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We discuss twisted bilayer graphene (TBG) based on a theorem of flat-band ferromagnetism put forward by
Mielke and Tasaki. According to this theorem, ferromagnetism occurs if the single-particle density matrix of the
flat-band states is irreducible and we argue that this result can be applied to the quasi-flat-bands of TBG that
emerge around the charge-neutrality point for twist angles around the magic angle θ ∼ 1.05◦. We show that the
density matrix is irreducible in this case, thus predicting a ferromagnetic ground state for neutral TBG (n = 0).
We then show that the theorem can also be applied only to the flat conduction or valence bands, if the substrate
induces a single-particle gap at charge neutrality. Also in this case, the corresponding density matrix turns out to
be irreducible, leading to ferromagnetism at half filling (n = ±2).
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I. INTRODUCTION

Twisted bilayer graphene (TBG) has attracted much atten-
tion due to the recent discovery of superconductivity [1–34].
Also correlated gaps were observed [35,36] that cannot be
explained by a one-particle band theory [37,38]. The fact that
interactions severely change the one-particle band structure
has further been demonstrated in recent local probe experi-
ments [39–42].

Also the emergence of flat-band ferromagnetism in in-
trinsic twisted bilayer graphene was predicted using first-
principles density functional theory calculations [43,44]. In
fact, ferromagnetism seems to be present at all integer filling
factors of the flat bands [45], and close to a van Hove sin-
gularity it was observed by local-probe microscopy [46]. Let
us also note that based on maximally localized superlattice
Wannier wave functions [20,21,47], an effective spin model
suggests that the system is described by a ferromagnetic Mott
insulator at quarter filling (n = 1) [48] and half filling (n = 2)
[49].

Even yet another kind of ferromagnetism can arise in the
presence of topological bands that emerge due to a single-
particle gap at charge neutrality. It is well known that single-
layer epitaxial graphene can develop a substrate-induced mass
term [50], and if the TBG sample is crystallographically
aligned with respect to the underlying boron nitride (BN)
substrate, the adjacent graphene layer displays a gap due
to the proximity effect [51]. Considering only one valley,
this induces a gap exclusively at one K point in the moiré
Brillouin zone for large twist angles. But for small twist
angles, the valence and conduction bands become completely
gapped due to the enhanced interlayer coupling. The flat bands
thus become Chern bands which leads to anomalous Hall

ferromagnetism at filling factor n = 3 [52,53]. This makes
TBG and also related systems such as ABC trilayer graphene
on a misaligned BN substrate [7] an ideal platform to study
the interplay between correlations and topology.

The anomalous Hall ferromagnetism, a new state of mat-
ter, is characterized by a spin- and valley-polarized ground
state [54,55], and recent magnetoresistance measurements
[53] show nonmonotonic behavior consistent with skyrmion
excitations [56]. Hysteresis behavior is further expected
in nonlinear photoconductivities as they are proportional
to the orbital magnetization of the system [57]. And a
Schwinger boson analysis with complementary density matrix
renormalization also predicts ferromagnetism at quarter and
three-quarters filling, i.e., n = 1 and n = 3 [58], which is also
the conclusion of Ref. [59], which analyzes the ferromagnetic
instability in terms of spin density waves.

In this paper, we will discuss ferromagnetism using a gen-
eral theorem initially put forward by Mielke [60,61] who
showed that in a flat band at half filling there is a unique
ferromagnetic ground state up to spin degeneracy if and only
if the density matrix of the single-particle states forming the
flat band is irreducible. A careful and readable proof of this
theorem can be found in the book by Tasaki [62]. We will
show that this theorem can be applied to the 4 bands around
charge neutrality in the case of pristine TBG. In the presence
of a substrate-induced gap, we will argue that it can also be
exclusively applied to the two highest valence or two lowest
conduction bands. In both cases, the resulting density matrix
turns out to be irreducible, thus predicting ferromagnetism
at the neutrality point (n = 0) and at half filling (n = ±2),
respectively. Let us finally mention that orbital effects [63,64]
are not included in our approach.
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II. PREVIOUS RESULTS

Before we discuss ferromagnetism in TBG, let us recall
basic theorems and results concerning magnetic ground states
of graphene and related systems.

A. Antiferromagnetism

For single-layer graphene at half filling, antiferromag-
netism is stable beyond a critical Hubbard interaction U ∼
3.7 eV [65]. Still, antiferromagnetism does not normally oc-
cur in flat bands, only ferrimagnetism [66]. Nevertheless,
triangular antiferromagnetism on the honeycomb lattice was
predicted in the presence of a spin density wave lying on the
bonds [28].

For antiferromagnetism or ferrimagnetism, one usually
needs a bipartite lattice. For bipartite lattices, there can be a
flat band at zero energy and if this is the case, one ends up
with a ferrimagnet.

B. Flat-band ferromagnetism

Let us now summarize some general results for flat-band
ferromagnetism to which we refer in this paper. A Hubbard
model on an arbitrary lattice with a flat band at the bottom
of the spectrum has ferromagnetic ground states if the band
is at most half filled. At half filling, the ferromagnetic ground
state is unique up to an SU (2) spin degeneracy if and only
if the single-particle density matrix formed by the degenerate
single-particle ground states is irreducible [60,61]. This result
also applies to the case of a flat band at the top of the spectrum
via particle-hole transformation and even extends to the case
where the flat band lies somewhere in the spectrum using a
perturbative argument [60]. The perturbative argument is only
valid for small Hubbard U ; however, there is a (yet unproven)
conjecture that the expectation value of S2 in the ground state
can only increase monotonically with U [67]. If this were
true, the system would be ferromagnetic, independently of the
Hubbard U .

For an almost but not completely flat band, it has been
proven for several classes of lattices that the ferromagnetism
remains stable for sufficiently large U if there is a gap be-
tween the flat band and the rest of the spectrum; see, e.g.,
Refs. [68,69]. For a modified kagome lattice, this is also true
even though there is no gap [70]. If we assume that this holds
for TBG as well, which has a gap, we need to show that the
single-particle density matrix formed by the single-particle
states of the flat or almost flat bands in TBG is irreducible
to obtain ferromagnetism.

III. THEORETICAL APPROACH

A. Application to TBG

We will argue that the ground state of magic-angle TBG
is ferromagnetic by applying the findings for flat-band ferro-
magnetism. We use the following theorem from Ref. [61] that
we will state here again:

“The ferromagnetic ground state of the Hubbard model
with Nd sites and Ne = Nd electrons is the unique ground state
[up to the spin degeneracy due to the SU (2) symmetry] if and
only if the single-particle density matrix ρi j is irreducible.”

The main quantity of our discussion is thus given by ρi j

and our analysis is divided into two steps: first, to numerically
calculate ρi j for a given model, and second, to probe the
resulting density matrix with respect to its irreducibility.

However, we have not yet specified the underlying Hilbert
space on which the density matrix is defined. Primarily, we are
interested in discussing ferromagnetism at the neutrality point,
and the Hilbert space is given by the four bands around the
neutrality point, i.e., the two highest valence and two lowest
conduction bands where both valleys are included. If the four
bands are now separated from the remote bands by a large
enough single-particle gap, we can apply the above theorem
as outlined in Sec. II B—at least perturbatively [60].

We can also apply our analysis to discuss ferromagnetism
at half filling of the two lowest conduction or two highest
valence bands (n = ±2). The density matrix is then defined
only with respect to the two upper or the two lower bands.
However, the conduction and valence bands must be separated
by a large enough gap at the Dirac point that can be induced
by a crystallographically aligned substrate.

B. Models for TBG

We will consider two microscopic models to describe
twisted bilayer graphene: (i) the continuum model (CM) first
introduced by Lopes dos Santos, Peres, and Castro Neto
[38,71–73], and (ii) the tight-binding model (TBM) [37,74].
For better comparison, we will only discuss twist angles
corresponding to commensurate systems that can be charac-
terized by the integer i. The twist angles are then given by
cos θi = 3i2+3i+0.5

3i2+3i+1 .

1. Continuum model

Representing twisted bilayer graphene in a plane-wave
basis leads to the so-called continuum model. Assuming a
symmetric interlayer coupling does not lead to a single-
particle gap that separates the flat bands from the remote
bands; still, a gap opens up by introducing an out-of-plane
lattice relaxation to the sample. The corrugation can be mod-
eled by an asymmetric interlayer coupling for the AA-stacked
and AB-stacked regions, respectively, and Koshino et al. [20]
obtain the parameters u = 0.0797 eV and u′ = 0.0975 eV. For
a better comparison to previous results, we prefer to use scaled
parameters, i.e., u = 0.0898 eV and u′ = 0.11 eV, thus fixing
the interlayer coupling in the (isolated) AB-stacked region to
t = 2.78 eV as in Ref. [38]. Details on the model are outlined
in Appendix A.

Experiments are usually done on a substrate of hexagonal
boron nitride (h-BN). Having a structure similar to graphene,
an influence depending on the alignment with the substrate
can be observed and Kim et al. [75] found that h-BN induces
a band gap at the Dirac points. To account for this effect,
we will introduce a general sublattice splitting with different
bias parameter for the top (�t ) and bottom (�b) layers as in
Ref. [54].

In Fig. 1(a), the band structure around charge neutrality is
shown for TBG in the presence of out-of-plane corrugation
and sublattice splitting. The one-particle gap between the flat
and remote bands is clearly seen at the � point and also the
substrate-induced splitting at the K points can be appreciated.
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(a) (b)

FIG. 1. Band structures of TBG at the magic angle θ = 1.05◦

around charge neutrality. (a) Continuum model (CM) with out-
of-plane corrugation and a substrate-induced sublattice splitting of
�t = 15 meV and �b = 0 meV. (b) Tight-binding model (TBM)
with in-plane lattice relaxation for two parameter systems. The black
curves stands for the updated relaxation parameters [79] and the red
dashed curves are taken from Ref. [78], where the lattice relaxation
was underestimated by a factor 0.42 relative to the actual lattice
relaxation.

2. Tight-binding model

Our study will be complemented by the same analysis
based on the tight-binding model (TBM). Parameters are
taken from Refs. [76,77] such that the nearest-neighbor in-
tralayer hopping parameter is set to t = −2.7 eV and the
vertical interlayer hopping parameter to t⊥ = 0.48 eV.

As was the case in the CM, also for the TBM no clear
single-particle gap appears that separates the flat from the
remote bands. Thus, again lattice relaxation effects have to
be taken into account and we choose the approach of Nam
and Koshino [78]. To be more general, we will discuss two
different parametrizations of the in-plane relaxation based on
the original work [78] and updated parameters [79]. By this,
we show that the different lattice relaxations only affect the
analysis quantitatively, but not qualitatively.

The resulting band structure can be seen in Fig. 1(b) where
the black curves refer to the updated ones to which we will
refer from now on when talking of the relaxed TBM. The red
dashed curves refer to the parameters of Ref. [78] where the
lattice relaxation was underestimated by a factor 0.42 relative
to the actual lattice relaxation.

The influence of the substrate will also be discussed for
the TBM and included in a way similar to that in the CM. The
on-site energy in the Hamiltonian in one layer is thus shifted to
� for sites belonging to sublattice A and to −� for sublattice
B. In contrary to the CM calculations, we will always neglect
the sublattice bias of the other layer zero.

C. Band gap versus bandwidth

Crucial for the application of the Mielke-Tasaki theorem
is the flat-band condition which is only approximate in the
case of TBG. In the following, we will, therefore, assess this
condition quantitatively.

The bands around charge neutrality can be regarded as
nearly flat and separated from the rest of the spectrum, if the

(a)

(b)

FIG. 2. (a) Ratio of the gap between the flat and remote bands
vs the bandwidth of the flat bands. The solid (dashed) lines refer to
the gap with respect to the upper (lower) remote bands. (b) Ratio of
the gap per bandwidth, now referring to the gap between the lowest
conduction and highest valence band compared to the respective
conduction bandwidth. The gap at the Dirac cone was induced by
the sublattice potential �t = 15 meV.

ratio of the band gap to bandwidth dgap

dwidth
is large. This ratio is

discussed in the following as a function of the commensurate
twist angle parametrized by the integer i. In this notation, the
magic angle θ = 1.05◦ corresponds to i = 31.

In Fig. 2(a), the band gap between the flat bands and
the remote bands is shown as it turns out for the TBM.
The sublattice bias � is set to zero in both cases. The curves of
the TBM show a maximum around the magic angle supporting
the claim that the bands flatten, decreasing the bandwidth and
the relative width of the gap increases.

In Fig. 2(b), we discuss the ratio in the CM focusing on
the additional gap that opens up in the presence of various
sublattice biases. In all cases, the splitting opens up a gap
between the two valence (lower) and two conduction (upper)
flat bands at the Dirac point. Again, we observe a maximum
around the magic angle. Interestingly, for fixed �t = 15 meV,
there is an optical sublattice �b ∼ 30 meV where the flat-band
theorem can be applied.

IV. DENSITY MATRIX OF TBG

We will now discuss the central quantity of our approach,
the single-particle density matrix of the four and two bands
around the neutrality point, respectively.
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A. Density matrix of the CM

Within the CM, we solve the eigenvalue problem on an
evenly spaced grid over the extended Brillouin zone, including
both valleys. The density matrix ρi j is then obtain from the
following definition:

ρi j = 1

A

∑
n

∑
k∈1st BZ

ei k·(Ri−R j )

×
∑
G1G2

ei (G1·Ri−G2·R j )�†
k+G1,n

�k+G2,n, (1)

where the normalization constant is given by A = NkN2
G and

Nk denotes the number of k points, whereas NG is the num-
ber of reciprocal vectors included in the calculation. Ri and
R j are the real-space lattice points considered and the nth
eigenstate at k + G is denoted by �k+G,n. The sum over
n runs either over the 4 states around the neutrality point
or the 2 highest valence/2 lowest conduction band states,
respectively.

The density matrix is defined on a coarse-grained unit cell
and usually ∼100 points are sufficient to resolve the main
features. In Fig. 3(a), we display the diagonal elements ρii on
the rhombic unit cell as well as an off-diagonal element ρi(i+m)

with m = 35. The diagonal elements are characterized by a
clear maximum at the AA-stacked region which is smeared
out in the off-diagonal elements.

B. Density matrix of the tight-binding model

We also calculate the density matrix with respect to the
tight-binding model. In this case, ρi j is given by the following
formula:

ρi j = 1

Nk

∑
n

∑
k∈1st BZ

�†
k,n(Ri)�k,n(R j ), (2)

where Nk denotes the number of k points included in the
calculation and �k,n(Ri ) is the component at Ri of the nth
eigenstate at k.

In Fig. 3(b), the diagonal elements of the density matrix for
a nonrelaxed system with � = 3 meV are plotted. In the case
of the tight-binding model, the unit cell will be resolved by
the atomistic lattice sites; i.e., for i = 31, the unit cell contains
11 908 atoms and the density matrix thus has dimensions of
11 908 × 11 908. Also for this model, the diagonal compo-
nents show a clear maximum at the AA-stacked regions. In
Fig. 3(c), we show the off-diagonal element ρi(i+m) for m =
35. Again, the diagonal matrix elements are characterized by
a clear maximum at the AA-stacked region which is smeared
out in the off-diagonal elements.

V. IRREDUCIBILITY

For both models, we have calculated the density ma-
trix according to Eqs. (1) and (2), respectively. In order to
show flat-band ferromagnetism following Mielke’s theorem,
we need to show that those matrices are irreducible. An ir-
reducible matrix is often defined by the matrix not being
reducible. Since we deal only with Hermitian matrices, a suf-

(a)

(b)

(c)

FIG. 3. (a) Diagonal and off-diagonal component of the density
matrix, ρii and ρi(i+m) with m = 35, as obtained from the continuum
model (CM) with the parameters of Fig. 1. (b) Diagonal and (c) off-
diagonal component with m = 35 of the density matrix as obtained
from the tight-binding calculations for a nonrelaxed system with
� = 3 meV.

ficient condition for a matrix to be reducible is that there exists
a permutation of columns and rows that transform the matrix
into a block-diagonal form (A11 0

0 A22
). Instead of proving the

nonexistence of such a permutation we employ the equiva-
lent, but more direct, definition from graph theory: A matrix
ρ ∈ R(n,n), ρ �= 0, is irreducible if and only if the correspond-
ing adjacency graph is connected which will be discussed
below.

The numerical implementation of the test for irreducibility
consists of two steps. First, ρ is transformed into its adjacency
matrix ρ̂; then the code tests whether ρ̂’s graph is connected.
For our purposes, the transformation from ρ into ρ̂ slightly
differs from the usual textbook (e.g., Ref. [80]) definition
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TABLE I. Irreducibility analysis based on the density matrix
obtained from the continuum model at the magic angle θ = 1.05◦

(i = 31). For all parameters, the critical values are well above the
numerical accuracy and the corresponding density matrix is thus
irreducible.

Relaxed �t (meV) �b (meV) Bands τc p0 (%)

no 0 0 4 1.22 × 10−6 72.1
yes 0 0 4 1.94 × 10−6 70.0
yes 15 0 4 1.98 × 10−6 70.3

upper 2 9.4 × 10−7 69.4
lower 2 1.03 × 10−6 71.0

yes 15 −7.9 4 2.02 × 10−6 70.5
upper 2 9.1 × 10−7 68.6
lower 2 1.07 × 10−6 71.8

yes 15 −15 4 2.07 × 10−6 70.7
yes 15 −29 4 2.21 × 10−6 71.6

upper 2 1.03 × 10−6 70.0
lower 2 1.17 × 10−6 72.9

yes 15 −40 4 2.35 × 10−6 72.2
upper 2 1.15 × 10−6 71.8
lower 2 1.20 × 10−6 72.9

(where it would read “1, if ρi j �= 0”):

ρ̂i j :=
{

1, if ρi j � τ,

0, otherwise,
(3)

where the threshold τ is a variable and can be set. By choosing
τ finite, we can probe how stable the graph is connected, but
we can also compensate for numerical errors that do not allow
us to simply set τ = 0. If, with a threshold higher than the
numerical error, ρ̂ is still irreducible, one can assume that
ρi j itself is irreducible. In the following, we will determine
a “critical” threshold τc which we define as the largest τ that
can be set before ρ̂ becomes reducible.

The second step in proving the graph’s connectedness is
done by a path-finding algorithm. The graph is connected if
from every node vi i ∈ {1, . . . , N} every other node can be
reached. Going to the assigned adjacency matrix conserves
this symmetry. Density matrices are symmetric and thus is ρ̂.
In the graph of a symmetric matrix, every connection would
exist in both directions. Therefore, the algorithm only needs
to find paths between nodes in one direction vi → v j and
it immediately follows v j → vi. Also, from v j → vi follows
v j → vk ∀k ∈ {1, . . . , N} if there exists a path vi → vk . Thus,
the graph being connected is equivalent to ∃(v1 → vk ) ∀k ∈
{1, . . . , N}.

For the code implementation, the problem is further re-
duced to the question of whether there exists an edge (v1, vk )
or alternatively an edge (vk, v j ) with v1 → v j . This can be
treated recursively. The algorithm first finds all nodes vi, i ∈
I ⊂ {2, . . . , N} with edges (v1, vi ) and adds them to the set of
reachable nodes Mfound = {1} ⊕ I . In the next step, all nodes
v j are found that have an edge (vi, v j ) and j �= 1 ∧ j /∈ I .
Those j are included in Mfound, Mfound = {1} ⊕ I ⊕ J . The
following step starts with v j and the scheme is repeated
until Mfound = {1, . . . , N} or until the element last added to
Mfound has no edge with any node not yet in Mfound. The way

TABLE II. Irreducibility analysis based on the density matrix
obtained from the tight-binding model at the magic angle θ = 1.05◦

(i = 31). For all parameters, the critical values are well above the
numerical accuracy and the corresponding density matrix is thus
irreducible.

Relaxed � (meV) Bands τc p0 (%)

no 0 4 8.32 × 10−5 89.1
yes 0 4 1.24 × 10−4 93.0
no 3 4 8.28 × 10−5 89.1
yes 3 4 1.26 × 10−4 92.8
no 10 4 7.82 × 10−5 88.3
yes 10 4 1.19 × 10−4 92.1

the algorithm works in the latter case implies � ∃(vi, v j ) with
i ∈ Mfound and j /∈ Mfound. Thus, the graph is not connected
and ρi j reducible. Mfound = {1, . . . , N} means that all nodes
have been reached, so the graph is fully connected and ρi j

irreducible.

VI. RESULTS

Having detailed our methods, we first present our results
in the form of Tables I and II for the CM and the TBM,

FIG. 4. Thresholds τc for the density matrix at the magic angle
θ = 1.05◦ with different models as a function of the sublattice split-
ting � (TBM) or of −�b (CM). The upper plot displays the actual
value τc while the lower plot shows the percentage p0 of the matrix
elements that have been set to zero by this threshold.
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FIG. 5. Thresholds τc for different angles in CM and commensu-
rate tight-binding model without sublattice splitting.

respectively. For comparison, we also analyzed the nonrelaxed
lattices that do not show a gap between the flat and remote
bands. The column “bands” detail whether the calculation
runs on all 4 flat bands or only on the conduction (upper) or
valence (lower) bands. This always implies that the included
flat bands are half filled: “4” thus means ferromagnetism at
charge neutrality, whereas “lower 2” or “upper 2” implies
ferromagnetism at half filling of the valence and conduction
band, respectively.

We also considered the unrelaxed lattice and a sublattice
gap � when we are only interested in the ground state at
the neutrality point. This shows that the irreducibility of the
matrix does not depend on the particular choice of parameters.

In Figs. 4 and 5, we present a summary of our results
graphically. Additional results for the irreducibility also for
other angles can be found in Appendix B. They confirm our
main conclusion that the critical values τc are much larger than
the expected numerical errors. This holds, first of all, for the
case where all four bands are considered and we expect ferro-
magnetism at half filling. But it also holds for the case where
only two bands were considered, referring to ferromagnetism
at half filling.

VII. DISCUSSION AND OUTLOOK

We investigated the single-particle density matrix of the
almost flat bands of TBG around charge neutrality. Our main

conclusion is that the single-particle density matrix is irre-
ducible for virtually all parameters. This is the main condition
for flat-band ferromagnetism to appear [60,61]. Clearly, this
does not prove the appearance of ferromagnetism in TBG
in a mathematical sense. But we argue that nevertheless one
should expect flat-band ferromagnetism for the following
reasons:

(i) The bands in TBG are not completely flat but there
is a sufficiently large gap in the spectrum. For many other
systems it has been shown that flat-band ferromagnetism is
robust against a small dispersion of the flat band in that case
and if the interaction is not too small.

(ii) In the mathematical proofs of flat-band ferromagnetism
the flat band needs to appear either on the bottom or on the
top of the spectrum or the lattice needs to be bipartite. But
one can use a perturbational argument and a conjecture on
the monotonicity of S2 as a function of U to argue that flat-
band ferromagnetism is not restricted to these cases but can
be expected in a much wider range of models and systems
including TBG.

(iii) There may be further interactions present in TBG
but one might expect that the Hubbard model describes the
essential physics of TBG. Further, additional interactions do
not necessarily disturb flat-band ferromagnetism [81,82].

Note added. Recently we became aware of Ref. [83], which
contains a conclusion similar to ours.

ACKNOWLEDGMENTS

This work has been supported by Spain’s MINECO un-
der Grant No. FIS2017-82260-P, by Germany’s Deutsche
Forschungsgemeinschaft (DFG) via SFB 1277, as well as
by the CSIC Research Platform on Quantum Technologies
PTI-001.

APPENDIX A: HAMILTONIAN OF THE
CONTINUUM MODEL

The CM’s full Hamiltonian is given by the Hamiltonian of
the single unrotated layer, HK

D , the one of the single rotated
layer, HKθ

D , and the interlayer coupling, HT :

HCM = HK
D + HKθ

D + HT . (A1)

TABLE III. Threshold values for the nonrelaxed TBG modeled
by the CM with u′ = u = 0.11 eV.

θ (deg) NG Nk NR Nbands τ p0 (%)

0.93 9 324 100 4 1.29 × 10−6 77.5
1.05 9 8100 100 4 1.09 × 10−6 71.7
1.05 9 324 100 4 1.22 × 10−6 72.1
1.05 9 81 100 4 1.47 × 10−6 73.2
1.12 9 324 100 4 1.47 × 10−6 71.6
1.12 9 324 400 4 1.47 × 10−6 69.3
1.20 9 324 100 4 1.99 × 10−6 71.3
1.61 9 324 100 4 4.63 × 10−6 72.8
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TABLE IV. Threshold values for the relaxed lattice with u =
0.0898 eV, u′ = 0.11 eV modeled by the CM.

θ (deg) �t (meV) �b (meV) NG Nk NR Nbands τ p0 (%)

1.61 0 0 9 324 100 4 5.36 × 10−6 72.8
1.20 0 0 9 324 100 4 2.95 × 10−6 69.4
1.05 0 0 9 324 100 4 1.94 × 10−6 70.0
1.05 15 0 9 324 100 4 1.98 × 10−6 70.3
1.05 15 −7.9 9 324 100 4 2.02 × 10−6 70.5
1.05 15 −15 9 324 100 4 2.07 × 10−6 70.7
1.05 15 −29 9 324 100 4 2.21 × 10−6 71.6
1.05 15 −40 9 324 100 4 2.35 × 10−6 72.2

This yields the nonzero matrix elements〈
�

(1)
(K+q),α

∣∣HCM

∣∣� (2)
(Kθ+sθ ),β

〉 = T αβ

qsθ

= T αβ

b δq−sθ ,qb
+ T αβ

tr δq−sθ ,qtr
+ T αβ

t l δq−sθ ,qt l
, (A2)

the corresponding Hermitian conjugates, and〈
�

(1)
(K+q),α

∣∣HCM

∣∣� (1)
(K+s),β

〉 = δq,s
(
HK

D (q)
)αβ

, (A3)〈
�

(2)
(Kθ +qθ ),α

∣∣HCM

∣∣� (2)
(Kθ +sθ ),β

〉 = δqθ ,sθ

(
HKθ

D (qθ )
)αβ

, (A4)

where (HK
D (q))

αβ
and (HKθ

D (qθ ))
αβ

are elements of the

matrices

H±K
D (q) = ±vF |q|

(
0 e∓iθq

e±iθq 0

)
, (A5)

H±Kθ

D (q) = ±vF |q|
(

0 e∓i(θq−θ )

e±i(θq−θ ) 0

)
. (A6)

The different signs stand for the different valleys and Tb, Ttr ,
and Ttl are [20]

Tb =
(

u u′

u′ u

)
, Ttr =

(
ueiφ u′

u′e−iφ ueiφ

)
,

Ttl = ω

(
ue−iφ u′

u′eiφ ue−iφ

)
(A7)

with φ = 2π
3 .

We will also introduce a general sublattice splitting with
one bias parameter for the top layer �t and one bias for the
bottom layer �b [54]. The interlayer part of the Hamiltonian
is expanded by �tσ

z and �bσ
z, respectively, reading now〈

�
(1)
(K+q),α

∣∣HCM

∣∣� (1)
(K+s),β

〉 = δq,svF |q|
(

�b e−iθq

eiθq −�b

)
, (A8)

TABLE V. Threshold values for the relaxed systems when only
the lower two valence bands are considered.

θ (deg) �t (meV) �b (meV) NG Nk NR Nbands τ p0 (%)

1.05 15 0 9 324 100 2 1.03 × 10−6 71.0
1.05 15 −7.9 9 324 100 2 1.07 × 10−6 71.8
1.05 15 −29 9 324 100 2 1.17 × 10−6 72.9
1.05 15 −40 9 324 100 2 1.20 × 10−6 72.9

TABLE VI. Threshold values for the relaxed lattice when only
the higher two conduction bands are considered.

θ (deg) �t (meV) �b (meV) NG Nk NR Nbands τ p0 (%)

1.05 15 0 9 324 100 2 9.4 × 10−7 69.4
1.05 15 −7.9 9 324 100 2 9.1 × 10−7 68.6
1.05 15 −29 9 324 100 2 1.03 × 10−6 70.0
1.05 15 −40 9 324 100 2 1.15 × 10−6 71.8

〈
�

(2)
(Kθ+qθ ),α

∣∣HCM

∣∣� (2)
(Kθ+sθ ),β

〉
= δqθ ,sθ vF |q|

(
�t e−i(θq−θ )

ei(θq−θ ) −�t

)
. (A9)

APPENDIX B: MORE RESULTS ON THE
IRREDUCIBILITY OF THE SINGLE-PARTICLE

DENSITY MATRIX

In this Appendix, we will give more details on our irre-
ducibility analysis. In these more extensive tables, we also
list numerical parameters such as the grid size Nk of the 1st
Brillouin zone and the reciprocal lattice truncation NG, i.e.,
the number of included reciprocal lattice vectors.

For the continuum model, we also include NR which is the
number of real-space points R used to represent the density
matrix ρi j . Nbands is the number of bands included where (i)
“2” means two valence bands or two conduction bands, and
(ii) “4” means two valence and two conduction bands. In both
cases, the valley degree of freedom is included, whereas the
spin degree of freedom is ignored.

Let us first present our results from the CM. Table III
contains our analysis for the nonrelaxed and Table IV for
the relaxed lattice of TBG, also including different sublattice
biases. In both cases, 4 bands are considered predicting a
ferromagnetic ground state at charge neutrality. In Tables V
and VI, we analyze the system for half-filled flat valence and
conduction bands, respectively.

Let us now present the detailed results coming from the
tight-binding calculations, discussing different twist angles in
Table VII. For all cases, we considered four bands around
charge neutrality and chose Nk = 900 where convergence has
been checked. In all cases, we obtain irreducibility well above
the numerical error.

TABLE VII. Threshold results for the relaxed and nonrelaxed
lattice based on the tight-binding model.

θ (deg) Relaxed � (meV) τc p0 (%)

1.05 no 0 8.32 × 10−5 89.1
1.20 no 0 8.37 × 10−5 83.4
1.61 no 0 3.31 × 10−4 91.5
1.05 yes 0 1.24 × 10−4 93.0
1.20 yes 0 2.11 × 10−4 94.6
1.61 yes 0 3.84 × 10−4 93.9
1.05 no 3 8.28 × 10−5 89.1
1.05 no 10 7.82 × 10−5 88.3
1.05 yes 3 1.26 × 10−4 92.8
1.05 yes 10 1.19 × 10−4 92.1
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