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We examine the performance of the density matrix embedding theory (DMET) recently proposed in Knizia
and Chan [Phys. Rev. Lett. 109, 186404 (2012)]. The core of this method is to find a proper one-body potential
that generates a good trial wave function for projecting a large-scale original Hamiltonian to a local subsystem
with a small number of bases. The resultant ground state of the projected Hamiltonian can locally approximate
the true ground state. However, the lack of the variational principle makes it difficult to judge the quality of
the choice of the potential. Here we focus on the entanglement spectrum (ES) as a judging criterion; accurate
evaluation of the ES guarantees that the corresponding reduced density matrix well reproduces all physical
quantities on the local subsystem. We apply the DMET to the Hubbard model on the one-dimensional chain,
zigzag chain, and triangular lattice, and test several variants of potentials and cost functions. It turns out that
ES serves as a more sensitive quantity than the energy and double occupancy to probe the quality of the DMET
outcomes. A symmetric potential reproduces the ES of the phase that continues from a noninteracting limit. The
Mott transition as well as symmetry-breaking transitions can be detected by the singularities in the ES. However,
the details of the ES in the strongly interacting parameter region depends much on these variants, meaning that
the present DMET algorithm allowing for numerous variant is insufficient to fully characterize the particular
phases that require characterization by the ES.
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I. INTRODUCTION

Quantum entanglement is recognized as one of the key
modern concepts in quantum many-body physics. In strongly
correlated systems, it is an important theoretical tool to char-
acterize several classes of phases of matter. From the scaling
behavior of entanglement entropy (EE), one can extract the
central charge associated with the underlying conformal field
theory [1–3]. The residual constant term in the EE is used to
detect the existence of a so-called topological order character-
ized by the long-range nature of the entanglement [4–6]. The
entanglement spectrum (ES) is useful to identify a more subtle
type of topological properties like symmetry-protected topo-
logical phases [7–11], and its low-lying levels reflect the edge
modes of the system [12–15]. While the entanglement-related
properties turned out to serve as a probe for such unusual
phases beyond the Landau’s symmetry-breaking paradigm,
they are also very useful to detect conventional quantum phase
transitions as it contains information on how the quantum
many-body wave function is constructed from the local ba-
sis [16–21].

To compute the ES or EE, however, one needs to evaluate
many-body wave functions with enough accuracy for a large
enough system size. This is generally difficult for strongly
correlated two-dimensional many-body systems which are
the platform of the above-mentioned exotic phenomena.
So far, numbers of numerical solvers have been applied or
developed such as quantum and variational Monte Carlo

*kawano@g.ecc.u-tokyo.ac.jp

simulation [22–26], dynamical mean-field theory
(DMFT) [27–29], density matrix renormalization group
(DMRG) [30–32], and tensor network method [33–35].
They, however, suffer from negative sign problems, lack
of long-range quantum fluctuation, or large numerical cost
because of the area law of the EE. Further improvements of
existing approaches as well as developments of new methods
are desired.

In the present paper, we focus on the density matrix em-
bedding theory (DMET) introduced in Ref. [36]. The method
tries to find the ground-state properties of fermionic lattice
models with low computational cost, and has been applied
to various problems [36–52] including quantum chemistry
problems [53–63]. It is also extended to the study of finite-
temperature and dynamical properties [40,57,64]. The key
idea is to divide a large system into a small subsystem called
an impurity fragment and a rest, and to represent the original
Hamiltonian by a small number of basis sets consisting of
those inside the impurity and those selected from outside.
To properly select the basis set, a noninteracting reference
Hamiltonian with a one-body potential is prepared. Among
the constituent of its ground-state wave function, the local ba-
sis belonging to the impurity and those outside but entangled
with the impurity basis are chosen to represent the original
Hamiltonian. If this choice is correct, the projected impurity
Hamiltonian will yield the state that reproduces well the true
ground state of the original Hamiltonian in the impurity re-
gion [36].

Although the original paper of the DMET by Knizia and
Chan refers to the DMFT as a similar cluster method [36],
its construction is completely different; the DMFT focuses
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not on the wave function but on the frequency-dependent
Green’s function [27–29], and does not take account of the
longer-range fluctuation or correlation effect. The DMET is
not a typical cluster method since the correlation functions
inside the cluster does not depend much on the choices of its
shape [65], unlike the cluster-DMFT. From that context, the
DMET is rather built on the similar concept with the first-
principles density-functional theory (DFT), which assumes
the existence of the one-body potential that exactly repro-
duces the spatial distribution of the charge density of the true
ground state based on the Kohn-Sham theory, and obtains
the corresponding wave function based on the variational
principle [66,67]. The DMET also prepares the one-body
potential that reproduces the local one-body density matrix,
which includes both the information on the charge density of
the impurity sites as well as the other off-diagonal properties.

There are several advantages of the DMET over cluster-
DMFT and variational cluster methods [68]; the results do
not depend much on the shape of the impurity cluster [65]
and show significant convergence with the increase of the
size of the impurity [44]. In fact, the superconducting and
stripe phases of the two-dimensional Hubbard model are well
described by the DMET [42], which was not easy or almost
impossible for previous solvers such as Gutzwiller variational
methods, DMFT, or even QMC.

However, the obtained ground-state energy is not varia-
tional [36] and, as a result, the optimization procedures are not
straightforward. Although previous benchmark studies show
highly accurate ground-state energy and double occupancy for
the Hubbard model on the one-dimensional (1D) chain and
square lattice [36,38,51,52], this does not necessarily guaran-
tee the high performance of the DMET for obtaining other
physical quantities. Different types of one-body potentials
generally provide different physical quantities, but one cannot
determine which type is the best.

The purpose of this paper is to give a comparative study
on several variants of the DMET, where, on top of several
potential advantages of the method presented by the previous
studies, we clarify the underlying difficulty of reliably disclos-
ing the deep quantum structure of the wave function when
the system becomes strongly correlated. To judge the quality
of the potential, we focus on the ES, which has a one-to-
one correspondence with eigenvalues of the reduced density
matrix of the subsystem. If the DMET properly reproduces
the exact ES, the reduced density matrix gives all the local
physical quantities of the subsystem [69]. Previously, in an
interacting spinless fermionic model, the density embedding
theory (DET), one of the simplest variants of the DMET, is
shown to reproduce well the exact ES and to detect the phase
transition [65]. Here we further examine the ES systematically
by the DET and DMET with various types of the one-body
potential for the Hubbard model on the 1D chain, zigzag
chain, and triangular lattice. By comparing the DMET and
DMRG results of the 1D chain and zigzag chain, we find that
the symmetric one-body potential well reproduces the low-
level ES in the phase that continues from the noninteracting
limit, and in other phases the DMET fails to describe the
exact ES. We also find that the proper symmetry-breaking
one-body potential leads to the singularity of the ES, which
is a good indicator of phase transitions. However, we need

to test several variants, since the transition points may or
may not appear, depending on the choice of the potentials.
Furthermore, the better agreement of the ground-state energy
does not necessarily match the accuracy of the ES. To show
the reliability of the solution for unexplored models or exotic
phases of matter, the examination of ES in addition to the
energy is required. The paper aims to disclose these aspects of
the DMET through its application to the frustrated triangular
lattice model which typically hosts such exotic phases.

This paper is organized as follows. In Sec. II, we first
review the basic algorithm of the DMET and discuss sev-
eral variants of the one-body potential. In Sec. III, we apply
the DMET to the Hubbard model defined on the 1D chain,
zigzag chain, and triangular lattice, and show their ground-
state energy, double occupancy, ES, and EE. We then give a
conclusion in Sec. IV.

II. DENSITY MATRIX EMBEDDING THEORY

So far, the details of the method are fragmentally modified
and tested from the original paper [36,38,43,53], e.g., the
choice of the impurity basis representation, the order of op-
timization, whether to include the interaction of a bath exactly
or in a mean-field form. After examining them, we selected
the optimal algorithm which we explain in this section. Then
we introduce several types of the one-body potential we adopt
shortly.

A. Formulation

We deal with the half-filled Hubbard model consisting of
N sites,

Ĥ =
N∑

i, j=1

∑
σ

ti, j ĉ
†
i,σ ĉ j,σ + U

N∑
i=1

n̂i,↑n̂i,↓, (1)

where ti, j = t j,i ∈ R is the hopping amplitude between i and
j sites, U is the on-site interaction, ĉ†

i,σ (ĉi,σ ) denotes the
creation (annihilation) of a fermion at site i with spin σ =↑,↓,
and n̂i,σ = ĉ†

i,σ ĉi,σ . We assume the hopping amplitude as ti, j =
−t for nearest-neighboring i and j sites, where the sign of t
may change at the boundary, and ti, j = 0 for others. We adopt
an antiperiodic boundary condition which lifts the degeneracy
of the one-body energy of the trial states for a given potential.

The core process of the DMET is to construct an impu-
rity model using the Schmidt decomposition of a trial state
|�〉 [36]. We divide the entire system into two subsystems A
and B consisting of NA and NB = N − NA sites, and suppose
NA � NB. Here the subsystem A corresponds to an impurity
fragment. Then |�〉 can be written as

|�〉 =
χ∑

n=1

λn(�)
∣∣�[A]

n

〉 ⊗ ∣∣�[B]
n

〉
, (2)

where χ = 4NA , λn(�) � 0 is the Schmidt coefficient and
{|�[X ]

n 〉}χn=1 forms an orthonormal basis in the subsystem
X = A, B. Here, the DMET takes advantage of the fact that
only a small number of bases from among those belonging to
the large subsystem B is required to describe the trial state:
the set {|�[B]

n 〉}χn=1 is called a bath state [36]. The process is
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completed by applying a projection operator,

P̂ = 1̂[A] ⊗
(

χ∑
n=1

∣∣�[B]
n

〉 〈
�[B]

n

∣∣), (3)

where 1̂[A] is the identity operator defined on the subsystem
A. The entire system is then reduced to the impurity fragment
(subsystem A) coupled to an external bath, and the original
Hamiltonian is transformed to an impurity Hamiltonian:

Ĥimp = P̂ĤP̂ . (4)

Note that the number of bath states is equal to 4NA , and
accordingly the dimension of the Hilbert space to be searched
for is significantly reduced from the original one. One can thus
obtain the ground state of the impurity Hamiltonian, |�imp〉,
using a high-accuracy numerical method such as the exact
diagonalization.

The ground state |�imp〉 of Eq. (4) much depends on the
choice of the trial state. The best choice of the trial state
is the exact ground state, in which case |�imp〉 matches the
exact ground state by definition. However, the exact solution
is a priori unknown. The approximate trial state shall better
reproduce the entanglement between the impurity and the bath
of the exact ground state, and is prepared as the ground state
of the following reference Hamiltonian [36]:

Ĥref =
N∑

i, j=1

∑
σ

ti, j ĉ
†
i,σ ĉ j,σ +

N∑
i, j=1

ĉ†
i

(
u0

i, jσ
0 + ui, j · σ

)
ĉ j,

(5)
where u0

i, j and ui, j = (ux
i, j, uy

i, j, uz
i, j ) with uμ

i, j = (uμ
j,i )

∗ (μ =
0, x, y, z) are the one-body potential puts by hand, σ 0 and
σ = (σ x, σ y, σ z ) is the unit and Pauli matrices, and ĉi =
(ĉi,↑, ĉi,↓)T . We will discuss several types of one-body po-
tentials in Sec. II C. The ground state of the reference
Hamiltonian, |�〉 = |�ref〉, is written as a Slater determinant,
which is analytically decomposed [70,71] into the form as
Eq. (2). The basis in the subsystem A, |�[A]

n 〉, is not included
in the projection operator Eq. (3) since the original fermionic
operator ĉi,σ (i = 1, 2, · · · , NA) is fully preserved and the
impurity Hamiltonian in subsystem A is not modified. On the
other hand, the projection operator Eq. (3) depends on the bath
state |�[B]

n 〉, which is given by [70,71]

∣∣�[B]
n

〉 =
2NA∏
α=1

(b̂†
α )nα

(
N−2NA∏

β=1

ê†
β

)
|0[B]〉 , (6)

where n = (n1, · · · , n2NA ) with nα = 0, 1, |0[B]〉 is the vacuum
on subsystem B, and the operators b̂α and êβ are called bath
and core orbitals, which live on subsystem B. These orbitals
are obtained by the unitary transformation of the site-based
one, ĉi,σ , as [43]

ĉB = LB

⎛
⎝ b̂

ê
f̂

⎞
⎠, (7)

where ĉB = (ĉNA+1,↑, ĉNA+1,↓, · · · , ĉN,↑, ĉN,↓)T is the set
of fermions on subsystem B, b̂ = (b̂1, · · · , b̂2NA )T , ê =
(ê1, · · · , êN−2NA )T , and f̂ = ( f̂1, · · · , f̂N−2NA )T is the remain-
ing orbitals which do not appear in the bath state Eq. (6).

The 2NB × 2NB unitary matrix LB is obtained by the singular
value decomposition of the eigenwave function of Eq. (5)
and is improved by optimizing the one-body potential [43].
The operator ĉi,σ on subsystem B is then transformed as the
linear combination of the bath, core, and remaining orbitals,
and after the projection by using the bath state Eq. (6), the
kinetic and interaction terms of the bath orbitals b̂ are reflected
exactly in the impurity Hamiltonian, while the core orbitals ê
are treated as mean-field potentials and the remaining orbitals
f̂ are discarded.

The impurity Hamiltonian Eq. (4) is explicitly given as

Ĥimp = Ĥ[A] + Ĥbath + Ĥinter, (8)

Ĥ[A] =
NA∑

i, j=1

∑
σ

ti, j ĉ
†
i,σ ĉ j,σ + U

NA∑
i=1

n̂i,↑n̂i,↓, (9)

Ĥbath =
2NA∑

α,β=1

t (bath)
α,β b̂†

α b̂β +
2NA∑

α,β,γ ,δ=1

U (bath)
α,β,γ ,δ b̂†

α b̂†
β b̂γ b̂δ, (10)

Ĥinter =
NA∑
i=1

∑
σ

2NA∑
α=1

(
t (inter)
(i,σ ),α ĉ†

i,σ b̂α + H.c.
)
, (11)

where Ĥ[A] is the original Hamiltonian on subsystem A, Ĥbath

is the Hamiltonian on the bath, and Ĥinter is the hopping
term between the impurity and bath sites. Here we omit the
constant term in Ĥbath. The hopping amplitudes and two-body
interaction in Eqs. (10) and (11) are determined from the uni-
tary matrix LB [43]. Here, Ĥbath includes the four-fermionic
interaction term because we assume the original Hamiltonian
to be two-body. In general, the n-body term of the original
Hamiltonian is transformed to the 2n-fermionic interaction
terms consisting of several different indices of b̂’s.

The remaining issue is an optimization of the one-body po-
tential. In the DMET, the one-body potential is chosen as such
that the one-body density matrix obtained by the ground state
of the reference Hamiltonian matches the one-body density
matrix of the ground state of the impurity Hamiltonian [36],

〈ĉ†
i,σ ĉ j,σ ′ 〉

imp
= 〈ĉ†

i,σ ĉ j,σ ′ 〉
ref

, (12)

for i, j = 1, 2, · · · , NA and σ, σ ′ =↑,↓, where 〈Ô〉imp =
〈�imp|Ô|�imp〉 and 〈Ô〉ref = 〈�ref |Ô|�ref〉 for an operator Ô.
The first-principles DFT, whose guiding principle shall be
compared to the DMET, assumes the existence of a one-body
potential that reproduces the same charge distribution of the
correlated many-body wave function by the noninteracting
one. Similarly, the present one-body potential is expected
to have the one-body density matrix that mimics the corre-
lated ones. The measure of optimization is the cost function
given as

DDMET =
NA∑

i, j=1

∑
σ,σ ′

| 〈ĉ†
i,σ ĉ j,σ ′ 〉

imp
− 〈ĉ†

i,σ ĉ j,σ ′ 〉
ref

|2. (13)

Minimizing DDMET approximately maximizes the overlap be-
tween the one-body density matrix of the reference system
and the impurity one.

The simpler variant of the DMET is also proposed in
Ref. [38], called DET, in which the one-body potential is
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FIG. 1. (a) Schematic illustration and (b) flowchart of the DET
and DMET scheme. The original system is mapped to the impu-
rity one by the projection operator, which is constructed from the
Schmidt decomposition of the ground state of the reference system.
The one-body potential in the reference system is optimized such
that the one-body density or density matrix of the reference system
matches that of the impurity one. (c) Energy per site as the function of
U . The energy density of the entire system deviates from the DMRG
result as increasing U while that of subsystem A does not.

optimized to satisfy

〈ĉ†
i,σ ĉi,σ ′ 〉

imp
= 〈ĉ†

i,σ ĉi,σ ′ 〉
ref

, (14)

for i = 1, 2, · · · , NA and σ, σ ′ =↑,↓. Equation (14) guaran-
tees an exact fitting of a particle and spin density between the
impurity system and the reference system. The corresponding
cost function is

DDET =
NA∑
i=1

∑
σ,σ ′

| 〈ĉ†
i,σ ĉi,σ ′ 〉

imp
− 〈ĉ†

i,σ ĉi,σ ′ 〉
ref

|2, (15)

and DDET = 0 leads to Eq. (14). Schematic illustration of the
DET and DMET scheme is shown in Fig. 1(a).

Let us add some remarks on further details of the calcula-
tion. In the DMET, the particle density in the impurity region,∑NA

i=1

∑
σ 〈n̂i,σ 〉imp /NA, does not necessarily equal the correct

particle density 1.0. To solve this issue, a fictitious chemical
potential μimp is introduced in the impurity region as [55]

Ĥimp → Ĥimp − μimp

NA∑
i=1

∑
σ

n̂i,σ , (16)

where μimp is determined by adjusting the particle density in
the impurity region to 1.0. Another detail is how to minimize
the cost function. Calculating its derivative with respect to the
one-body potential requires a large computational cost since
one needs to solve the impurity model many times in evaluat-
ing the derivative of 〈ĉ†

i,σ ĉ j,σ ′ 〉
imp

. This process is avoided by
performing the minimization by a self-consistent procedure,
whose detail is explained in Ref. [43]. We use either the
Broyden-Fletcher-Goldfarb-Shanno algorithm or the Powell
algorithm instead [72], depending on the band structure of
the reference system. The self-consistent loop is iterated until
the change of μimp and the maximum value of uμ

i, j is below
5 × 10−4. We show the flowchart of the DMET (DET) calcu-
lation in Fig. 1(b).

B. Reduced density matrix

Once the values of the chemical potential and one-body
potential are converged, the ground state of the impurity
Hamiltonian |�imp〉 can be obtained. Here, we point out that
|�imp〉 itself is totally different from the true ground state. We
show in Fig. 1(c) the energy densities of the Hubbard model
on the 1D chain obtained by using the entire wave function
and by using only the local subsystem A, and compare them
with the DMRG result. Here the energy of the entire wave
function is given by 〈Ĥ〉imp, and that of the local subsystem A
can be evaluated as 〈Ĥ[A] + (1/2)Ĥinter〉imp, where the factor
1/2 is introduced to avoid double counting. We see that the
energy density of the entire wave function significantly devi-
ates from the DMRG result, while that of the local subsystem
A is in good agreement with it. The DMET optimizes the bath
and the core states that represents the correlation between the
impurity and the rest of the system, and make the impurity
part of |�imp〉 equivalent to that of the true ground state [53].

The accuracy of |�imp〉 is physically in one-to-one corre-
spondence with the accuracy of the reduced density matrix,

ρ̂[A] = TrB |�imp〉 〈�imp| , (17)

since all the local physical quantities on the subsystem A
represented by the operators Ô[A] can be evaluated as

〈Ô[A]〉imp = TrA[ρ̂[A]Ô[A]]. (18)

The measures to judge the quality of the reduced density ma-
trix are the EE and ES; the EE SA between the two subsystems
is given by

SA = −TrA[ρ̂[A] ln ρ̂[A]], (19)

and the ES, ζn (n = 1, 2, · · · , χ ), is the set of eigenvalues of
the entanglement Hamiltonian − ln ρ̂[A] [12].
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TABLE I. Four types of the one-body potential. These potentials
are defined in the impurity region and periodically repeated over the
entire reference system. TS is an acronym for translational symmetry.

Type Potential Cost Symmetry [73]

DET-SU(2) u0
i σ

0 SU(2)
DDET

DET-Full u0
i σ

0 + ui · σ break SU(2)

DMET-SU(2) u0
i, jσ

0 break TS
DDMET

DMET-Full u0
i, jσ

0 + ui · σ break TS and SU(2)

The ground-state energy E is an extensive quantity and is
evaluated by assuming that the entire system is tiled with the
same impurity fragment [43] as

E =
( N

NA

)
×

〈
Ĥ[A] + 1

2
Ĥinter

〉
imp

, (20)

where 〈Ĥ[A] + (1/2)Ĥinter〉imp is the energy of each impu-
rity fragment as explained above. Therefore, it would happen
that E including the term outside the impurity fragment may
become less accurate than the other quantities inside the im-
purity fragment which are solely determined by ρ̂[A]. In this
context, the ground-state energy shall not be a good measure
for the accuracy of the DMET.

C. Symmetry of the one-body potential

We examine several types of one-body potentials in the
following. Let us first remark that the one-body potential
generally breaks the translational symmetry of the reference
system by construction, since the potential of the impurity re-
gion is repeated over the entire system, i.e., uμ

i+NA, j+NA
= uμ

i, j
(μ = 0, x, y, z) [43]. The SU(2) spin-rotational symmetry is
also not preserved for the general form of ui, j in Eq. (5).
With this in mind, we deal with four types of one-body po-
tentials and separately denote the DMET (DET) algorithm
with these potentials as DET-SU(2), DET-Full, DMET-SU(2),
and DMET-Full, whose details are summarized in Table I. In
the DET-SU(2), the one-body potential has no off-diagonal
terms and preserves the SU(2) spin-rotational symmetry, i.e.,
u0

i, j = u0
i δi, j and ui, j = 0. In this case, the one-body potential

is just a site-dependent chemical potential. We see shortly
that the optimized potential for the DET-SU(2) has a vanish-
ingly small value of u0

i and does not break any symmetry of
the reference system. In the DET-Full, the one-body poten-
tial has a site-dependent magnetic field, ui, j = δi, jui, which
breaks the SU(2) spin-rotational symmetry. For both DET-
SU(2) and DET-Full, we adopt DDET as a cost function. In
DMET-SU(2) and DMET-Full, the one-body potential has
off-diagonal terms u0

i, j (i �= j) and is optimized by minimizing
DDMET. These off-diagonal elements can modify the kinetic
term in the reference system. Practically, we allow only the
intracluster hopping terms uμ

i, j (i, j = 1, 2, · · · , NA), which
does not modify the results. This is reasonable because we
need to keep the intercluster hopping finite to preserve the
entanglement between the impurity and the bath, while at the
same time, the unit of the energy can be chosen arbitrarily
so one of the parameters can be set to unity. The degree of

intercluster entanglement is relatively controlled by modify-
ing uμ

i, j inside the cluster. The SU(2) spin-rotational symmetry
is preserved in DMET-SU(2) but not in DMET-Full. For prac-
tical reasons, we further assume ui, j = uiδi, j and Im[uμ

i, j] = 0
(μ = 0, x, y, z) for all types, which reduces the number of
elements in uμ

i, j and simplifies the optimization procedure.

III. RESULTS

In this section, we show the results obtained by DET
and DMET, where the exact diagonalization is used to find
the ground state of the impurity model. We set the nearest-
neighbor hopping amplitude as unity, i.e., t = 1. Our results
for the 1D chain and zigzag chain are compared with the
DMRG data. The DMRG calculations are performed by using
ITensor library [74].

A. 1D chain

We first consider the Hubbard model on the 1D chain at
half-filling. This model is exactly solved by Bethe ansatz [75];
the ground state is an insulator and there is no phase transition
for U > 0 [76]. Namely, the system preserves the full symme-
try over the full range of U > 0. We will see how the choice
of the one-body potential affects the physical quantities, espe-
cially the ES.

Here we consider N = 120 sites and NA = 4 impurity sites,
which are located at the center of the system. We provide
the initial value of ui for DET-Full and DMET-Full as ui =
5 × 10−3(0, 0, (−1)i ), which favors an antiferromagnetic spin
configuration. Other elements are initially set to zero. Fig-
ure 2(a) shows the ground-state energy per site for N = 120
and NA = 4, together with the DMRG data for N = 40 and
m = 800 under the antiperiodic boundary condition, where m
is the maximum number of a bond dimension. One can see
that all the results are in good agreement with the DMRG
energy. The difference between the DMET (DET) and DMRG
is at most 5 × 10−3 as shown in the bottom panel of Fig. 2(a).
We also calculate the double occupancy defined as

nd = 1

NA

NA∑
i=1

〈n̂i,↑n̂i,↓〉imp . (21)

The increase of on-site correlation suppresses nd [77]. In
the exact solution, the double occupancy is related to the
ground-state energy as nd = (∂E/∂U )/N . Figure 2(b) shows
the double occupancy together with the DMRG data. All
types except the DET-SU(2) reproduce the DMRG result with
high accuracy. It is found that in the case of the DET-SU(2),
the optimized one-body potential becomes exactly zero over
the full range of U , which does not happen for other cases. The
symmetry-breaking of the one-body potential gives higher
accuracy for the above two quantities.

However, the entanglement properties behave contrarily.
Figure 3 shows the U -dependent ES, EE, and the aver-
aged values of the optimized one-body potential, which is
defined as

ūμ = 1

dim uμ

NA∑
i, j=1

∣∣uμ
i, j

∣∣, (22)
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FIG. 2. (a) Ground-state energy per site and (b) double occu-
pancy of the 1D Hubbard chain at half-filling as the function of U for
N = 120 and NA = 4. The bottom panel shows the error with respect
to the DMRG results for N = 40 and m = 800 under the antiperiodic
boundary condition. All types reproduce the DMRG results with an
insignificant error.

where dim uμ is the number of elements in uμ
i, j (μ = 0, x, y, z).

In Figs. 3(b)–3(d), one finds that the ES and EE no longer
shows quantitative agreement with the DMRG results at U �
0.9, where the one-body potential takes finite values (shaded
region). The breaking of the SU(2) spin-rotational symmetry
of the potential lifts the degeneracy in the ES, which can be
seen near U = 1.5 in Figs. 3(b) and 3(d). In contrast, for the
DET-SU(2) the overall structures of the low-level ES and EE
are in good agreement with the DMRG results. In the DET-
SU(2) the one-body potential is exactly zero [see Fig. 3(a)],
namely, the trial wave function has the same symmetries with
the true ground state. The other types of potentials break
either the SU(2) spin-rotational symmetry, translational sym-
metry, or both of them. This symmetry breaking starts to
occur when the infinitesimally small charge gap at U = +0
starts to develop rapidly at around U � 0.9 [see the bottom
panel of Fig. 3(d)]. In these regions, the basis taken in by the
symmetry-breaking potentials has counterparts that together
recover the symmetry, while E and nd are more accurately
evaluated by taking only the symmetry broken part. This is
similar to the situation where the open boundary calculation
that breaks the translational symmetry can describe the ground
state with a smaller number of bases than the periodic bound-
ary ones in a DMRG calculation. Here, one can conclude that
for the ground state that continues from U = 0 and does not
break any symmetry, the DET with the symmetric potential
reproduces well the exact ES, while the other potentials can
describe well the extensive physical quantities even though
the ES does not match.

B. Zigzag chain

Let us now consider the case of the half-filled zigzag
chain. Previous studies suggest that there is a metal-insulator
transition associated with a dimerization at U = Uc [78–88].
The value of Uc estimated by the finite scaling analysis on
the DMRG calculation is Uc = 3.2 [81], and the one by the
variational Monte Carlo method is Uc = 6 [88]. This discrep-
ancy is possibly because, after the opening of the charge gap
in DMRG, its amplitude develops very slowly and becomes
visible at around U = 5 − 6 [88]. In the strong coupling limit,

FIG. 3. ES, EE, and the average of the one-body potential of the
1D Hubbard chain at half-filling as the function of U for (a) DET-
SU(2), (b) DET-Full, (c) DMET-SU(2), and (d) DMET-Full. Data
points are the DMRG results. The solid and dotted lines in each
bottom panel correspond to the SU(2) symmetric (ū0) and bro-
ken (

∑
μ=x,y,z ūμ) part of the one-body potential, respectively. The

DET-SU(2), in which the one-body potential is exactly zero, well
reproduces the overall structure of the exact low-energy ES and EE,
while in other types the ES and EE deviate from the DMRG results
as the one-body potential develops, which can be observed in the
shaded region. This deviation starts to develop when the charge gap
�c develops as well, which is shown in the bottom panel of (d). The
charge gap �c is obtained by the Bethe ansatz.

the Hubbard model on the zigzag chain is reduced to the J1-J2

Heisenberg model with J1 = J2 = 4t2/U , whose ground state
is a singlet dimer that accompanies the spontaneous lattice
symmetry breaking [89–94]. Here we focus on the effect of
this symmetry breaking on the physical quantities.

We consider N = 120 sites and NA = 4 impurities lo-
cated at the center of the system, and set the initial
value of ui for the DET-Full and DMET-Full as ui = 5 ×
10−3(cos(iπ/2), sin(iπ/2), 0) referring to the Hartree-Fock
calculation in Ref. [78]. Other initial elements are set to
zero. In Fig. 4, we plot the ground-state energy per site and
double occupancy as functions of U . The DMRG data shown
together is obtained for N = 120 and m = 1000 under an open
boundary condition, which favors one of the symmetry broken
ground states. At around U � 3.0, the ground-state energy
and the double occupancy obtained by the DET-SU(2) deviate
from the DMRG data, where the metal-insulator transition
occurs and a charge gap begins to develop as well [78]. For
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FIG. 4. (a) Ground-state energy per site and (b) double occu-
pancy of the zigzag Hubbard chain at half filling as the function
of U for N = 120 and NA = 4. The bottom panel shows the error
with respect to the DMRG results for N = 120 and m = 1000 under
the open boundary condition. For a large U , the DET-SU(2) result
significantly deviates from the DMRG results, while the other types
reproduce them.

other types of potentials, both the exact ground-state energy
and the double occupancy are well reproduced. These results
imply that a finite one-body potential is essential to describe
these quantities in the presence of the spontaneous symmetry
breaking.

We now turn to the entanglement properties. Figure 5
shows the ES, EE, and the averaged value of the one-body
potential. The DMRG data points are shown together for
comparison. We find that DET-SU(2) and DET-Full with zero
potentials well reproduce the ES up to U ∼ 3. At around this
point, the mean value of the potential ūμ [see Eq. (22)] of
DET-Full and DMET-Full becomes finite, which is seen in a
subtle anomaly of the ES. The off-diagonal elements of the
potential start to develop at lower U for the DMET-SU(2) as
well, which modifies the kinetic term in the reference system
in a way to generate a spontaneous dimerization. However, the
opening of the charge gap is subtle, and can only be accurately
detected by the onset of ūμ in the present framework, which is
consistent with the drop in nd . In further increasing U , how-
ever, ES and EE in all types deviate from the DMRG results.

These results imply again that the ES of DET-SU(2) and
DET-Full is reliable in the metallic regime continuing from
the noninteracting point. The symmetry-breaking phase tran-
sition is detected by DMET-Full and DET-Full through the
change in the structure of the one-body potential, which is not
restricted by symmetries.

C. Triangular lattice

We finally examine the Hubbard model on the triangu-
lar lattice. Identifying the nature of its ground state is a
long-standing theoretical challenge. Many numerical methods
have been applied; there are indications that the nonmag-
netic insulating phase is sandwiched between a metallic and
120◦ magnetically ordered phase [95–115]. This intermediate
phase has been considered as a candidate of the quantum
spin liquid, whereas its nature, e.g., whether there exists
a spin gap or not, whether there is a coexisting nonmag-
netic chiral order, what kind of spin liquid it should be, still

FIG. 5. ES, EE, and the average of the one-body potential of the
zigzag Hubbard chain at half-filling as the function of U for (a) DET-
SU(2), (b) DET-Full, (c) DMET-SU(2), and (d) DMET-Full. Data
points are the DMRG results. The DET-SU(2) reproduces the low-
energy ES and EE of DMRG for the low-U region, while in the high-
U region, the ES starts to deviate from the data points. In other types,
the ES also deviates from the DMRG results. The phase transition
is observed as the onset of the ūμ (μ = x, y, z) in (b) DET-Full and
(d) DMET-Full. This transition is also observed as the subtle anomaly
of the EE in the inset of (d), which is not observed in the DET-SU(2)
results as shown in the inset of (a). The charge gap �c in the bottom
panel of (d) is extracted from Ref. [78].

remains controversial. Clarifying this difficult issue is out of
the scope of the present paper, while one can see whether the
phase transition is detected within the present scheme. The
Mott transition point Uc1 and the magnetic transition point
Uc2 are evaluated in various methods; the first path integral
renormalization group (PIRG) study gives Uc1 = 5.2 ± 0.2
showing a jump in the double occupancy [95]. Later, PIRG
gives Uc1 = 7.4 and Uc2 = 9.2 [106]. For the variational clus-
ter approximation smaller values, Uc1 = 6.3–6.7 and Uc2 =
8, are observed [101,111], possibly because of the cluster-
dependent character of the method. The cylindrical DMRG
in Ref. [114] up to 48 sites keeping the aspect ratio closer
to 1 yield Uc1 = 7.55−8.05 and Uc2 = 9.65−10.15 detected
by the discontinuity in nd and entanglement gap, respectively.
Another cylinder DMRG with a maximum circumference of
6 with an infinitely long leg using the matrix-product-state
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FIG. 6. Results of the triangular lattice Hubbard model at half filling. (a) Ground-state energy per site. The inset shows the energy near
the first-order phase transition. (b) Double occupancy. We observe the first-order phase transition as the drop of the double occupancy, which
is clearly seen in the inset. (c)–(f) ES, EE, and average of the one-body potential as the function of U . The structure of the ES change when
crossing the phase transition point. Note that the one-body-potential optimization of the DMET-Full fails for large U . (g) Ground-state energy
per site and double occupancy obtained by the DMET-SU(2) and DMET-SU(2)+π -flux. The drop of the double occupancy is observed at the
different U . (h) ES, EE, and average of the one-body potential as the function of U for the DMET-SU(2)+π -flux.

construction has Uc1 = 8.5 and Uc2 = 10.6. From the scaling
analysis, it is empirically known that for the small system size,
keeping the aspect ratio uniform gives more accurate/reliable
numerical results [116,117]. We thus expect these values to
fall at around Uc1 = 7.4−7.8 and Uc1 = 9−10.

Let us consider N = 10 × 12 sites and NA = 2 × 2 impu-
rities at the center of the system. We assume ui = h(cos Q ·
ri, sin Q · ri, 0) and set the initial value of h for DET-Full
and DMET-Full as h = 5 × 10−3, which favors the 120◦
spin configuration. Other initial elements are set to zero.
Figures 6(a) and 6(b) show the ground-state energy and
the double occupancy, respectively. Both quantities show
singularities in DET-Full and DMET-SU(2) results. The
discontinuity in Fig. 6(b) indicates the existence of first-
order phase transitions at Uc2 � 9.25 and Uc2 � 11.75 for
the DMET-SU(2) and DET-Full, respectively. Note that the
DMET-Full calculation, which can be regarded as the combi-
nation of DMET-SU(2) and DET-Full, does not converge for
large U .

Figures 6(c)–6(f) show the ES, EE, and average of the one-
body potential. The transition points observed above manifest
themselves as the discontinuities in the ES and the jump
in the EE. Although we do not have a reference result by
other methods, the comparison between them gives some
clue to understand their overall tendency. The ones by DET-
SU(2) and DET-Full below Uc2 obtained in the absence of the

one-body potential are in good agreement with each other,
which should mimic the exact ES of the paramagnetic metallic
phase. DET-Full detects the direct symmetry breaking from
the paramagnetic to the 120◦ phase which can be interpreted
as Uc2, while the ES and EE in the symmetry-broken 120◦
phase may no longer be reliable. DMET-SU(2) and DMET-
Full do not give a suitable description of the paramagnetic
metallic phase but can detect instability to the Mott phase at
Uc2. Here, although DMET-SU(2) did not adopt the 120◦-type
potential, we interpret its anomalous point as Uc2, because the
ES above this point resembles those of the DMET-SU(2)+π -
flux which we see shortly. Unfortunately, Uc1 is missing, since
the potentials we have adopted is apparently not suitable for
the description of the intermediate phase.

Referencing the mean-field ansatz for the quantum spin
liquid, we also consider the initial value of the potential in
the DMET-SU(2) as the π -flux state, which we denote as
DMET-SU(2)+π -flux; one of the ui, j is set to 2t to introduce
the π flux on a triangle unit. Figure 6(g) shows the ground-
state energy and double occupancy of the DMET-SU(2) and
DMET-SU(2)+π -flux. We find that after the optimization, the
resulting potential has no π -flux but is still different from that
of the DMET-SU(2). The double occupancy jumps at Uc1 ∼
7.25, where the singularity of the ES and EE is also observed
in Fig. 6(h). At U � 10, the ES of the DMET-SU(2)+π -flux
are in good agreement with the DMET-SU(2).
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These results indicate that the existence of the phase tran-
sitions and their locations strongly depends on the choice of
the potential. Although one cannot determine quantitatively,
e.g., by comparing the energy, which type of the potential
describes better the target phase of matter, one can conclude
the following. Even though the ES differs between potentials
and optimizations, the energy and the double occupancy do
not differ much. We also notice that the anomalies of ES
and EE are observed as some sort of instability to the given
types of potentials. In fact, Uc1 ∼ 7.25 obtained by the π -flux
instability in the DMET-SU(2)+π -flux and Uc2 ∼ 9.25 by the
DMET-SU(2) are both in good agreement with the previous
reports Uc1 = 7.4 − 7.8 and Uc1 = 9 − 10.

IV. CONCLUSION

To clarify the applicability and limitation of DMET, we
have applied several variants of the one-body potential and
optimization scheme to the 1D, zigzag, and triangular lat-
tice Hubbard models at half filling. We tried the potentials
not restricted by symmetries and the SU(2) symmetric ones,
and adopted DET and DMET with different optimization
schemes; DET tries to fit only the diagonal elements of the
one-body density matrix of the reference Hamiltonian and
the impurity Hamiltonian, while DMET considers also the
off-diagonal elements.

By comparing the results with those of DMRG for the
1D and zigzag cases, we have shown that DET-SU(2), which
practically yields zero potentials and adopts the noninteract-
ing basis set reproduces well the ES of the phases at U > 0
that continues from the noninteracting limit. The symmetry-
breaking transition point with the subtle charge-gap open-
ing can be detected by the emergent asymmetries in the
optimized one-body potentials. For the triangular lattice

where the reference solution is lacking, one needs to apply
several types of potentials and check the instabilities to the
states whose features are encoded in the shape of the po-
tentials. Such instabilities are detected by the change in the
optimized one-body potentials, and accordingly by the dis-
continuities in the ES and EE. Although we have particularly
focused on the models with frustrated geometry, the overall
features of DMET/DET do not depend much on these geome-
tries.

To summarize, the DET with the symmetric potential is
useful for the description of the weakly interacting correlated
models and the systematic trials on the evaluation of ES
using different potentials would serve as a marker for phase
transition points. However, the lack of variational principles
still makes it difficult to judge which of the choices would
give the better results. The difficulty arises particularly for the
characterization of exotic phases like topologically ordered
phases where the ES plays an essential role. The issue resolves
either if one is able to reasonably increase the size of the
impurity toward the exact limit N/2 or by developing an
algorithm that legitimates the optimization of the potential,
which is not available at present. However, DMET/DET are
still the first to detect the ES of strongly correlated electrons
handily, which gives an important clue to understand the most
interesting situations in condensed matters.

ACKNOWLEDGMENTS

The authors thank Garnet Kin-Lic Chan for helpful discus-
sions. This work was supported by JSPS KAKENHI Grants
No. JP17K05533, No. JP18H01173, and No. JP17K05497.
M.K. was supported by a Grant-in-Aid for JSPS Research
Fellow (Grant No. 19J22468).

[1] C. Holzhey, F. Larsen, and F. Wilczek, Nucl. Phys. B 424, 443
(1994).

[2] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett.
90, 227902 (2003).

[3] P. Calabrese and J. Cardy, J. Stat. Mech.: Theory Exp. (2004)
P06002.

[4] A. Hamma, R. Ionicioiu, and P. Zanardi, Phys. Rev. A 71,
022315 (2005).

[5] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006).
[6] M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006).
[7] Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80, 155131 (2009).
[8] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, Phys.

Rev. B 81, 064439 (2010).
[9] L. Fidkowski and A. Kitaev, Phys. Rev. B 83, 075103 (2011).

[10] A. M. Turner, F. Pollmann, and E. Berg, Phys. Rev. B 83,
075102 (2011).

[11] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 84, 235128
(2011).

[12] H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504
(2008).

[13] L. Fidkowski, Phys. Rev. Lett. 104, 130502 (2010).

[14] A. M. Turner, Y. Zhang, and A. Vishwanath, Phys. Rev. B 82,
241102(R) (2010).

[15] A. Sterdyniak, A. Chandran, N. Regnault, B. A. Bernevig, and
P. Bonderson, Phys. Rev. B 85, 125308 (2012).

[16] S.-S. Deng, S.-J. Gu, and H.-Q. Lin, Phys. Rev. B 74, 045103
(2006).

[17] O. Legeza and J. Sólyom, Phys. Rev. Lett. 96, 116401 (2006).
[18] J.-L. Song, S.-J. Gu, and H.-Q. Lin, Phys. Rev. B 74, 155119

(2006).
[19] P. Lou and J. Y. Lee, Phys. Rev. B 74, 134402 (2006).
[20] J. Ren and S. Zhu, Phys. Rev. A 79, 034302 (2009).
[21] I. Frérot and T. Roscilde, Phys. Rev. Lett. 116, 190401 (2016).
[22] M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976).
[23] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal,

Rev. Mod. Phys. 73, 33 (2001).
[24] C. Gros, Phys. Rev. B 38, 931 (1988).
[25] T. Giamarchi and C. Lhuillier, Phys. Rev. B 43, 12943 (1991).
[26] G. Dev and J. K. Jain, Phys. Rev. B 45, 1223 (1992).
[27] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324

(1989).
[28] A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992).

235111-9

https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1088/1742-5468/2004/06/p06002
https://doi.org/10.1103/PhysRevA.71.022315
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1103/PhysRevB.80.155131
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.83.075102
https://doi.org/10.1103/PhysRevB.84.235128
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1103/PhysRevLett.104.130502
https://doi.org/10.1103/PhysRevB.82.241102
https://doi.org/10.1103/PhysRevB.85.125308
https://doi.org/10.1103/PhysRevB.74.045103
https://doi.org/10.1103/PhysRevLett.96.116401
https://doi.org/10.1103/PhysRevB.74.155119
https://doi.org/10.1103/PhysRevB.74.134402
https://doi.org/10.1103/PhysRevA.79.034302
https://doi.org/10.1103/PhysRevLett.116.190401
https://doi.org/10.1143/PTP.56.1454
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/PhysRevB.38.931
https://doi.org/10.1103/PhysRevB.43.12943
https://doi.org/10.1103/PhysRevB.45.1223
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevB.45.6479


MASATAKA KAWANO AND CHISA HOTTA PHYSICAL REVIEW B 102, 235111 (2020)

[29] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
Mod. Phys. 68, 13 (1996).

[30] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[31] S. R. White, Phys. Rev. B 48, 10345 (1993).
[32] U. Schollwöck, Ann. Phys. 326, 96 (2011).
[33] Y. Nishio, N. Maeshima, A. Gendiar, and T. Nishino,

arXiv:cond-mat/0401115.
[34] J. Jordan, R. Orús, G. Vidal, F. Verstraete, and J. I. Cirac, Phys.

Rev. Lett. 101, 250602 (2008).
[35] R. Orús, Ann. Phys. 349, 117 (2014).
[36] G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404

(2012).
[37] Q. Chen, G. H. Booth, S. Sharma, G. Knizia, and G. K.-L.

Chan, Phys. Rev. B 89, 165134 (2014).
[38] I. W. Bulik, G. E. Scuseria, and J. Dukelsky, Phys. Rev. B 89,

035140 (2014).
[39] Z. Fan and Q.-l. Jie, Phys. Rev. B 91, 195118 (2015).
[40] G. H. Booth and G. K.-L. Chan, Phys. Rev. B 91, 155107

(2015).
[41] B. Sandhoefer and G. K.-L. Chan, Phys. Rev. B 94, 085115

(2016).
[42] B.-X. Zheng and G. K.-L. Chan, Phys. Rev. B 93, 035126

(2016).
[43] S. Wouters, C. A. Jiménez-Hoyos, and G. K.-L. Chan, Five

years of density matrix embedding theory, Fragmentation
(Wiley-Blackwell, New York, 2017), Chap. 8, pp. 227–243.

[44] B.-X. Zheng, J. S. Kretchmer, H. Shi, S. Zhang, and G. K.-L.
Chan, Phys. Rev. B 95, 045103 (2017).

[45] S. Mukherjee and D. R. Reichman, Phys. Rev. B 95, 155111
(2017).

[46] K. Gunst, S. Wouters, S. De Baerdemacker, and D. Van Neck,
Phys. Rev. B 95, 195127 (2017).

[47] T. Ayral, T.-H. Lee, and G. Kotliar, Phys. Rev. B 96, 235139
(2017).

[48] E. Fertitta and G. H. Booth, Phys. Rev. B 98, 235132 (2018).
[49] B.-X. Zheng, arXiv:1803.10259.
[50] T.-H. Lee, T. Ayral, Y.-X. Yao, N. Lanata, and G. Kotliar, Phys.

Rev. B 99, 115129 (2019).
[51] B. Senjean, Phys. Rev. B 100, 035136 (2019).
[52] X. Wu, M. Lindsey, T. Zhou, Y. Tong, and L. Lin, Phys. Rev.

B 102, 085123 (2020).
[53] G. Knizia and G. K.-L. Chan, J. Chem. Theory Comput. 9,

1428 (2013).
[54] T. Tsuchimochi, M. Welborn, and T. Van Voorhis, J. Chem.

Phys. 143, 024107 (2015).
[55] S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan,

J. Chem. Theory Comput. 12, 2706 (2016).
[56] P. Fulde and H. Stoll, J. Chem. Phys. 146, 194107

(2017).
[57] J. S. Kretchmer and G. K.-L. Chan, J. Chem. Phys. 148,

054108 (2018).
[58] H. Q. Pham, V. Bernales, and L. Gagliardi, J. Chem. Theory

Comput. 14, 1960 (2018).
[59] H.-Z. Ye, M. Welborn, N. D. Ricke, and T. Van Voorhis, J.

Chem. Phys. 149, 194108 (2018).
[60] M. R. Hermes and L. Gagliardi, J. Chem. Theory Comput. 15,

972 (2019).
[61] T. E. Reinhard, U. Mordovina, C. Hubig, J. S. Kretchmer, U.

Schollwöck, H. Appel, M. A. Sentef, and A. Rubio, J. Chem.
Theory Comput. 15, 2221 (2019).

[62] Z.-H. Cui, T. Zhu, and G. K.-L. Chan, J. Chem. Theory
Comput. 16, 119 (2020).

[63] X. Wu, Z.-H. Cui, Y. Tong, M. Lindsey, G. K.-L. Chan, and L.
Lin, J. Chem. Phys. 151, 064108 (2019).

[64] C. Sun, U. Ray, Z.-H. Cui, M. Stoudenmire, M. Ferrero, and
G. K.-L. Chan, Phys. Rev. B 101, 075131 (2020).

[65] X. Plat and C. Hotta, Phys. Rev. B 102, 140410 (2020).
[66] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[67] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[68] M. Potthoff, Theoretical Methods for Strongly Correlated Sys-

tems (Springer, New York, 2012), Chap. 9.
[69] More precisely, the reproduction of the exact ES does not

necessarily guarantee the exact reduced density matrix since it
can have different eigenvectors. Such a situation is, however,
less likely to occur.

[70] I. Klich, J. Phys. A 39, L85 (2006).
[71] I. Peschel, Braz. J. Phys. 42, 267 (2012).
[72] R. Fletcher, Practical Methods of Optimization (John Wiley

and Sons, 1987).
[73] A nonuniform potential in the DET-SU(2) or the DET-Full also

breaks the translational symmetry.
[74] M. Fishman, S. R. White, and E. M. Stoudenmire,

arXiv:2007.14822.
[75] H. A. Bethe, Z. Phys. 71, 205 (1931).
[76] E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).
[77] O. Parcollet, G. Biroli, and G. Kotliar, Phys. Rev. Lett. 92,

226402 (2004).
[78] S. Daul and R. M. Noack, Phys. Rev. B 61, 1646 (2000).
[79] M. Fabrizio, Phys. Rev. B 54, 10054 (1996).
[80] K. Kuroki, R. Arita, and H. Aoki, J. Phys. Soc. Jpn. 66, 3371

(1997).
[81] S. Daul and R. M. Noack, Phys. Rev. B 58, 2635 (1998).
[82] R. Arita, K. Kuroki, H. Aoki, and M. Fabrizio, Phys. Rev. B

57, 10324 (1998).
[83] C. Aebischer, D. Baeriswyl, and R. M. Noack, Phys. Rev. Lett.

86, 468 (2001).
[84] K. Louis, J. V. Alvarez, and C. Gros, Phys. Rev. B 64, 113106

(2001).
[85] K. Hamacher, C. Gros, and W. Wenzel, Phys. Rev. Lett. 88,

217203 (2002).
[86] M. E. Torio, A. A. Aligia, and H. A. Ceccatto, Phys. Rev. B

67, 165102 (2003).
[87] C. Gros, K. Hamacher, and W. Wenzel, Europhys. Lett. 69,

616 (2005).
[88] M. Capello, F. Becca, M. Fabrizio, S. Sorella, and E. Tosatti,

Phys. Rev. Lett. 94, 026406 (2005).
[89] S. R. White and I. Affleck, Phys. Rev. B 54, 9862 (1996).
[90] C. Itoi and S. Qin, Phys. Rev. B 63, 224423 (2001).
[91] A. A. Nersesyan, A. O. Gogolin, and F. H. L. Eßler, Phys. Rev.

Lett. 81, 910 (1998).
[92] R. Chitra, S. Pati, H. R. Krishnamurthy, D. Sen, and S.

Ramasesha, Phys. Rev. B 52, 6581 (1995).
[93] T. Tonegawa and I. Harada, J. Phys. Soc. Jpn. 56, 2153

(1987).
[94] R. Bursill, G. A. Gehring, D. J. J. Farnell, J. B. Parkinson, T.

Xiang, and C. Zeng, J. Phys.: Condens. Matter 7, 8605 (1995).
[95] H. Morita, S. Watanabe, and M. Imada, J. Phys. Soc. Jpn. 71,

2109 (2002).
[96] T. Watanabe, H. Yokoyama, Y. Tanaka, and J.-i. Inoue, J. Phys.

Soc. Jpn. 75, 074707 (2006).

235111-10

https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1016/j.aop.2010.09.012
http://arxiv.org/abs/arXiv:cond-mat/0401115
https://doi.org/10.1103/PhysRevLett.101.250602
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1103/PhysRevB.89.165134
https://doi.org/10.1103/PhysRevB.89.035140
https://doi.org/10.1103/PhysRevB.91.195118
https://doi.org/10.1103/PhysRevB.91.155107
https://doi.org/10.1103/PhysRevB.94.085115
https://doi.org/10.1103/PhysRevB.93.035126
https://doi.org/10.1103/PhysRevB.95.045103
https://doi.org/10.1103/PhysRevB.95.155111
https://doi.org/10.1103/PhysRevB.95.195127
https://doi.org/10.1103/PhysRevB.96.235139
https://doi.org/10.1103/PhysRevB.98.235132
http://arxiv.org/abs/arXiv:1803.10259
https://doi.org/10.1103/PhysRevB.99.115129
https://doi.org/10.1103/PhysRevB.100.035136
https://doi.org/10.1103/PhysRevB.102.085123
https://doi.org/10.1021/ct301044e
https://doi.org/10.1063/1.4926650
https://doi.org/10.1021/acs.jctc.6b00316
https://doi.org/10.1063/1.4983207
https://doi.org/10.1063/1.5012766
https://doi.org/10.1021/acs.jctc.7b01248
https://doi.org/10.1063/1.5053992
https://doi.org/10.1021/acs.jctc.8b01009
https://doi.org/10.1021/acs.jctc.8b01116
https://doi.org/10.1021/acs.jctc.9b00933
https://doi.org/10.1063/1.5108818
https://doi.org/10.1103/PhysRevB.101.075131
https://doi.org/10.1103/PhysRevB.102.140410
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1088/0305-4470/39/4/L02
https://doi.org/10.1007/s13538-012-0074-1
http://arxiv.org/abs/arXiv:2007.14822
https://doi.org/10.1007/BF01341708
https://doi.org/10.1103/PhysRevLett.20.1445
https://doi.org/10.1103/PhysRevLett.92.226402
https://doi.org/10.1103/PhysRevB.61.1646
https://doi.org/10.1103/PhysRevB.54.10054
https://doi.org/10.1143/JPSJ.66.3371
https://doi.org/10.1103/PhysRevB.58.2635
https://doi.org/10.1103/PhysRevB.57.10324
https://doi.org/10.1103/PhysRevLett.86.468
https://doi.org/10.1103/PhysRevB.64.113106
https://doi.org/10.1103/PhysRevLett.88.217203
https://doi.org/10.1103/PhysRevB.67.165102
https://doi.org/10.1209/epl/i2004-10379-x
https://doi.org/10.1103/PhysRevLett.94.026406
https://doi.org/10.1103/PhysRevB.54.9862
https://doi.org/10.1103/PhysRevB.63.224423
https://doi.org/10.1103/PhysRevLett.81.910
https://doi.org/10.1103/PhysRevB.52.6581
https://doi.org/10.1143/JPSJ.56.2153
https://doi.org/10.1088/0953-8984/7/45/016
https://doi.org/10.1143/JPSJ.71.2109
https://doi.org/10.1143/JPSJ.75.074707


COMPARATIVE STUDY OF THE DENSITY MATRIX … PHYSICAL REVIEW B 102, 235111 (2020)

[97] B. Kyung and A.-M. S. Tremblay, Phys. Rev. Lett. 97, 046402
(2006).

[98] T. Koretsune, Y. Motome, and A. Furusaki, J. Phys. Soc. Jpn.
76, 074719 (2007).

[99] R. T. Clay, H. Li, and S. Mazumdar, Phys. Rev. Lett. 101,
166403 (2008).

[100] T. Watanabe, H. Yokoyama, Y. Tanaka, and J. Inoue, Phys.
Rev. B 77, 214505 (2008).

[101] P. Sahebsara and D. Sénéchal, Phys. Rev. Lett. 100, 136402
(2008).

[102] T. Ohashi, T. Momoi, H. Tsunetsugu, and N. Kawakami, Phys.
Rev. Lett. 100, 076402 (2008).

[103] H. Lee, G. Li, and H. Monien, Phys. Rev. B 78, 205117
(2008).

[104] A. Liebsch, H. Ishida, and J. Merino, Phys. Rev. B 79, 195108
(2009).

[105] D. Galanakis, T. D. Stanescu, and P. Phillips, Phys. Rev. B 79,
115116 (2009).

[106] T. Yoshioka, A. Koga, and N. Kawakami, Phys. Rev. Lett. 103,
036401 (2009).

[107] H.-Y. Yang, A. M. Läuchli, F. Mila, and K. P. Schmidt, Phys.
Rev. Lett. 105, 267204 (2010).

[108] T. Sato, K. Hattori, and H. Tsunetsugu, Phys. Rev. B 86,
235137 (2012).

[109] J. Kokalj and R. H. McKenzie, Phys. Rev. Lett. 110, 206402
(2013).

[110] L. F. Tocchio, H. Feldner, F. Becca, R. Valentí, and C. Gros,
Phys. Rev. B 87, 035143 (2013).

[111] A. Yamada, Phys. Rev. B 89, 195108 (2014).
[112] G. Li, A. E. Antipov, A. N. Rubtsov, S. Kirchner, and W.

Hanke, Phys. Rev. B 89, 161118(R) (2014).
[113] H. T. Dang, X. Y. Xu, K.-S. Chen, Z. Y. Meng, and S. Wessel,

Phys. Rev. B 91, 155101 (2015).
[114] T. Shirakawa, T. Tohyama, J. Kokalj, S. Sota, and S. Yunoki,

Phys. Rev. B 96, 205130 (2017).
[115] A. Szasz, J. Motruk, M. P. Zaletel, and J. E. Moore, Phys. Rev.

X 10, 021042 (2020).
[116] A. W. Sandvik, Phys. Rev. B 85, 134407 (2012).
[117] S. Nishimoto, N. Shibata, and C. Hotta, Nat. Commun. 4, 2287

(2013).

235111-11

https://doi.org/10.1103/PhysRevLett.97.046402
https://doi.org/10.1143/JPSJ.76.074719
https://doi.org/10.1103/PhysRevLett.101.166403
https://doi.org/10.1103/PhysRevB.77.214505
https://doi.org/10.1103/PhysRevLett.100.136402
https://doi.org/10.1103/PhysRevLett.100.076402
https://doi.org/10.1103/PhysRevB.78.205117
https://doi.org/10.1103/PhysRevB.79.195108
https://doi.org/10.1103/PhysRevB.79.115116
https://doi.org/10.1103/PhysRevLett.103.036401
https://doi.org/10.1103/PhysRevLett.105.267204
https://doi.org/10.1103/PhysRevB.86.235137
https://doi.org/10.1103/PhysRevLett.110.206402
https://doi.org/10.1103/PhysRevB.87.035143
https://doi.org/10.1103/PhysRevB.89.195108
https://doi.org/10.1103/PhysRevB.89.161118
https://doi.org/10.1103/PhysRevB.91.155101
https://doi.org/10.1103/PhysRevB.96.205130
https://doi.org/10.1103/PhysRevX.10.021042
https://doi.org/10.1103/PhysRevB.85.134407
https://doi.org/10.1038/ncomms3287

