numerical evaluation of coefficients s̃a
b and the form factors

yields

γ̃1 = log
D
dτ

, γ̃2 = log
D
dτ̄

, γ− = log
D

dτ dτ̄

(47)

with numerical precision. Here D = 2 + φ is the to-
tal quantum dimension and dτ = dτ̄ = φ. These numbers
are consistent with the identifications: P̃1 = P̃τ , P̃2 = P̃τ̄ ,
and P̃3 = P̃τ τ̄ .
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FIG. 5. Basic state. The object F k
bc, includes the lines of Zh

b and
Zv

c and a tensor at their intersection. When b = 1 (c = 1) then F
is just vertical MPO symmetry Zv

c (horizontal Zh
b ). When b > 1

then F k
bc is one of the IMPO symmetries. Inserted into an iPEPS

wrapped on an infinite torus it yields state |F k
bc〉. The same set of

states (for each b, c, k) can be found on each of the tori related by
modular st transformation, where (st)3 = I, which corresponds to
120◦ counterclockwise rotation on the honeycomb lattice with the
chosen tori defined by a pair of unit vectors (w1, w2).

C. Ising string net

Similar numerical evaluation as for Fibonacci model yields

γ̃σ = log
D
dσ

, γ̃σ̄ = log
D
dσ̄

, (48)

γ̃σ ψ̄ = log
D

dσ dψ̄

, γ̃ψσ̄ = log
D

dψdσ̄

, (49)

γ̃ψ = log
D
dψ

, γ̃ψ̄ = log
D
dψ̄

, (50)

γ̃σ σ̄ = log
D

dσ dσ̄

(51)

within numerical precision. Here the total quantum dimension
is D = 4 while dσ = dσ̄ = √

2 and dψ = dψ̄ = 1. The num-
bers are consistent with the anticipated identification of the
projectors.

VIII. TOPOLOGICAL S AND T MATRICES

For pedagogical reasons, up to this point we distinguished
between vertical projectors, with a trivial Zh

1 = 1h, and im-
purity projectors. For the present purpose of calculating
topological S and T matrices it may be more convenient to
treat them all on equal footing. We number MPO symme-
tries as Zh,v

a with a = 1, ..., n, where a = 1 labels the trivial
identities 1h,v . A basic building block for the projectors is
F k

bc, shown in Fig. 5, including the lines of Zh
b and Zv

c and a
tensor at their intersection. When b = 1 (c = 1) then F is just
vertical MPO symmetry Zv

c (horizontal Zh
b ). When b > 1 then

F k
bc is one of the IMPO symmetries. Therefore, in this unified

FIG. 6. The overlap in Eq. (55) between iPEPS’ on infinite tori
A and B calculated on torus B, using its vertical boundary MPS.
It involves a new class of impurity transfer matrices and their eigen-
vectors, where a nontrivial MPO symmetry is in only one layer of the
PEPS (either bra or ket) or there are two nontrivial MPO symmetries
in both layers but they are of a different type. Inserting an MPO
symmetry may in general change the boundaries, hence the change of
indices Mi → M j and the gray shaded regions denoting these sector
changes.

notation each (vertical or impurity) projector on anyon flux a
can be expressed as a linear combination

Pa =
∑

bc

∑
k

ca
kbcF

k
bc, (52)

where the range of k depends on bc. When inserted into iPEPS
wrapped on an infinite torus, the projector yields the ground
state with anyon flux a in the horizontal direction:

|�a〉 =
∑

ab

∑
k

ca
kab

∣∣F k
ab

〉
. (53)

Here the last ket is the iPEPS inserted with F k
αβ . Up to this

point there is nothing essentially new in this paragraph except
for fixing notation.

States |�a〉 are used to calculate topological S and T matri-
ces. Diagonal T matrix encodes self-statistics, while S matrix
stands for mutual statistics. Together they form a representa-
tion of a modular group SL(2,Z), by which they are related
to the modular transformations of a torus generated by s and
t transformations [61]. It follows that the matrix elements of
a combination of the topological S and T matrices are given
by the overlaps between |�a〉 transformed by a combination
of corresponding modular matrices s and t.

Here we work with states on a hexagonal lattice with
120◦ rotational symmetry and we start by defining torus A
in Fig. 5 with unit vectors w1, w2 and corresponding transfer
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matrices: vertical (w1, Lvw2) and horizontal (Lhw1,w2) with
Lh,v → ∞, see Fig. 2(b) for comparison. Next, we consider all
transformations of the unit cell by st matrix, which generates
120◦ counterclockwise rotation, see Fig. 5. This results in tori
B and C together with their corresponding transfer matrices
as shown in Fig. 5. This construction, however, is general and
can be applied to lattices with other symmetries as well.

Our method requires finding three complete sets of ground
states {∣∣�a

A
〉}

,
{∣∣�a

B
〉}

,
{∣∣�a

C
〉}

, (54)

with well-defined anyon fluxes corresponding to three differ-
ent tori: A, B, C. Topological S and T matrices are extracted
from all possible overlaps between states in (54). This algo-
rithm is presented in Ref. [62] and slightly generalized in the
Appendix of Ref. [48].

The core of the calculation is an overlap〈(
F k

ab

)
A

∣∣(F k′
a′b′

)
B
〉
, (55)

shown in Fig. 6, between two iPEPS’s on infinite tori A and
B. It involves a new class of impurity transfer matrices and
their eigenvectors, where a nontrivial MPO symmetry is in
only one layer of the PEPS (either bra or ket) or there are two
nontrivial MPO symmetries in both layers but they are of a
different type. This type of overlap was encountered already
in the Abelian case in Ref. [48] where they are explained in
more detail. In the Abelian case the nontrivial MPO symmetry
inserted in just one layer of the PEPS changes the boundary
MPS |vi〉 → |v j〉, where i �= j. However in the non-Abelian

case, all changes of the boundary MPS have to be consid-
ered including i = j. The possible change of the boundary
conditions is denoted in Fig. 6 by shaded gray regions. Once
the overlaps are found, we follow the algebra in Appendix B
of Ref. [48] to obtain the following topological matrices S
and T .

A. Toric code

For analytic tensors with D = 4 we obtain the exact matri-
ces up to numerical precision:

STC = 1

2

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠,

TTC =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠ .

Here consecutive columns and rows correspond to projectors
that were labeled as 1, e, m, ε. These matrices confirm cor-
rectness of this labeling up to possible interchange of e and m
that is a matter of convention.

B. Fibonacci string net

For the five states obtained with projectors Pvac, Pτ τ̄ , P̃τ τ̄ ,
P̃τ , P̃τ̄ we obtain the matrices:

SFib = 1
D

⎛
⎜⎜⎜⎜⎝

1 ϕ2 ϕ2 ϕ ϕ

ϕ2 1 1 −ϕ −ϕ

ϕ2 1 1 −ϕ −ϕ

ϕ −ϕ −ϕ −1 ϕ2

ϕ −ϕ −ϕ ϕ2 −1

⎞
⎟⎟⎟⎟⎠, TFib =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 e4iπ/5 0
0 0 0 0 e−4iπ/5

⎞
⎟⎟⎟⎟⎠.

For brevity matrix SFib is shown exact with ϕ = dτ = 1
2 (1 + √

5) although we obtain it with numerical accuracy O(10−10). It
is clear that we can remove either second or third row and column because they both correspond to two equivalent ways of
obtaining flux τ τ̄ .

C. Ising string net

For the ten states obtained with projectors Pvac, Pψψ̄ , Pσ σ̄ , P̃σ σ̄ , P̃ψ̄ , P̃ψ , P̃σ , P̃σψ̄ , P̃σ̄ , P̃ψσ̄ we obtain the matrices with numerical
accuracy O(10−13):

SIs = 1
4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2 2 1 1
√

2
√

2
√

2
√

2
1 1 2 2 1 1 −√

2 −√
2 −√

2 −√
2

2 2 0 0 −2 −2 0 0 0 0
2 2 0 0 −2 −2 0 0 0 0
1 1 −2 −2 1 1

√
2

√
2 −√

2 −√
2

1 1 −2 −2 1 1 −√
2 −√

2
√

2
√

2√
2 −√

2 0 0
√

2 −√
2 0 0 2 −2√

2 −√
2 0 0

√
2 −√

2 0 0 −2 2√
2 −√

2 0 0 −√
2

√
2 2 −2 0 0√

2 −√
2 0 0 −√

2
√

2 −2 2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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TIs =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 eiπ/8 0 0 0
0 0 0 0 0 0 0 −eiπ/8 0 0
0 0 0 0 0 0 0 0 e−iπ/8 0
0 0 0 0 0 0 0 0 0 −e−iπ/8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is clear that we can remove either the third or fourth row and
column because they both correspond to two equivalent ways
of obtaining flux σ σ̄ .

IX. SUMMARY

We presented numerical method to determine non-Abelian
topological order in iPEPS representing the unique ground
state on infinite two-dimensional lattice. The method is based
on finding consecutively the following elements:

(1) All of the boundary fixed points of PEPS transfer ma-
trices in the form of matrix product operators vi;

(2) All MPO symmetries Za mapping between the bound-
aries and their fusion rules;

(3) All impurity eigenvectors xa of vertical impurity
transfer matrices of PEPS inserted with horizontal MPO sym-
metries Zh;

(4) All impurity MPO symmetries Z̃ mapping between the
impurity eigenvectors;

(5) All projectors on states with well defined anyon flux
along horizontal direction. They are linear combinations of
either vertical MPO symmetries or vertical impurity MPO
symmetries: Pa = ∑

bc

∑
k ca

kbcF
k
bc;

(6) All overlaps between states with definite anyon flux on
different infinite tori related by modular transformations.

The topological charges and mutual statistics in the form of
topological S and T matrices are recovered from the overlaps.
They provide full topological characterization of string net
models.

A byproduct of the linear ansatz for a projector is an
efficient algorithm to obtain the second Renyi topological
entanglement entropy directly in the thermodynamic limit. In
addition to tests for the string net models, we found nonzero
TEE in the variational ansatz of Ref. [46] for the Kitaev model
in magnetic field [3], see Appendix E.
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APPENDIX A: FUSION RULES

Fusion rules are encoded in F symbols which have to
satisfy the Pentagon equation:

F symbols of both non-Abelian models are mostly given
by the allowed fusions: Nc

ab describing a × b → c with all its
(allowed) permutations:

(i) for Fibonacci: N1
11 = N1

ττ = Nτ
ττ = 1

(ii) for Ising: N1
11 = N1

σσ = N1
ψψ = Nσ

ψψ = 1.

Then F abc
de f = Ne

abNe
cd N f

ad N f
bc unless they are overwritten by

additional special rules:
(i) for Fibonacci: F τττ

τ11 = −F τττ
τττ = 1

dτ
and F τττ

ττ1 =
F τττ

τ1τ = 1√
dτ

.

(ii) for Ising: F σσσ
σ11 = F σσσ

σ1ψ = F σσσ
σψ1 = −F σσσ

σψψ = 1√
2

and

Fψσψ
σσσ = F σψσ

ψσσ = −1.

APPENDIX B: iPEPS TENSORS

iPEPS tensors, shown in Fig. 7, are given by the following
combination of F symbols and quantum dimensions di:

Ai
αβγ =

(
dadb

dc

)1/4

F dab
f ec δaa′δbb′δcc′δdd ′δee′δ f f ′ (B1)

Bi
αβγ =

(
dadb

dc

)1/4

F dab
f ec δaa′δbb′δcc′δdd ′δee′δ f f ′ . (B2)

By construction each tensor has a triple of bond indices
along each of the three bonds towards NN lattice sites. We
concatenate each triple into a single bond index, e.g., α =
(a, e, d ′). The physical index is also a triple index i =
(a′, b′, c′). These basic tensors are forming the topological
state after proper contraction of bond indices with respect to
their triplet structure. For the toric code and double Fibonacci
string nets the bond dimension D = 23 = 8 is redundantly
large and can be reduced to D = 4 and D = 5 after apply-
ing projectors on the bond indices, namely the only nonzero
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FIG. 7. Tensors forming the iPEPS are defined via combination
of F -symbols and corresponding quantum dimensions di. All bond
indices and the physical index are in fact a triple index. The bond
dimension can be reduced by applying projectors on the non zero
bond indices.

combinations of bond indices (i, j, k) are those in which the
fusion product i × j × k = 1 + · · · contains the trivial anyon.
For the double Ising string net, on the other hand, the original
bond dimension D = 33 = 27 can be reduced to D = 10.

APPENDIX C: PERTURBATION OF TENSOR SYMMETRY

In Ref. [48] we demonstrated that with our method it is
possible to obtain accurate results for topological S and T
matrices from a numerically optimized iPEPS ground state of
the Kitaev honeycomb model for a wide range of coupling
parameters. In the case of Fibonacci and Ising string nets,
whose parent Hamiltonians are far more complex, the same
test would go far beyond the scope of the present paper.

FIG. 8. Symmetry breaking perturbations in Fibonacci (left) and
Ising (right) string nets.

However, as most concerns about stability arise from
Ref. [64], we can introduce their perturbation at the virtual
level of the tensor network—which violates the exact MPO
symmetries—to see how our algorithm performs under this
crash test.

The vertex violating terms [64], Tp, which are allowed in
the stand-alone space but do not represent the physical ground
state, are shown in Fig. 8. Additionally we allow all three
rotations of the red indices. The fixed-point tensors T are
perturbed by adding a vertex violating term Tp controlled by a
small parameter ε:

T → T + ε Tp. (C1)

For the Fibonacci string-net model perturbed with a strong
ε = 0.1 we obtained the following topological entanglement
entropies: ⎛

⎜⎜⎜⎝
1.2847
0.3235
0.3235
0.8047
0.8047

⎞
⎟⎟⎟⎠, (C2)

and the following topological matrices:

SFib =

⎛
⎜⎜⎜⎝

0.2771 0.7251 0.7252 0.4484 0.4484
0.7251 0.2735 0.2749 −0.4486 −0.4486
0.7252 0.2749 0.2764 −0.4472 −0.4472
0.4484 −0.4486 −0.4472 −0.2764 0.7236
0.4484 −0.4486 −0.4472 0.7236 −0.2764

⎞
⎟⎟⎟⎠

and

diag(TFib) =

⎛
⎜⎜⎜⎝

1.0000 − 0.0000i
1.0000 + 0.0000i
1.0000 − 0.0000i

−0.8090 − 0.5878i
−0.8090 + 0.5878i

⎞
⎟⎟⎟⎠.

When compared to the exact numbers, their maximal error is
of the order of 10−3. Although there are four anyon fluxes in
the Fibonacci model, here as in the main text we keep both
Pτ τ̄ and P̃τ τ̄ which project on the same flux τ τ̄ .

For the Ising string-net model we added a perturbation
shown in Fig. 8 with strength ε = 0.5, which lead to even
more accurate results. We obtained topological entanglement
entropy and topological S and T matrices with accuracy
O(10−6).

In order to complete the discussion about random perturba-
tions that may arise during numerical optimization of iPEPS

we calculated the topological data for a completely random,
real perturbation in the Fibonacci string-net model:

T → T + ε Trandom. (C3)

For ε = 0.01 we recovered the topological entanglement en-
tropies and topological matrices with accuracy of the order
of O(10−4).

APPENDIX D: INTRODUCING FINITE
CORRELATION LENGTH

In order to see how the algorithm performs when the iPEPS
tensors are driven away from the fixed point by introducing
a finite correlation length, we apply the local filtering intro-
duced in Refs. [65–67] to the fixed point of the Fibonacci
string-net model. The perturbation has the following form:

|�〉 →
∏

i

eβσ z
i |�〉, (D1)
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FIG. 9. The correlation length ξ in the Fibonacci string net model
in function of the perturbation parameter β in Eq. (D1). Different
colors correspond to different bond dimensions χ of the boundary
MPS vi.

where the index i runs over all physical indices and σ z is
the third Pauli matrix. In Ref. [48], by considering a similar
perturbation to the toric code, we demonstrated that with our
algorithm it is possible to obtain topological S and T matrices
for states with correlation length much longer than achievable
by the state of the art 2D DMRG techniques.

Figure 9 shows how the correlation length grows with pa-
rameter β for the perturbed Fibonacci string-net model. In the
Fibonacci model, for parameters β = 0.14, 0.15, 0.16 such
that the correlation length ξ > 1, we obtained the topological
entanglement entropies and the topological S and T matrices.
Their maximal errors are listed in Table I.

APPENDIX E: VARIATIONAL ANSATZ FOR THE KITAEV
MODEL IN (1,1,1) MAGNETIC FIELD

We investigate the ansatz proposed in the Supplemen-
tal Material of Ref. [46]. Although it satisfies all desired

TABLE I. For different values of the perturbation parameter β

in Eq. (D1), the table lists corresponding correlation lengths, ξ , and
maximal errors of the entries of the list of topological entanglement
entropies, εγ , and the S and T matrices, εS and εT .

β ξ εγ εS εT

0 0 O(10−10 ) O(10−10 ) O(10−10 )
0.14 1.64 O(10−3) O(10−4) O(10−6)
0.15 2.32 O(10−2) O(10−3) O(10−7)
0.16 4.3 O(10−2) O(10−3) O(10−4)

symmetries and has competitive energy, the ansatz was not
demonstrated to possess the expected chiral Ising universality
class [3]. We show that at least it has nontrivial topological
entanglement entropy.

Each TM has two boundary fixed points. They have large
bond dimension χ necessary to accommodate a long corre-
lation length. For χ = 150 the correlation length saturates at
ξ � 15.4. However, when it comes to calculating the topologi-
cal entanglement entropy, whose cost is much steeper in χ , we
will be satisfied with χ = 50, corresponding to ξ � 10.3, that
is sufficient to recover exact symmetries. There is one nontriv-
ial Z2 symmetry such that vL

1 · Zv
2 = vL

2 and vL
2 · Zv

2 = vL
1 and,

consequently,

Zv
2 · Zv

2 = 1v. (E1)

This is the algebra of the Z2 gauge field that was implemented
in the ansatz by construction.

Like in the toric code, the Z2 algebra (E1) allows for two
vertical projectors:

P± = 1
2 (1v ± Zv ). (E2)

They project on ±1 horizontal flux of the Z2 gauge field, see
Ref. [46]. In this model, when the horizontal cylinder is closed
into a torus, the vertical flux also becomes a good quantum
number. For an iPEPS wrapped on a torus (without horizontal
line Zh

2 ) the state is a superposition of both ±1 vertical fluxes
with equal amplitudes.

We also find nontrivial IMPO symmetry Z̃v
2 satisfying the

Z2 algebra. It allows for two projectors:

P̃± = 1
2

(̃
1v ± Z̃v

2

)
. (E3)

Like the vertical projectors, they project on ±1 horizontal flux
of the Z2 gauge field but with a superposition of vertical fluxes
with opposite amplitudes. Therefore, unlike the Fibonacci and
Ising string net, neither of these two impurity projectors can
be identified with any of the two vertical projectors P±.

For vertical projectors we obtain topological entanglement
entropy

γ± = log 2 (E4)

in the vacuum and vortex sector, respectively. This demon-
strates topological order in the variational iPEPS of Ref. [46].
The impurity projectors also yield

γ̃± = log 2 (E5)

but here the minimally entangled states ± are different com-
binations of the vertical Z2 flux than in Eq. (E4).
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